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Abstract: This article investigates the flow of Maxwell nanofluid over a moving plate in a calm 

fluid. Novel aspects of Brownian motion and thermophoresis are taken into consideration. 

Revised model for passive control of nanoparticle volume fraction at the plate is used in this 

study. The formulated differential system is solved numerically by employing shooting approach 

together with fourth-fifth-order-Runge-Kutta integration procedure and Newton’s method. The 

solutions are greatly influenced with the variation of embedded parameters which include the 

local Deborah number De , the Brownian motion parameter Nb , the thermophoresis parameter 

Nt , the Prandtl number Pr  and the Schmidt number Sc . We found that the variation in velocity 

distribution with an increase in local Deborah number De  is non-monotonic. Moreover, the 

reduced Nusselt number has a linear and direct relationship with the local Deborah number De . 
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1. Introduction 

The study of nanofluid dynamics has been the subject of broad research community for the past 

few years mainly due to its promising applications in various industrial sectors. Researchers 

found that inclusion of nanometer sized metallic particles can markedly improve the transport 

properties of conventional coolants [1]. The scarcity of fossil fuels and environmental constraints 

have prompted researchers to explore the alternate sources of renewable energy such as solar 

energy. The energy obtained from nature can be optimally utilized by using nanoparticle working 

fluid [2]. It is seen that metallic nanoparticles in water-cooled nuclear reactor can produce 

significant economic gains as well as improved safety margins [3]. Nanofluids have also found 

relevance in various biomedical applications. For instance, magnetic nanofluids may be used to 

target drugs and radiation in cancer patients without affecting the healthy tissues [4]. In the 

literature two types of nanofluid models have been consistently used by the researchers namely 

the Tiwari and Das model [5] and the Buongiorno model [6]. The former focuses on the volume 

fraction of nanoparticles and later can be used to address the interesting aspects of Brownian 

motion and thermophoresis. Kuznetsov and Nield [7] used Buongiorno’s model to investigate the 

natural convection from heated vertical plate embedded in nanofluid. Later, natural convective 

flow of nanofluid through a porous space was studied by Nield and Kuznetsov [8]. Flow of 

nanofluid over a moving flat plate in the presence of free stream velocity was described by 

Bachok et al. [9]. Khan and Pop [10] published a paper dealing with the flow of nanofluid above 
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a stretching extensible surface. Recently, significant numbers of studies pertaining to the flow 

and heat transfer in nanofluids have been reported [11-27].  

Non-Newtonian fluid dynamics has been the subject of great concern to investigators presently. 

Most of the biological and industrial fluids such as polymers, paints, liquid detergents, multi-

grade oils, greases, coolants, blood, printer inks etc. do not follow the classical Newton’s law of 

viscosity and are termed as non-Newtonian. Researchers have proposed a variety of 

mathematical models to understand the dynamics of such fluids. For instance, the well known 

power-law model is able to predict the shear-thinning/thickening effects in the flow. Second 

grade fluid model is a visco-elastic model that can be used to understand the normal stress 

differences. On the other hand, Maxwell fluid is perhaps the most widely discussed viscoelastic 

fluid which has a tendency to describe the characteristics of fluid relaxation time. The boundary 

layer equations for two-dimensional flow of Maxwell fluids were first derived by Harris [28]. 

Sadeghly et al. [29] investigated the two-dimensional flow over a moving flat plate in quiescent 

ambient fluid utilizing Maxwell fluids. In another paper, Sadeghy et al. [30] analytically 

discussed the stagnation-point flow of Maxwell fluid. Mixed convection flow of Maxwell fluid 

under the influence of transverse magnetic field has been described by Kumari and Nath [31]. 

They found that an increase in the visco-elastic parameter corresponds to a reduction in the 

hydrodynamic boundary layer thickness. This outcome is qualitatively opposite to that of the 

visco-elastic parameter in second grade fluid. Hayat et al. [32] examined the stagnation-point 

flow of an electrically conducting Maxwell fluid over permeable stretching sheet. In recent 

years, various interesting boundary layer flow problems involving Maxwell fluid have been 

addressed (see [33-40]). 

In this article, we discuss the classical Sakiadis flow problem by considering Maxwell 

Nanofluid. To our knowledge, the Sakiadis flow problem for viscoelastic fluids has never been 

considered before. Buongiorno’s model together with the zero nanoparticle flux condition is 

followed in the problem formulation. Such consideration has industrial importance since many 

base fluids in realistic process exhibit viscoelastic properties. It has already been found that de-

ionized water/poly-ethylene oxide as dispersant improves the convective transport of the fluid. Some 

examples of visco-elastic nanofluids are ethylene glycol/water-Al2O3, ethylene glycol/water-

CuO and ethylene glycol/water-ZnO. Numerical simulations have been performed by the well 

known shooting approach. The role of pertinent parameters on the flow fields is thoroughly 

presented by plotting graphs. 

 

2. Problem formulation 

We consider the steady two-dimensional flow of an incompressible Maxwell nanofluid over a 

flat plate moving with the constant velocity U  in its own plane (see Fig. 1). The plate is 

maintained at constant temperature 
wT . The mass flux of nanoparticles from the plate is assumed 

to be zero. The ambient values of temperature and nanoparticle volume fraction are denoted by 

T
 and C

. The boundary layer equations governing the two-dimensional flow with heat and 

mass transfer in Maxwell fluid can be expressed as below (see Kuznetsov and Nield [7] and 

Harris [28]:   
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Fig. 1: Physical configuration and coordinate system. 
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in which u  and v  are the velocity components along the x   and y directions respectively, f  

is the kinematic viscosity, 
1  is the relaxation time, T  is the local fluid temperature, C  is the 

local volume fraction of nanoparticles, 
f  is the thermal diffusivity of the fluid, 

BD  is the 

Brownian diffusion coefficient, 
TD  is the thermophoretic diffusion coefficient,   is the ratio of 

the effective heat capacity of the nanoparticle material to the effective heat capacity of the base 

fluid. The boundary conditions are 

, 0, , 0 at 0,T
w B

DC T
u U v T T D y

y T y

 
     

 
 

(5) 

0, , as .u T T C C y      

With an aid of following similarity transformations 
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Eq. (1) is identically satisfied and Eqs. (2)-(5) reduce to the following boundary value problem 

 2 22 2 0,De ff f f f f f ff f            (7) 
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(10) 

 

where prime denotes differentiation with respect to  , 
1 / 2De U x  is the local Deborah 

number, /B fNb D C 
 
is the Brownian motion parameter, ( ) /T w fNt D T T T   

 
is the 

thermophoresis parameter, /f fPr    is the Prandtl number and /f BSc D  is the Schmidt 

number.  

The quantity of practical interest in this study is the local Nusselt number 
xNu , which is defined 

as 

,
( )

x

w

xq
Nu

k T T





 

(11) 

where 0( / ) |yq k T y 
      is a wall heat flux. Now using Eq. (6), Eq. (11) becomes 

1/2Re (0) .
x x

Nu Nur     (12) 

where Re /x Ux   is a local Reynolds number. Reduced Sherwood number which gives the 

mass transfer rate from the plate is now identically zero through the boundary conditions (10). 

 

3. Numerical results and discussion 

Eqs. (7)-(9) with the boundary conditions have been solved numerically through fourth-fifth-

order-Runge-Kutta integration and Newton’s method based shooting approach. The detailed 

procedure is explained in [23]. In addition the MATLAB built in function bvp4c is also used for 

computing the numerical solutions. The solutions obtained through both the methods are found 

in excellent agreement. For the case of pure viscous fluid with Pr 0.7 , the values of (0)f   and 

(0)  are 0.44375  and 0.34923  respectively which are in agreement with Cortell [41]. Tables 
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1 and 2 include the numerical results of reduced Nusselt number (0)  for different values of 

the embedded parameters. The value of Prandtl number is chosen by keeping in view the 

thermophysical properties for Ethylene-glycol/water based nanofluids given in [43]. It is clear 

that (0)  has a direct relationship with both the Prandtl number Pr  and the local Deborah 

number De . On the other hand, it linearly decreases with an increase in the thermophoresis 

parameter Nt . In accordance with Kuznetsov and Nield [19], (0)  is negligibly affected by 

varying the Brownian motion parameter Nb . 

Fig. 2 shows the velocity profiles for different values of local Deborah number De . The results 

of this Fig. are consistent with those of Sadeghy et al. [29]. Deborah number is defined as the 

fluid relaxation time to the fluid characteristic time scale. The velocity field f   slightly increases 

with an increase in De  just close to the plate. However, it appears to decrease with an increase 

in De  in the remaining portion of the boundary layer. The profiles tend to merge at shorter 

distances from the plate when De  is incremented indicating that boundary layer thickness is a 

decreasing function of De . Physically, as De  increases, the fluid strongly adheres to the 

boundary and hence creates a thinner boundary layer.  

Fig. 3 is prepared to see the influence of Prandtl number Pr  on the temperature distribution. 

Since Pr  is inversely proportional to the thermal diffusivity, therefore, one anticipates that 

thermal boundary layer thickness would decrease upon increasing Pr . It can be seen that slope 

of temperature   near the wall is bigger for larger Pr . Further, both temperature   and thermal 

boundary layer thickness are found to decrease upon increasing the local Deborah number De .  

In Fig. 4, temperature profiles are computed at various values of thermophoresis parameter. A 

stronger thermophoretic force allows nanoparticles of high thermal conductivity to enter deeper 

into the fluid and hence yields a thicker thermal boundary layer. The profiles exhibit similar 

pattern for any considered value of Nt  in both Newtonian and visco-elastic nanofluids.  

Nanoparticle volume fraction   is plotted at different values of Schmidt number Sc  in Fig. 5. 

Larger Schmidt number fluid has a weaker Brownian diffusion coefficient BD  and hence it 

produces shorter penetration depth for  .   appears to be negative near the plate, as also noticed 

by Kuznetsov and Nield [19]. Different from temperature  , volume fraction of nanoparticles 

has direct relationship with the fluid relaxation time. 

The variation in   with an increase in Nt  can be observed from Fig. 6. As effect of 

thermophoresis strengthens, the hot plate intensely blows the nanoparticles away from it and 

yields bigger penetration depth for  . Whereas Fig. 7 indicates that   is inversely proportional 

to the Brownian motion parameter Nb .   

The reduced Nusselt number (0)   as function of local Deborah number De  is presented at 

different values of Pr  and Nt  in the Figs. 8 and 9 respectively. It is observed that (0) 
 
is 

directly as well as linearly proportional to the local Deborah number De  in all the considered 

cases. We conclude that heat transfer rate decreases with an augmentation in thermophoretic 

force and this decrease is similar in magnitude for any considered local Deborah number De . 

The reduction in heat transfer rate occurs due to the fact that nanoparticles of high thermal 

conductivity are driven away from the plate towards the quiescent ambient fluid.     
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4. Concluding remarks 

Model for two-dimensional flow of incompressible Maxwell nanofluid above a moving plate is 

presented and analyzed. The simulation assumes that the plate is kept at constant temperature 

and mass flux of nanoparticle is zero across it. Interesting aspects of Brownian motion and 

thermophoresis are considered. The numerical solution is achieved by shooting technique with 

fourth-fifth-order Runge Kutta integration procedure and Newton method. The key findings of 

this study are outlined as below. 

1. Boundary layer thickness in visco-elastic nanofluid is shorter than that of the viscous 

nanofluid.  

2. Reduced Nusselt number is directly proportional to the local Deborah number De . 

3. Reduced Nusselt number has inverse relationship with the thermophoresis parameter and 

it is nearly independent of the Brownian motion parameter. 

4. Schmidt number has a little impact on the temperature distribution whereas volume 

fraction of nanoparticles decreases when Sc  is increased. 

5. Local Deborah number De  has dissimilar behaviors on temperature and nanoparticle 

volume fraction.  

6. Influence of Brownian motion on local volume fraction of nanoparticles is qualitatively 

opposite to that of thermophoretic diffusion. 

7. The case of Newtonian nanofluid which is not yet considered can be recovered from the 

presented model by choosing 0De  .  

Appendix 

The governing equation (2) is derived by Harris [42] while the energy and nanoparticle mass 

conservation equations for nanofluid flow are given by Buongiorno [6]. Here we present the 

outline of the derivation of these equations. The momentum equation for flow of upper-

convected Maxwell fluid is given by [42]  

,f

d

dt
 

V
S  (13) 

where    [ , , , ,0]u x y v x yV  is the velocity field, 
f

  is the base fluid (Maxwell fluid) density, 

 / /d dt t    V V  is the material time derivative and S  is the extra stress tensor which 

obeys the following relationship:  

11 ,
D

Dt
 

 
  

 
1S A  (14) 

in which 
1
  is the fluid relaxation time,    

t
   1A V V  is the first Rivlin-Ericksen tensor and 

/D Dt  is the convected time derivative. For any vector Αwe have [42] 

       ,,
,j i ji i i j j

D
A A A A

Dt t


  


V V  (15) 

after some manipulation in Eqs. (15) and (16) we arrive at the following. 
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substituting Eqs. (21) – (23) in (19) and using the continuity equation we obtain  
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where 
f  is the kinematic viscosity of the base fluid. Similarly the y   component of 

momentum Eq. (19) has the form 
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2 .f

v v v v v v v
u v u v uv

x y x y x y x y
 
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          

 (21) 

Consider the incompressible flow of Maxwell fluid composed of nanometer-sized metallic 

particles. Energy equation in absence of viscous dissipation, Joule heating, heat source/sink and 

thermal radiation is given by 

  . . . ,s sf

T
c T h

t


 
      

 
V q j  (22) 

where  
f

c  is the effective heat capacity of the base fluid, q  is the heat flux, sh  is the specific 

enthalpy and j  is the diffusive mass flux. Following Buongiorno [6] the heat flux q  is given by  

; ,s s s pk T h h c T    q j  (23) 

where k  is the thermal conductivity. The diffusive mass flux due to Brownian motion and 

thermophoretic diffusion is given by 
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T
D C D
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 
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
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in which BD  is the Brownian diffusion coefficient given by the Einstein–Stokes’s equation, and 

TD  is the thermophoretic diffusion coefficient. Now substituting the expressions for q  and sj  

from Eqs. (26) and (28) in Eq. (25) we obtain 

   2 .B Tf s

T T T
c T k T c D C T D

t T
 


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The equation for nanoparticle conservation without chemical reaction and dilute mixture can be 

written as: 

1
. . ,s

s

C
C

t 


    


V j  (26) 

which after substituting the expression for 
s

j  become 

. . .B T

C T
C D C D
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Table 1: Numerical values of (0) for different values of Pr  and De when 1Sc   and

0.5Nb Nt  . Parentheses include the corresponding numerical results using bvp4c. 

\De Pr  7 8 9 10 11 12 

0 -1.2849805 -1.3809984 -1.4711542 -1.5564065 -1.6374779 -1.7149293 

(-1.2849812) (-1.3809991) (-1.4711552) (-1.5564076) (-1.6374789) (-1.7149303) 

0.5 -1.2965174 -1.3929259 -1.4833739 -1.5688504 -1.6500977 -1.7276895 

(-1.2965181) (-1.392927) (-1.4833753) (-1.5688517) (-1.6500992) (-1.7276908) 

1 -1.3091365 -1.4061122 -1.4969613 -1.5827295 -1.664194 -1.7419509 

(-1.3091378) (-1.4061138) (-1.4969634) (-1.5827317) (-1.6641962) (-1.7419539) 

1.5 -1.3218163 -1.4199434 -1.5115798 -1.5978944 -1.6797436 -1.7577751 

(-1.3218184) (-1.419945) (-1.5115827) (-1.5978975) (-1.6797469) (-1.7577784) 

 

Table 2: Numerical values of (0) for different values of Nt  and De when 7Pr  , 1Sc  and  

0.5Nb  . Parentheses include the corresponding numerical results using bvp4c. 

\De Nt  0.1 0.3 0.5 0.7 0.9 1.1 

0 -1.3669952 -1.3263597 -1.2849805 -1.2428701 -1.200057 -1.1565938 

(-1.3669996) (-1.3263621) (-1.2849812) (-1.2428689) (-1.200057) (-1.1565937) 

0.5 -1.3784842 -1.3378808 -1.2965174 -1.254401 -1.2115543 -1.1680176 

(-1.3784892) (-1.3378833) (-1.2965181) (-1.2544001) (-1.211552) (-1.1680176) 

1 -1.3911641 -1.3505547 -1.3091365 -1.2669296 -1.2239366 -1.1801856 

(-1.3911701) (-1.3505503) (-1.3091378) (-1.266929) (-1.2239344) (-1.1801821) 

1.5 -1.404419 -1.3635612 -1.3218163 -1.2791572 -1.235565 -1.1910351 

(-1.404425) (-1.3635653) (-1.3218184) (-1.2791575) (-1.2355642) (-1.1910325) 
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Fig. 2: Effect of De  on ( )f  . Fig. 3: Effect of Pr  on ( )  . 

  
Fig. 4: Effect of Nt  on ( )  . Fig. 5: Effect of Sc  on ( )  . 
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Fig. 6: Effect of Nt  on ( )  . Fig. 7: Effect of Nb  on ( )  . 

  
Fig. 8: Effects of andPr De  on (0) . Fig. 9: Effect of Nt  on (0) . 

 

 


