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The steady two-dimensional heat transfer and flow between two non-

parallel walls of a graphene-oxide nanofluid in presence of uniform 

magnetic field are investigated in this paper. The analytical solution 

of the nonlinear problem is obtained by Galerkin Optimal Homotopy 

Asymptotic Method (GOHAM). At first a similarity transformation is 

used to reduce the partial differential equations modeling the flow and 

heat transfer to ordinary nonlinear differential equation systems 

containing the semi angle between the plates parameter, Reynolds 

number, the magnetic field strength, nanoparticle volume fraction, 

Eckert and Prandtl numbers. Finally the obtained analytical results 

have been compared with results achieved from previous works in 

some cases.  
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1. Introduction 

The term nanofluid was envisioned to describe a fluid in which nanometer-sized particles 

were suspended in conventional heat transfer basic fluids. Nanotechnology aims to manipulate 

the structure of the matter at the molecular level with the goal for innovation in virtually every 

industry and public endeavor including biological sciences, physical sciences, electronics cooling, 

transportation, the environment and national security [1, 2]. 

Magnetohydrodynamics (MHD) is the study of the interaction of electrically 

conducting fluids and electromagnetic forces. The field of MHD was initiated by Swedish 

physicist, Hannes Alfvén for which he received in 1970 the Nobel Prize [3]. The official birth 

of incompressible fluid magnetohydrodynamics is 1936–1937. In 1937, Hartmann [4] studied 

the influence of a transverse uniform magnetic field on the flow of a viscous incompressible 

electrically conducting fluid between two infinite parallel stationary and insulating plates. 

Graphene was found to display high quality electron transport at room temperature. 

Theoretical study was performed on determination of thermal conductivity of graphene and 

suggests that it has unusual thermal conductivity [5]. 

Rashidi et al. [6] considered the analysis of the second law of thermodynamics applied 

to an electrically conducting incompressible nanofluid fluid flowing over a porous rotating 

disk. They concluded that using magnetic rotating disk drives has important applications in 

heat transfer enhancement in renewable energy systems. Ellahi [7] studied the 

magnetohydrodynamic (MHD) flow of non-Newtonian nanofluid in a pipe. He observed that 

the MHD parameter decreases the fluid motion and the velocity profile is larger than that of 

temperature profile even in the presence of variable viscosities. 
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Sheikholeslami and Abelman [8] used two phase simulation of nanofluid flow and heat 

transfer in an annulus in the presence of an axial magnetic field. Sheikholeslami and Rashidi 

[9] studied the effect space dependent magnetic field on free convection of Fe3O4-water 

nanofluid. They showed that Nusselt number decreases with increase of Lorentz forces. 

Sheikholeslami et al. [10] applied LBM to simulate three dimensional nanofluid flow and 

heat transfer in presence of magnetic field. They indicated that adding magnetic field leads to 

decrease in rate of heat transfer. Sheikholeslami Kandelousi [11] studied the effect of 

spatially variable magnetic field on ferrofluid flow and heat transfer considering constant heat 

flux boundary condition. He found that enhancement in heat transfer decreases with increase 

of Rayleigh number and Magnetic number but it increases with increase of Hartmann 

number. Theoretical study of steady flow of an electrically conducting fluid in channels of 

varying width finds applications in engineering and biological systems, e.g. control of liquid 

metal flows, crystal growth, design of medical diagnostic devices which make use of the 

interaction of magnetic fields with tissue fluids, etc [12]. 

The incompressible viscous fluid flow through convergent and divergent channels is 

one of the most applicable cases in fluid mechanics, electrical and bio mechanical 

engineering.  One of the most significant examples of Jeffery Hamel problems are those 

subjected to an applied magnetic field. The MHD systems are used effectively in many 

applications including power generators, pumps, accelerators, electrostatic filters, droplet 

filters, the design of heat exchangers, the cooling of reactors etc. The investigation on MHD 

fluid flow was the main purpose of many pervious researches [13, 14].  

In the heart of all the different engineering sciences, everything shows itself in the 

mathematical relation that most of these problems and phenomena are modeled by ordinary 

or partial differential equations. In most cases, scientific problems are inherently of 

nonlinearity that does not admit exact solution, so these equations should be solved using 

special techniques. Some of these methods are Homotopy Perturbation Method (HPM) [15], 

Reconstruction of Variational Iteration Method (RVIM) [16], Glerkin Optimal Homotopy 

Asymptotic Method (GOHAM) [17] and others [18, 19].  

The aim of this study is to investigate the velocity profile in MHD Jeffery Hamel flow 

with nanoparticles by using GOHAM. The obtained approximate result will be compared to 

numerical solution in numerical case.  

2. Mathematical Formulation 

For an analytical study of Jeffery–Hamel MHD flows, we consider the two-dimensional 

flow of a viscous, incompressible and electrically conducting fluid in the presence of a 

homogeneous magnetic field which acts transversely to the flow (figure.1).   

As it can be seen in figure.1 the steady two- dimensional flow of an incompressible 

conducting viscous fluid from a source or sink at the intersection between two non parallel 

plane walls is considered.  We assume that the velocity is purely radial and depends on r  and 

  only. The mass, momentum and energy equations in polar coordinates are: 
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Since we have a symmetric geometry, the boundary conditions will be: 
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Here 0B  is the electromagnetic induction,  ru  is the velocity along radial direction, P  

is the fluid pressure,  is the conductivity of the fluid, nf is the density of fluid and nfv is the 

coefficient of kinematic viscosity. By introducing   as a solid volume fraction, fluid density, 

dynamic viscosity, the kinematic viscosity [16], thermal diffusivity and thermal conductivity 

[17] of nanofluid can be written as follows: 
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Fig. 1. Geometry of problem. 

 

Using 



   as the semi angle between walls, the dimensionless form of the velocity 

parameter can be yield by dividing that to its maximum values as  
 

maxf

f
f


  where 

rUf max . Introducing 
wT

T
 , substituting dimensionless parameters into equations.1-5 and 

eliminating the pressure term implies the following nonlinear third order boundary value 

problems: 
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Where 
 

f

fpf

k

C
Pr  is the Prandtl number, 



 maxRe
U

 is a Reynolds number, 

  wfp TC

U 2

Pr   is Eckert number  and 


 2

0B
H  is the Hartmann number.  

With the following boundary conditions: 

          00,11,00,01,10  fff  (9) 

In the limit of 0 , the flow becomes that of plane Poiseuille flow between two 

parallel plates. Physical quantities of interest are the skin friction coefficient, local Nusselt 

number, heat transfer rate and shear stress which are defined as:  
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substitution of equation.10 into equations. 7 and 8, gives: 
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3. Application of GOHAM 

Following differential equation is considered: 
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Where L is a linear operator, ( )u t is an unknown function,  g t is a known function, 

( ( ) )N u t is a nonlinear operator and B is a boundary operator. By means of OHAM one first 

constructs a set of equations: 
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Where   is an independent variable, [0,1]p  is an embedding parameter, 

( )H p denotes a nonzero auxiliary function for 0p  and (0) 0H  , ( , )p   is an unknown 

function. Obviously, when 0p   and 1p  , it holds that: 
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Thus, as p increases from 0 to 1, the solution ( , )p  varies from 0 ( )u  to the 

solution ( )u  , where 0 ( )u  is obtained from Eq. (14) for 0p  : 
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The auxiliary function  pH  can be chosen in the form: 

   2211 CpCppH

 
(16) 

Where 1C , 2C , … are constants which can be determined later. Expanding ( , )p  in a 

series with respect to p, one has: 
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Substituting equation.16 into equation.13, collecting the same powers of p, and 

equating each coefficient of p to zero, we obtain set of differential equation with boundary 

conditions. Solving differential equations by boundary conditions 

0 1 1 2 2( ), ( , ), ( , ),...u u C u C   are obtained. Generally speaking, the solution of equations. 7, 8 

can be determined approximately in the form: 
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Note that the last coefficient mC  can be function of  . Substituting Equation.19 into 

Equation.12, there results the following residual: 
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If ( , ) 0iR C  then ( ) ( , )m

iu C  happens to be the exact solution. Generally such a case will 

not arise for nonlinear problems, but the functional by Galerkin method can be minimized: 
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The unknown constants ( 1,2,..., )iC i m can be identified from the conditions: 
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Where a and b are two values, depending on the given problem. With these constants, 

the approximate solution (of order m) (Equation. (22)) is well determined. It can be observed 

that the method proposed in this work generalizes these two methods using the special (more 

general) auxiliary function ( )H p .  

4. Results and Discussions 

The problem of MHD flow of nanofluid is associated with various kinds of 

dimensionless parameters due to its multiphysics nature. In this section, we will also discuss 

about the obtained results of Graphene Oxide-water nanofluid flow between converging-

diverging plates for various solid volume fraction, Eckert, Reynolds and Hartman number. 

The physical properties of GO- water nanofluid are tabulated in Table.1. 

Table1. Thermo physical properties of water and GO nanoparticle [16]. 

 3( kg / m )  pC ( j / kgk )  k(W / m.k )  

Pure water 997.1 4179 0.613 

Graphene Oxide  1800 717 5000 

 

Figure.2-a shows the effect of increasing Reynolds numbers on the fluid velocity for fixed 

Hartmann numbers when 300,2.0,
9

 H . As it can be illustrated in figure.2-a 

Back flow is possible for large Reynolds numbers in the case of diverging channels. 

The effect of Hartmann number for a diverging channel is demonstrated in figure.2-b. 

The velocity curves show that the rate of momentum transport is considerably reduced with 

increase of Hartmann number.  

a  b  

Figure.2. Effect of Reynolds and Hartmann numbers on velocity profile when 2.0
9

  ,  a- 

300H and b- 110Re   



This clearly indicates that the transverse magnetic field opposes the transport phenomena. 

Because the that variation of Ha leads to the variation of the Lorentz force due to magnetic 

field and the Lorentz force produces more resistance to transport phenomena. 

Nano solid volume fraction plays key role and it has significant effect on both velocity 

and temperature components. Figure.3 illustrates the effect of solid volume fraction of 

graphene oxide nanoparticle on temperature profile in case ,110,400  RH  

12
,7Pr,2.0  Ec  .  

The increase in GO-nanoparticles volume fraction tends to increase the dimensionless 

temperatures due to increase in heat transfer. For energy applications of nanofluids, two 

remarkable properties of nanofluids are utilized, one is the higher thermal conductivities of 

nanofluids, enhancing the heat transfer, and another is the absorption properties of 

nanofluids. In this study, the absorption properties of GO-Water nanofluid are considered 

negligible.  

 
Figure.3. Effect of Nanoparticle solid volume fraction on temperature profile in case 

12
,7Pr,2.0,110,400   EcRH . 

 

The effect of semi angle between nonparallel walls on non-dimensional temperature of the 

nanofluid is investigated through figure.4 for convergent channel when the other non 

dimensional parameters are kept fixed in 1.0,7Pr,1.0,70,300  EcRH  .  

This figure describe that the temperature is increasing function of   in convergent channels. 



 
Figure.4.Effect of angle between plates on temperature profile when 300H , ,70R  ,1.0Ec  ,7Pr   

1.0  for converging channel . 

The effect of semi angle between nonparallel walls on velocity profile of the nanofluid is 

investigated through figure.5-a, b for both convergent and divergent channel in case 2.0 , 

,400H  50Re   . 

a  b  

Figure.5. Effect of semi angle between walls on velocity profile when 2.0 , ,400H  50Re  a-convergent 

channel and b- divergent channel. 

Impact of Eckert number and Hartmann number on temperature profiles are display in 

figure.6 a and b, respectively. Figure. 5 confirm that when Eckert number increases, 

temperature profiles increase whereas increasing Hartmann number reduce velocity values. 

This is in line with the physics of the system in that because of the higher thermal 

conductivity at higher Ec numbers, higher values of thermal diffusivity can be observed.  

Another consequence which can be achieved from figure.6  is that, by changing the value of 

H from 100 to 200, Temperature on wall is decreased from 1.18 to 1.13. Such an effect even 

becomes less sensible at higher values of H. Also, it shows that increasing Eckert number 

leads to increasing the curve of presented surface when H is constant. 

 



a  b  

Figure.6. Effect of Eckert and Hartmann numbers on temperature profile when 

1.0,7Pr,70Re
24

  , a- 400H and b- 05.0Ec  

The variations in the skin friction coefficient and the Nusselt number with the governing 

parameters are presented in table.2 and 3, respectively. According to the performed 

calculations (equation.5) and table.2, one can thoroughly consider that generally, adding 

nanoparticles to the working fluid results in an increase in the value of Nu. By increasing the 

value of nanoparticles volume fraction, the heat transfer rate raises. 

 

Table.2. Nusselt number in case 50H and 015 .  

Solid Volume Fraction Eckert Number Reynolds Number Nusselt Number   

0.1 0.1 50 4.9010 

0.2 7.0706 

0.1 0.2  9.8024 

0.2 14.141 

0.1 0.1 100 9.4166 

0.2 13.8571 

0.1 0.2  18.8331 

0.2 27.713 

 

Effects of Angle of the channel, Reynolds number and Hartmann number on Skin friction 

coefficient is shown in table. 3. Skin friction coefficient is an increasing function of Reynolds 

number and opening angle but decease function of Hartmann number. 

 

Table.3. Skin friction coefficient in case 15.0 .  

Angle Between Plates Hartmann Number Reynolds Number Skin Friction Coefficient 

5 degree 50 25 -0.1771 

10 degree -0.2173 

5 degree 100  -0.1802 

10 degree -0.2282 

5 degree 50 50 -0.1049 

10 degree -0.1377 

5 degree 100  -0.1063 

10 degree -0.1424 

 



Interestingly, it is not clearly evident to out rightly predict the effects of the different Eckert 

number values on Nusselt number. This may be because of the complications of the proposed 

model. Nevertheless, the present study provided a good base for further research. 

Table.4 shows a comparison between GOHAM solution and ADM solution [20] for 

velocity when 05,25Re,250  H . 

  

Table.4. Comparison between DTM solution and ADM solution [20] when 250H , 25Re  , 

5 , 0  

 

 

Conclusions 

This investigation deals with the analysis of heat transfer and MHD viscous Graphene oxide 

water nanofluid flow between two non-parallel walls for both converging/ diverging cases. 

Based on achieved results, an increase in the magnetic field intensity was found to have a 

strong stabilizing effect on the results for both diverging and converging channel geometries. 

The results show that the non-dimensional parameters have a strong influence on the 

temperature profile. The main findings are summarized as follows: 

- The thickness of thermal boundary layer decreases with increment in solid volume fraction 

of nanofluid due to higher heat transfer. 

- Nusselt number is an increasing function of Reynolds number, solid volume fraction and 

Eckert number. 

- Skin friction coefficient is an increasing function of Reynolds number and opening angle 

but decease function of Hartmann number. 

- The comparison between analytical results and results achieved by pervious researches 

revealed that GOHAM can be simple, powerful and efficient techniques for finding analytical 

solutions in science and engineering non-linear differential equations. 

 

 

 

 

 

 

 

 

 

 

  GOHAM ADM [14]  Error 

0 1.000000 1.000000 0.000 

0.2 0.954700 0.960841 0.007 

0.4 0.821345 0.811225 0.012 

0.6 0.614891 0.604866 0.009 

0.8 0.339890 0.325834 0.014 

1 0.000000 0.000000 0.000 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nomenclature 

B0 

Ec 

Magnetic field(wb.m-2) 

Eckert number  
  Any angle 

f(η) Dimensionless velocity   Density 

Ha
 

Hartmann number   Nanoparticle volume fraction 

P 

Pr
 

Pressure term 

Prandtl number 

  Dynamic viscosity 

Re
 

Reynolds number   

  

Kinematic viscosity 

Dimensionless temperature 

r, θ 

T 

Tw 

Cylindrical coordinates 

Temperature 

Wall temperature 

  Constant 

Umax Maximum value of velocity Subscripts 

u, v Velocity components along x, y axes, 

respectively 


 

Condition at infinity 

B0 Magnetic field(wb.m-2) Nanofluid nf  

Greek symbols Base fluid f  

  Angle of the channel s  Nano-solid-particles 

  Dimensionless angle   



References 

[1] Mahian, O., et al., A review of the applications of nanofluids in solar energy, Int. J. Heat Mass 

Transfer, 57 (2013), pp.582–594. 

[2] Cimpean, D. S., Pop, I., Fully developed mixed convection flow of a nanofluid through an inclined 

channel filled with a porous medium, Int. J. Heat Mass Transfer, 55 (2012), pp.907–914. 

[3] Alfvén, H., Existence of electromagnetic-hydrodynamic waves, Nature, 150 (1942), pp.405-406. 

[4] Hartmann, J., Hg-Dynamics I.: Theory of the laminar flow of an electrically conducting liquid in a 

homogeneous magnetic field, Levin & Munksgaard, Ejnar Munksgaard, 1937. 

[5] Saito, K., et al., Ballistic thermal conductance of a graphene sheet, Phys. Rev. B: Condens Matter, 

76 (2007), ARTICLE ID: 115409. 

[6] Rashidi, M. M., et al., Entropy generation in steady MHD flow due to a rotating porous disk in a 

nanofluid, Int. J. Heat Mass Transfer, 62 (2013), pp.515–525. 

[7] Ellahi, R., The effects of MHD and temperature dependent viscosity on the flow of non-

Newtonian nanofluid in a pipe: Analytical solutions, Appl. Math. Model., 37 (2013), 3, pp.1451-1467. 

[8] Sheikholeslami, M., Abelman, S., Two phase simulation of nanofluid flow and heat transfer in an 

annulus in the presence of an axial magnetic field, IEEE Transactions on Nanotechnology, 14 (2015), 

3, pp.561-568, DOI:10.1109/TNANO.2015.2416318. 

[9] Sheikholeslami, M., Rashidi, M. M., Effect of space dependent magnetic field on free convection 

of Fe3O4-water nanofluid, J. Taiwan. Inst. Chem. E, (2015), DOI: 10.1016/j.jtice.2015.03.035. 

[10] Sheikholeslami, M., et al.,  Lattice Boltzmann Method for simulation of magnetic field effect on 

hydrothermal behavior of nanofluid in a cubic cavity, Physica A: Statistical Mechanics and its 

Applications, 432 (2015), pp.58-70. 

[11] Sheikholeslami Kandelousi, M., Effect of spatially variable magnetic field on ferrofluid flow and 

heat transfer considering constant heat flux boundary condition, Eur. Phys. J. Plus., 129 (2014), 

pp.248-260.  

[12] Sheikholeslami, M., et al., Investigation of Nanofluid Flow and Heat Transfer in Presence of 

Magnetic Field Using KKL Model, Arab. J. Sci. Eng., 39 (2014), pp.5007-5016. 

[13] Raftari, B., Yildirim, A., The application of homotopy perturbation method for MHD flows of 

UCM fluids above porous stretching sheets, Comp. Math. Appl., 59 (2010), pp.3328_3337. 

[14] Ganji, D. D., Azimi, M., Application of DTM on MHD Jeffery Hamel Problem with 

Nanoparticles, U.P.B. Scientific Bulletin: D, 75 (2013), 1, pp. 223-230. 

[15] Ganji, D. D., et al., Determination of Temperature Distribution for Annular Fins with 

Temperature Dependent Thermal Conductivity by HPM, Thermal Science, 15 (2011), 1, pp. 111-115. 

[16] Azimi, A., Azimi, M., Analytical Investigation on 2-D unsteady MHD Viscoelastic flow between 

Moving Parallel Plates Using RVIM and HPM, Walailak J. Sci. & Tech. 11 (2014), 11, pp.955-963. 

[17] Azimi, M., et al., Investigation of the Unsteady Graphene Oxide Nanofluid Flow Between Two 

Moving Plates, J. Comput. Theor. NanoScie. 11 (2014), pp.2104-2108. 

[18] Ganji, D. D., Azimi, M., Application of Max min Approach and Amplitude Frequency 

Formulation to the nonlinear oscillation systems, U.P.B. Scientific Bulletin: A 74 (2012), 3, pp.131-

140. 

[19] Ganji, D. D., et al., Energy Balance Method and amplitude frequency formulation based of 

strongly nonlinear oscillator, Indian J. Pure Ap. Mat. 50 ( 2012), pp.670-675.  

[20] Sheikholeslami, M., et al., Analytical Investigation of Jeffery Hamel flow with High Magnetic 

Field and nanoparticle by Adomian Decomposition Method,  App. Math Mech. –Engl. Ed,  33 (2012), 

1,  pp.25-36.  

 

 

http://www.sciencedirect.com/science/article/pii/S0378437115002484
http://www.sciencedirect.com/science/article/pii/S0378437115002484
http://www.sciencedirect.com/science/article/pii/S0378437115002484

