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          This work  studies the flow and heat transfer of a power-law nanofluid in the presence of   

           an  axial uniform magnetic field in the vicinity of a constantly rotating  infinite disk. The   

           Hall current  effect is taken into consideration. The  governing    momentum and energy  

           equations are solved  numerically by the shooting method. Some  of the results obtained 

           for a special case of the  problem   are  compared to the  results published in a previous  

           work and  are  found  to be in   excellent agreement.  The effects of the solid  fraction , the  

          magnetic  interaction number  M,  the Hall  current m, and  the  viscosity index  n  on the   

          velocity  and  temperature profiles as well as the  local  skin friction  coefficients and the 

          heat transfer  rate  are shown graphically.  

         Key words:  Nanofluid,  rotating disk, heat transfer, Hall current  

Introduction. 

     Rotating disk flow has been at the center of a large number of theoretical and experimental 

studies in recent years. This is mainly due to its many applications in engineering, such as rotating 

machinery, lubrication, oceanography, computer storage devices, viscometers, and crystal growth 

processes. The rotating disk problem was first solved by Von Karmam [1]. He showed that the Navier-

Stokes equations for steady flow of a Newtonian incompressible fluid due to  a disk rotating far from 

other solid surface can be reduced to a set of ordinary differential equations. These equations can be 

solved by using an approximate integral method. Cochran [2] obtained asymptotic solutions for the 

steady hydrodynamic problem formulated by Von Karman. Benton [3] improved the steady state 

solutions given by Cochran and extended the problem to transient state. 

     The rotating disk and stability issues were attacked theoretically, numerically and 

experimentally by many authors  amongst many others, such as Hall [4] and Jarrae and Chauve [5]. 

The influence of an external uniform magnetic field on the flow due to a rotating disk was studied by 

Attia and Hassan [6]. Also, the effect of uniform suction or injection through a rotating porous disk on 

the steady hydrodynamic flow has been investigated by some researchers[7-10]. The effect of thermal  

radiation on the steady laminar convective hydrodynamic flow of a viscous and electrically conducting 

fluid due to a rotating disk has considered by Anjali Devi and Uma Devi [11]. The study of 

hydromagnetic flows with the Hall current has important engineering applications in problems of 

magnetohydrodynamics generators and Hall accelerations as well as in flight magnetohydrodynamics. 

Hassan and Attia [12] investigated the steady magnetohydrodynamics boundary layer flow due to an 

infinite disk rotating with uniform angular velocity in the presence of an axial magnetic field. They 

neglected induced magnetic field but considered the Hall current and accordingly solved steady state 

equation numerically using a finite difference approximation. The effect of Hall current on steady 

laminar convective hydrodynamic flow of an electrically conducting fluid over a porous rotating  

infinite disk has been examined by Anjali Devi and Uma Devi [13]. Recently,  Khidir [14] 

investigated the effects of viscous dissipation and Ohmic heating on steady MHD convective flow due 

to a porous rotating disk with variable properties. A number of studies have been reported in the 

literature  focusing on nanofluids because of their industrial and engineering applications, such as 

electronics, transportation as well as nuclear reactors and biomedicine. Nanofluids can be also used in 

various biomedical applications 
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like cancer therapeutics, nano-drug delivery, nanocryosurgery and cryopreservation. Choi [15] was the 

first to introduce the term nanofluid to represent a fluid in which nano-scale particles (nano-particles) 

are suspended in a base fluid with a low thermal conductivity such  as water, ethylene glycol and oils 

[16-17]. The concept of  nano-fluids, in recent years, has been proposed as a route for surpassing the 

performance of heat transfer rate in regular fluids. Experimental studies show that even with a small 

volumetric fraction of nano-particles (usually less than 5%), the thermal conductivity of the base fluid 

is enhanced by 10-50% with a remarkable improvement in the convective heat transfer coefficient (see 

[18-23]). Bachok et al.[24] investigated the steady flow of an incompressible viscous fluid due to a 

porous rotating disk in a nanofluid via the Keller-box method. They considered two models for the 

effective thermal conductivity of the nanofluid. They also reported different behaviors for the heat 

transfer rate at the surface for these methods. Recently, the flow and heat transfer characteristic over a 

rotating disk immersed in five distinct nanofluids have been investigated by Mustafa [25]. 

    One type of non-Newtonian fluid is the power-law fluid. These fluids are characterized by the 

property that during its motion the stress is a nonlinear function of the rate of strain. Many of the 

inelastic non-Newtonian fluids  encountered in chemical engineering processes, are known to follow 

the empirical Ostwald-de Waele model or the so-called "power-law model". In  this model  the shear 

stress varies according to a power function of the strain rate. Acrivos et al. [26] investigate the flow of 

a non-Newtonian fluid (power-law fluid) on a rotating disk. Numerical solution for the flow caused by 

a disk rotating in liquids with a shear dependent viscosity was first obtained by Mistschka and Ulbricht 

[27]. Wichterle and Mitschka [ 28] revised the same study, with a focus on a shear of liquid particles 

to fit the application of micro-mixing technology. Andersson et al. [29] reconsidered the problem of 

Mistschka and Ulbricht to test the reliability of their numerical solutions when considering shear-

thickening fluids beyond those considered by Mitschka and Ulbricht. The influence of an external 

magnetic field on the flow due to a rotating disk was studied by several authors [30-32]. Some 

interesting effects of magnetic field on the flow of a power-law fluid over a rotating disk was 

examined by Andersson [33]. In all these investigations, the effects of the Hall current were not 

considered. Recently, the effects of Hall currents on hydromagnetic flow due to a rotating disk have 

been studied by Attia et al.[34] , Hassan et al. [35] and Abdul Maleque et al. [36]. Abo-Eldahab and 

Salem [37] considered the MHD flow and heat transfer of non-Newtonian powe-law fluid with 

diffusion and chemical reaction on a moving cylinder. Chunying et al. [38] studied the steady flow and 

heat transfer of a viscous incompressible power-law fluid over a rotating disk.   

The aim of the present work is to  study the flow and heat transfer due to a rotating disk immersed 

in a power-law nanofluid in the presence of Hall current using a nanofluid model proposed by Tiwari 

and Das [39]. The system of nonlinear partial differential equations is transformed into coupled non-

linear ordinary differential equations by means of Von Karman similarity variables and solved 

numerically by Rung-Kutta method coupled with Shooting technique[40] . The radial, tangential, axial 

velocities and temperature profiles are sketched for different values of solid volume fraction parameter 

, power-law index, magnetic field and Hall parameter. The effects of these parameters are discussed. 

 

Formulation of the problem 

          We consider a steady, laminar, axi-symmetric flow of an incompressible non-Newtonian 

nanofluid driven solely by an infinite rotating disk. As shown in Fig. 1. Let z)φ,(r, be the set of 

cylindrical coordinates and let the disk rotate with constant angular velocity Ω and be placed at z=0. 

The surface of the disk is maintained at a uniform temperature 
wT , while the temperature of the free 

stream is  T . An external strong magnetic field is applied in the positive z-direction and has flux 

density  
oB .  

The generalized Ohm’s law including Hall current is given in the form [41].                                                                                                 

.  

      J= σ (E+VxB-
een

1
(JxB))                                                                    (1) 
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Fig. 1. Physical model and coordinate system 

 

where V=u er+v e φ +w ez is the velocity vector, B=(0,0,Bo ) is the magnetic induction vector, E is the 

electric field vector, J is the current density vector, )/mtn(eσ eee

2  is the electrical conductivity, 
et  

is the electron collision time, e is the electron charge, 
en  is the electron number density, and 

em  is 

the mass of the electron. In the low-magnetic- Reynolds-number approximation, the induced magnetic 

field can be ignored. Since no applied or polarization voltage is imposed on the flow field, the electric 

field vector E is equal to zero. For  large values of the  magnetic field strength, the generalized Ohm's 

law given by Eq.(1) in the absence of an electric field can be solved for J to yield        
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where 
eetwm   is the Hall parameter with )/meB(w eoe   as the  electron frequency. It is assumed 

that the base fluid and the nanoparticles are in thermal equilibrium and no slip occurs between them. 

The thermophysical properties of the fluid and nanoparticles are given in Table 1. [22]. 

 

Table 1. Thermophysical properties of the base fluid and the nanoparticles  

Physical properties Fluid phase(water) Cu 

(J/kgK)cp  4179 385 

)ρ(Kg/m3
 997.1 8933 

k(W/mK) 0.613 400 

/s)(m10α 27  1.47 1163.1 

  

Under these assumptions with the usual boundary layer approximation and using the nanofluid 

model proposed by Tiwari and Das [39], the governing equations for the conservation of mass, 

momentum and energy for the problem under consideration (in the presence of Hall current) can be 

written as  
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The boundary conditions are 

0zat         TT,Ωr   v,  0wu w      

  z     as                   TT , 0vu                                                                            (8)                                                                                    

Where u, v and w are velocity components in the directions of increasing  z   ,  r,   respectively.   
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viscosity coefficient,  nfρ   is the effective density of nanoliquid and n is the flow behavior index.    

The fluid is Newtonian for n=1. The fluid are termed pseudplastic (or shear thinning) for n<1 and 

dilatant (or shear thickening) for n>1. Following Zheng et al. [42]  we assume the thermal conductivity 

is power-law dependent on velocity as    2
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conductivity of nanoliquid and nfk    is the modified thermal conductivity of the nanoliquid. The 

properties of nanofluids are defined as follows [17]: 
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where  is the solid volume fraction of nanoliquid, fμ is the viscosity of the basic fluid, 
sρ is the 

density of the solid, , fp )c (ρ heat capacity of the base fluid, sp )c (ρ heat capacity of solid, fk thermal 

conductivity of base fluid and 
sk thermal conductivity of solid. By introducing the Von Karaman 

transformation [1], one finds that  
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is the generalized dimensionless similarity variable originally proposed by Mitschka [43] and F, G and 

H are non-dimensional function of η . 

 In the present study the magnetic interaction number M was investigated to be  
ρΩ

σB
M

2

o  

which represents the ratio between the magnetic force to the fluid inertia force. With these definitions, 

Eqs (3)-(6), Eq. (8) take the form    

     0η
n1

n-1
F 2FH 


                                     ( 12) 



 5 

    

0mG)(F
m1

M

GFF ) Fη
n1

n1
(H)GF[(

dη

d

)
ρ

ρ
(1)-(1

1

2

2222

f

s2.5

-]F
2

1n
















                       13) 

0G)(mF
m1

M

2FGG ) Fη
n1

n1
(H)GF[(

dη

d

)
ρ

ρ
(1)-(1

1

2

22

f

s2.5

-]G
2

1n
















                              (14) 

0θ ) Fη
n1

n1
(H)GF[(

dη

d

)c (ρ

)c (ρ
1

kk

Pr

1
-]θ

2
1n

22

fp

sp

fnf 













                                         (15) 

Where the prime denote the differentiation with respect to similarity variable η  

 Boundary conditions are 

F=0, G=1, H=0   1θ   at  0η    

F=0, G=0, 0θ        as      η                                                                                             (16) 

 

Results and discussion  

 

 The system of transformed equations (12)-(15) with the corresponding boundary conditions 

(16) have been solved numerically by means of the fourth-order Runge-Kutta method with systematic 

estimates of )0(F , )0(G  and  (0)θ by shooting technique. In the present  calculations, step size of  

001.0  and 15ηmax   were found to be satisfactory in obtaining sufficient accuracy within a 

tolerance less than  10
-8

 in nearly all cases. Comparison is made with the available published data  in 

Table 2 for  (0),F  (0)G  and - )( H   which show a good agreement with the present results.  

 
Table 2. Comparison of some of the present data with results of  Anderson [33] for the particular case of a 

Newtonian fluid (n=1) and for m=0 

M 
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Present 
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0.51023254 
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0.23055903 

0.16570305 

0.6160 

0.8487 

1.0691 

1.4421 

2.0103 

0.61592206 

0.84872382 

1.06905343 

1.44209404 

2.01026675 

0.8827 

0.4589 

0.2533 

0.1086 

0.0408 

0.88447335 

0.45888794 

0.25331375 

0.10858343 

0.04077522 
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                               Fig. 2. Effect of solid volume fraction on (a)radial velocity profiles ,  

                                                 (b) tangential velocity,  Profiles  (c) axial velocity profiles. 

 

 The effects of solid volume fraction   on the velocity profiles in the radial, tangential and 

axial directions, F , G  and - H  for a shear-thinning fluid(n<1) and a shear-thickening fluid (n>1) are 

shown in Fig. 2(a)-(c).  Due to the existence of the centrifugal force, the radial velocity attains a 

maximum value close to the surface of the disk for all values of  . With increasing the values of solid 

volume fraction parameter, radial velocity increases near the surface of the disk, but towards the end it 

decreases. Also, the rate of its convergence to its limiting value (i.e. zero) is faster for larger value of 

 and n. In Figs. 2(a) and (b), we  observe that, far from the surface of the disk, the radial and 

tangential velocity profiles decreases as n increases. The reason for such behavior is that increasing the 

power-law index n tends to increase the viscous forces and decelerate the flow, thus decreasing the 

velocity profiles. Moreover, for n=1.5, the axial flow (Fig. 2(c)) fails to approach an asymptotic limit 

for large  η in a regular manner as two other velocity components, F and  G , tend to zero at the edge 

of the boundary layer. This observation can easily be  ascribed to an anticipated  deterioration of the 

numerical accuracy caused by the thickening of the boundary layer. 



 7 

 
Fig. 3. Effect of solid volume fraction on the temperature  profiles. 

 

 Fig. 3 shows the influence of solid volume fraction  on the temperature distributions for two 

different values of the power-law index  n. The dimensionless temperature profiles θ(η) decrease 

monotonically from mT 1)θ   (i.e.  at the surface of the disk to T 0)θ   (i.e.   at infinity. With 

increase in the solid volume fraction  , the temperature increases across the boundary layer for both 

values of the power-law index n<1 and n>1. Also, the temperature distribution across the boundary 

layer slightly increases with increase in values of n due to the little enhancement of the viscous forces, 

but the effect is opposite far away from the surface of the disk. 

 

 
Fig. 4. Effect of magnetic field on (a) radial velocity profiles , 

(b) tangential velocity,  Profiles  (c) axial velocity profiles. 
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 Figs 4(a)-(c) depicts the variation of velocity profiles in the radial, tangential, and axial 

distributions, F , G  and - H for different values of n and M. Application of a magnetic field produces 

a resistive force called the Lorentz force. This force has a tendency to slow the flow around the disk. 

This is depicted by the decreases in the radial, tangential, and axial velocity profiles as M increases, as 

shown in Figs. 4(a)-(c). The magnetic field effect is also observed to be more pronounced at lower 

values of M and n because a nanofluid with a thinning  boundary layer is more susceptible to magnetic 

force effects. Also, for a large value of n(=1.5), the axial flow (Fig. 4(c)) fails to approach an 

asymptotic limit for large  η in a regular manner as two other velocity components, F  and  G , tends 

to zero at the edge of the boundary layer.  

 
Fig. 5. Effect of magnetic field on the temperature  profiles. 

 

 Fig. 5. reveals the influence of magnetic field M on the temperature profile for 

pseudo-plastic and dilatants  nanofluids.  The temperature profile may be enhanced or reduced 

by increasing M, depending on the fluid index n. In this figure it is observed that the 
temperature decreases with increasing M for pseudo-plastic nanofluid (n<1), but increases with M for 

dilatant nanofluid (n>1). Also, the influence of the magnetic field M is more obvious for a pseudo-

plastic nanofluid than for a dilatants  nanofluid.  

 

 
Fig. 6. Effect of Hall parameter on (a) radial velocity profiles , 

(b) tangential velocity,  Profiles  (c) axial velocity profiles 
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 Figs. 6(a)-(c) and 6 show the radial, tangential, axial velocities and temperature   at different 

values of the Hall current m for pseudo-plastic nanofluid. The radial and axial velocity profiles 

increase due to the increase in the magnitude of m in the interval 5m0  , Figs. 6(a) and (c). 

However, beyond m=5, the radial and axial velocity profiles decrease as the Hall parameter m 

increases. Furthermore, this decrease in F  and - H  is almost negligible for large m (m>60). The 

phenomenon for small and large values of the Hall parameter m has been explained by Hassan and 

Attia [34]. The tangential velocity profiles G , as shown in Fig. 6(b), are found to increase for all 

values of Hall parameter m. Fig. 7 shows that the temperature profile decreases for 5.1m  and 

increase for 1.5m  . This increase in θ  is almost negligible for large values of m.  

 
Fig. 7. Effect of Hall parameter on the                              Fig. 8. Effect of Prandtl number 

            temperature  profiles.                                                 on the temperature  profiles                            

 
Fig. 8 shows the usual effect of Prandtl number Pr on the temperature profiles for pseudo-

plastic and dilatants nanofluids. It can be seen that the Prandtl number decreases the temperature 

distribution throughout  the boundary layer. This is due to the fact that there would be a decrease of 

thermal boundary layer thickness with the increase of  Prandtl number. In addition, the temperature 

profile is less affected by the fluid index n for Pr=20. This behavior implies that the fluid of smaller 

Prandtl number is more  responsive to fluid index n than the fluid having a larger Prandtl number. 

 
Fig. 9. Effect of solid volume fraction                                      Fig. 10. Effect of solid volume fraction    

           ont )(0F  , )(0G-   , )(0H-                                               on the rate of heat transfer  - (0)θ   

  

 Finally, the values of the radial and tangential skin frictions ) 0(F  and  0) (G  at the disk 

surface, as well as the axial inflow  - )  H(  and heat flux on the surface ) (0θ-   are plotted against 

the power-law index n in Figs. 9 and 10. We observe that an increase in the value of the solid volume 
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fraction parameter  may lead to a decrease in the radial skin friction ) 0(F and the axial inflow 

)  H(-  , yet it increases the tangential skin friction coefficient 0) (G  and rate of heat transfer 

) (0θ-  . It is also to note that the radial skin Friction decreases with n for various values of the solid 

volume fraction  ; However  the trend is reversed for large  , especially when the fluid is dilatant 

nanofluid (n>1).     

      

Conclusions 
 The present work deals with the magnetohydrodynamic flow and heat transfer of non-

Newtonian power-law nanofluid due to a rotating disk. The governing fundamental equations are 

approximated by a system of nonlinear ordinary differential equations by using a similarity 

transformation, and are solved numerically by using the Rung-Kutta and shooting methods. The 

numerical results obtained agree very well with the previously published data in some particular cases 

of the present study. The effects of the solid volume fraction  and the magnetic interaction number  

M on nanofluid velocity and temperature  are discussed for shear-thinning and shear-thickening non-

Newtonian nanofluis. The highlights of this study are: 

- The solid volume fraction decreases the magnitude of the axial and tangential nanofluid 

velocity components and increases the magnitude of the radial nanofluid velocity component 

and temperature profiles throughout the boundary layer.  

- The obtained numerical results show that the Hall parameter m has an interesting effect on the 

radial and axial nanofluid velocity profiles. For large values of m(>5), the resistive effects of 

the magnetic field are diminished, hence, the radial and axial nanofluid velocity profiles 

decrease with the increase of m while the tangential nanofluid velocity profile 

increases for all values of m. 

- The temperature profile decreases with increasing m in the range 5.1m0  , when  for 

m>1.5, the temperature profile increases with increasing m.  

- The magnetic field has increasing effects on the temperature profiles for dilatant non-

Newtonian nanofluid, whereas the opposite is observed for pseudo-plastic non-Newtonian 

nanofluid. 

 

 

Nomenclature 
B       external uniform magnetic field (kg/s

2
A)         η      a scale boundary-layer coordinate 

oB      constant magnetic flux density (kg/s
2
A)          θ     self-similar temperature 

pc       specific heat at constant pressure (J/kg k)       μ    dynamic viscosity (Ns/m
2
) 

E       electric field vector                                         ν    kinematic viscosity(m
2
/s)           

e        charge of electron                                           ρ    density (kg/m
3
)   

f         self-similar velocity                                        σ     electrical conductivity(s/m)               

g        acceleration due to gravity(m/s
2
)                         nanoparticale volume fraction      

J        current density                                               Subscripts 

k        thermal conductivity                                       f     fluid phase 

m       Hall parameter                                                s     solid phase 

en       number density of electrons                           w   condition of the wall 

T        fluid temperature (k)                                          ambient condition 

et       electron collision time                                 

u        radial velocity 

v        tangential velocity 

w       axial velocity 

z)φ,(r, cylindrical  polar coordinates 
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