KINK DEGENERACY AND ROGUE WAVE
FOR POTENTIAL KADOMTSEV-PETVIASHVILI EQUATION

by

Hong-Ying LUO*, Wei TANb, Zheng-De DAIb, and Jun LIUA

a College of Mathematics and Information Science, Qujing Normal University, Qujing, China
b School of Mathematics and Statistics, Yunnan University, Kunming, China

Original scientific paper
DOI: 10.2298/TSCI1504429L

A new method called homoclinic breather limit method is proposed to solve the Potential Kadomtsev-Petviashvili equation, breather kink-wave and periodic soliton are obtained, and kink degeneracy and new rogue wave are first found in this paper.

Key words: Potential Kadomtsev-Petviashvili equation, rogue wave solution, extended homoclinic test method, kink degeneracy, exp-function method

Introduction

In recent years, the study of exact solutions for the non-linear evolution equations has attracted much attention [1], and many non-linear phenomena were discovered [2-7].

In this work, we focus on some new non-linear phenomena, i. e., the kink degeneracy and rational breather solutions, for the (2+1) dimensional Potential Kadomtsev-Petviashvili (PKP) equation:

$$u_{xt} + 6u_x u_{xx} + u_{xxxx} + u_{yy} = 0$$ (1)

It is well-known that this equation arises in a number of remarkable non-linear problems in fluid mechanics and thermal science, and its solutions have been studied extensively. Solitary wave, soliton-like solution, and interaction among solitary waves were found [8-13]. Recently, exact periodic kink-wave and degenerative soliton solution of PKP were also elucidated [14]. In this paper, a novel approach named as homoclinic breather limit process is proposed to seek for rational breather-wave solutions.

Homoclinic breather limit method

In order to elucidate the new method, we consider a high dimensional non-linear evolution equation in the general form:

$$F(u, u_t, u_x, u_y, u_{xx}, u_{yy}, \ldots) = 0$$ (2)

where $u(x, y, t)$, and F is a polynomial of u and its derivatives.

The new method takes following steps.

* Corresponding author; e-mail: luohongy1982@163.com
Step 1. By Painleve analysis, a transformation:
\[u = T(f) \]
\[(3)\]
is made for a new and unknown function \(f \).

Step 2. Convert eq. (2) into Hirota bilinear form:
\[G(D_x, D_y, f, f) = 0 \]
\[(4)\]
where \(D \) is the operator defined by:
\[D^m a b = \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial x'} \right)^m \left(\frac{\partial}{\partial t} - \frac{\partial}{\partial t'} \right)^k a(x, t) b(x', t') \bigg|_{x=x', t=t'} \]

Step 3. Solve eq. (3) using homoclinic test approach by assuming that [15]:
\[f(x, y, t) = 1 + b_0 (e^{i\eta(x-at)} + e^{-i\eta(x-at)})e^{\Omega y + \gamma} + b_1 e^{2\Omega y + 2\gamma} \]
\[(5)\]

or by the extended homoclinic test approach by assuming that:
\[f(x, y, t) = e^{-p(\alpha x + \beta y + \alpha t + \gamma)} + b_0 \cos[p_1(\alpha_1 x + \beta_1 y + \alpha_1 t + \gamma_1)] + b_1 e^{p(\alpha x + \beta y + \alpha t + \gamma)} \]
\[(6)\]
where \(\alpha, \beta, \Omega, \alpha_1, \beta_1, \omega_1, p, p_1, b_0, b_1, \gamma_1 \) are constants to be determined, or by a more general approach by the exp-function method [16].

Step 4. Substitute eq. (5) or eq. (6) into eq. (3), and equate all coefficients of
\[e^{-p(\alpha x + \beta y + \alpha t + \gamma)}, e^{\alpha x + \beta y + \alpha t + \gamma}, \cos(\alpha x + \beta y + \alpha t + \gamma), \sin(\alpha x + \beta y + \alpha t + \gamma), \] and constant term to zero, we obtain the set of algebraic equation for \(\alpha, \beta, \omega, \alpha_1, \beta_1, \omega_1, p, p_1, b_0, \) and \(b_1 \).

Step 5. Solve the set of algebraic equations in Step 4 using Maple and for \(\alpha, \beta, \Omega, \alpha_1, \beta_1, \omega_1, p, p_1, b_0, \) and \(b_1 \).

Step 6. Substitute the identified values of \(\alpha, \beta, \omega, \alpha_1, \beta_1, \omega_1, p, p_1, b_0, \) and \(b_1 \) into eq. (2) and eq. (5) and deduce the exact solutions of eq. (1).

Step 7. Using the relationship between \(p_1 \) and \(p \), or \(p \) and \(\Omega \) of exact solution obtained in the Step 6 and let \(p \) tends to zero, we can get the rational breather-wave solution.

Kink degeneracy

By using Painleve test we can assume that:
\[u(x, y, t) = 2(\ln f)_x \]
\[(7)\]
where \(f(x, y, t) \) is an unknown real function to be determined. Substituting eq. (7) into eq. (1), we obtain the bilinear equation:
\[(D_x D_y + D_y^2 + D_x^2) f \cdot f = 0 \]
\[(8)\]
Now we suppose that the solution of eq. (8) is:
\[f(x, y, t) = e^{-\xi} + b_0 \cos(\eta) + b_1 e^{\xi} \]
\[(9)\]
where
\[\xi = p(x + \beta t + \omega), \quad \eta = p_1(x - \beta t + \omega) + \alpha_1 y \]
and \(\beta, \omega, \alpha_1, \omega_1, p, p_1, b_0, \) and \(b_1 \) are some constants to be determined later. Substituting eq. (9) into eq. (8), we have:
\[
\begin{align*}
2b_0\beta_1(p^4 + p_1^2 \beta + p^2 \beta + p_1^3 - 6p^2 p_1^2) \cos(\eta) - 8pb_0\beta_1(p - p_1)(p + p_1) \sin(\eta) \exp(\xi) + \\
+ [2b_0(p^4 + p_1^2 \beta + p^2 \beta + p_1^3 - 6p^2 p_1^2) \cos(\eta) + 8pb_0\beta_1(p - p_1)(p + p_1) \sin(\eta)] \exp(-\xi) - \\
- 2b_0^2 \alpha_1^2 + 8p^2 p_1^2 + 8b_0^2 p_1^4 + 2\beta b_0^2 p_1^2 + 32p^4 b_1 = 0
\end{align*}
\]
Equating all coefficients of different powers of \(\exp(\xi), \exp(-\xi), \sin(\eta), \) and \(\cos(\eta) \) to zero, we get:
\[
\begin{align*}
p^4 + p_1^2 \beta + p^2 \beta + p_1^3 - 6p^2 p_1^2 &= 0 \\
8pb_0\beta_1(p - p_1)(p + p_1) &= 0 \\
- 2b_0^2 \alpha_1^2 + 8p^2 p_1^2 + 8b_0^2 p_1^4 + 2\beta b_0^2 p_1^2 + 32p^4 b_1 &= 0
\end{align*}
\]
Solving the system of eqs. (10) with the aid of Maple, we get:
\[
\begin{align*}
p_1 &= \pm p, \\
b_1 &= \frac{b_0^2(\beta - 8p^2)}{4(\beta + 4p^2)}, \\
\alpha_1 &= \pm p\sqrt{2\beta - 4p^2}
\end{align*}
\]
and \(\beta, \omega, \omega_1, p, b_0, \) are free. Substitute eq. (11) into eq. (9), we obtain the solution:
\[
f(x, y, t) = \exp(-p(x + \beta t + \omega)) + b_0 \cos(p_1(x - \beta t + \omega_1) + \alpha_1 y) + b_1 \exp(p(x + \beta t + \omega))
\]
If \(0 < b_1 \in R \), then we obtain the exact breather kink solution:
\[
u(x, y, t) = \frac{4p\sqrt{b_1} \sinh(p(x + \beta t + \omega)) + \ln(b_1) - 2b_0 \sin(p_1(x - \beta t + \omega_1) + \alpha_1 y)}{2\sqrt{b_1} \cosh(p(x + \beta t + \omega)) + \ln(b_1) + b_0 \cos(p_1(x - \beta t + \omega_1) + \alpha_1 y)}
\]
Solution \(u(x, y, t) \) represented by eq. (14) is a breather kink-wave solution. In fact, solution \(u(x, y, t) \) is a kink wave as trajectory along the straight line \(x = \beta t - \alpha_0 \), and meanwhile evolves periodically along the straight line \(x = -\beta t - \omega \), fig. 1(a).
Let \(p \) tends to zero and take \(b_0 = \pm 2 \), we can get the following rational breather solution:
\[
u(x, y, t) = \frac{-4\beta/(2x + \omega + \omega_1 + \sqrt{2\beta} y)}{A + B - 2\beta^3 t^2 - (2\omega \beta^2 + 2\beta^2 \alpha_1) t + 12 - \beta \omega^2 - \beta \omega_1^2}
\]
where
\[
\begin{align*}
A &= -2\beta x^2 + (2\beta \omega - 2\beta \omega_1 - 2\beta \sqrt{2} y) x \\
B &= -2\beta^2 y^2 + (2\beta \sqrt{2} t - 2\beta \sqrt{2} \omega_1 y)
\end{align*}
\]
The solution \(u(x, y, t) \) represented by eq. (15) is a breather solution and no longer the kink. This shows that kink is degenerated when the period of breather wave tends to infinite in the breather kink-wave, fig. 1(b). this is a new non-linear phenomenon up to now.

![Figure 1](image_url)

Figure 1. (a) the breather kink solution as \(p = 1/10, \beta = -2, b_0 = \omega_1 = \omega = 1, y = 0, \) and (b) the rational breather-wave solution as \(\alpha = \omega_1 = \omega = 0, \beta = 4, y = 0 \)

Solutions (13) is kinky periodic-wave which has speed \(\beta \), the forward-direction (or backward-direction) wave shows solitary feature meanwhile takes on kinky feature with space variable \(x, t \) for PKP equation. Specially, this wave shows both kinky and periodic feature to space variable \(t \). Such a surprising feature of weakly dispersive long-wave is first obtained. Meanwhile, notice (15) when the \(\beta \) tends to infinity, \(u \) tends to zero. From fig. 1, it is observed that the kink of the solutions disappeared when the \(p \) tends to zero. More importantly, we obtained a rational breather wave solution.

From periodic soliton solution to rational breather wave solution

In this section, by choosing special test function in application of HTA to (2+1) dimensional Potential-Petviashvili equation, we obtain a periodic soliton solution and a rational breather-wave solution. Setting:

\[
\xi = x - \alpha t
\]

where \(\alpha \) is a wave velocity. Equation (1) can be re-written as:

\[
-\alpha u_{\xi\xi} + 6u_{\xi}u_{\xi\xi} + u_{\xi\xi\xi\xi} + u_{\xi\xi} = 0
\]

Using Painlevé analysis, we suppose that the solution of eq. (11) is:

\[
u(x, y, t) = 2(\ln \ f)_\xi
\]

for some unknown real function \(f(x, y, t) \) and by substituting eq. (11) into eq. (12), we can obtain the bilinear form:

\[
(-\alpha D_\xi^2 + D_y^2 + D_{\xi\xi}^2)f \cdot f = 0
\]
With regard to eq. (13), using the homoclinic test technique [14], we are going to seek the solution of the form:

\[f(\xi, y) = 1 + b_1 (e^{ip_1 \xi} + e^{-ip_1 \xi}) e^{\Omega y + \gamma} + b_2 e^{2\Omega y + 2\gamma} \]

(19)

where \(p, \Omega, \gamma, b_1, \) and \(b_2 \) are all real to be determined below. Substituting eq. (14) into eq. (13) yields the exact solution of eq. (12) in the form:

\[u(x, y, t) = \frac{-2b_1 p e^{\Omega y + \lambda} \sin(p_1 \xi)}{1 + 2b_1 \cos(p_1 \xi) e^{\Omega y + \gamma} + b_2 e^{2\Omega y + \gamma}} \]

(20)

Computing \(D_\xi^2 f \cdot f, \quad D_y^2 f \cdot f, \) and \(D_{\xi y}^2 f \cdot f, \) we obtain:

\[
\begin{align*}
D_\xi^2 f \cdot f &= -4b_1 p^2 e^{\Omega y + \gamma} [\cos(p_1 \xi) e^{2\Omega y + 2\gamma} b_2 + \cos(p_1 \xi) + 2b_2 e^{\Omega y + \lambda}] \\
D_y^2 f \cdot f &= 4\Omega^2 e^{\Omega y + \gamma} [\cos(p_1 \xi) b_2 e^{2\Omega y + 2\gamma} b_2 + \cos(p_1 \xi) b_1 + 2b_2 e^{\Omega y + \lambda}] \\
D_{\xi y}^2 f \cdot f &= 4b_1 p^4 e^{\Omega y + \gamma} [\cos(p_1 \xi) e^{2\Omega y + 2\gamma} b_2 + \cos(p_1 \xi) + 8b_1 e^{\Omega y + \lambda}]
\end{align*}
\]

(21)

Substituting eqs. (16) into eq. (13) we get:

\[
\begin{align*}
[(4b_1 p^2 \alpha b_2 + 4\Omega^2 b_2 + 4b_1 p^4 b_2) \cos(p_1 \xi) e^{2\Omega y + 2\gamma} + (4b_1 p^2 \alpha + 4\Omega^2 b_1 + 4b_1 p^4) \cos(p_1 \xi) + \\
+ (8b_1 p^2 \alpha + 8\Omega^2 b_2 + 32b_1 p^4) e^{\Omega y + \gamma} e^{2\Omega y + 2\gamma} = 0
\end{align*}
\]

Equating all coefficients of different powers of \(\cos(p_1 \xi) e^{2\Omega y + 2\gamma}, \) \(\cos(p_1 \xi), \) and \(e^{\Omega y + \gamma} \) to zero, we get:

\[
\begin{align*}
4b_1 p^2 \alpha b_2 + 4\Omega^2 b_2 + 4b_1 p^4 b_2 &= 0 \\
4b_1 p^2 \alpha + 4\Omega^2 b_1 + 4b_1 p^4 &= 0 \\
8b_1 p^2 \alpha + 8\Omega^2 b_2 + 32b_1 p^4 &= 0
\end{align*}
\]

(22)

Solving above equations we get:

\[\Omega^2 = -\alpha p^2 - p^4, \quad b_2 = \frac{(\alpha + 4p^2)b_1^2}{\alpha + p^2} \]

(23)

Substituting \(\xi = x - \alpha t \) into eq. (15), eq. (15) can be rewritten:

\[
u(x, y, t) = -\frac{-b_1 p \sin[p(x - \alpha t)]}{\sqrt{b_2 \cosh[\Omega y + \lambda] + \frac{1}{2} \ln(b_2)] + b_2 \cos[p(x - \alpha t)]}} \]

(24)

Substituting eq. (18) into eq. (19), we get exact periodic soliton solution of eq. (1):

\[
u(x, y, t) = -\frac{-b_1 p \sin[p(x - \alpha t)]}{\sqrt{(\alpha + 4p^2)b_1^2 \cosh[p y \sqrt{-\alpha - p^2 + \gamma} + \frac{1}{2} \ln(\alpha + 4p^2)b_1^2 + b_2 \cos[p(x - \alpha t)]}}} \]

(25)
Let p tends to zero and $\gamma = 0$, $b_1 = 1$, we can get the following rational breather-wave solution:

$$u(x, y, t) = \frac{4\alpha(x - \alpha t)}{\alpha x^2 - 2\alpha \alpha' t + \alpha^2 t^2 - y^2 + 3}$$

(26)

Solutions (25) is periodic solitary wave which have speed α, the forward-direction (or backward-direction) wave shows solitary feature meanwhile takes on periodical feature with space variable x, t for PKP equation. In particular, this wave shows both solitary and periodical feature to space variable t. This is a strange and interesting physical phenomenon to the evolution of 2-D flow of shallow-water waves having small amplitudes. We will study this interesting phenomenon in further work. From fig. 2, it is observed that the kink of the solutions disappeared when the p tends to zero. More importantly, we obtained a rational breather wave solution

Conclusions

In summary, the aid of extended homoclinic test method, we successfully applied this method to the (2+1) dimensional PKP equation. Some exact periodic soliton solution, exact breather (cross-kink) solutions and rational solutions are obtained. More importantly, it is an effective method for many equations seeking rational solutions. Our results enrich the variety of the dynamics of high-dimensional systems. This method is simple and straightforward. We will investigate other types of non-linear evolution equations and non-integrable systems.

Acknowledgments

The work was supported by Chinese Natural Science Foundation Grant No. 11361048, Qujing Normal University Natural Science Foundation Grant No. 2012QN016.

References

