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A new method called homoclinic breather limit method is proposed to solve the 
Potential Kadomtsev-Petviashvili equation, breather kink-wave and periodic 
soliton are obtained, and kink degeneracy and new rogue wave are first found in 
this paper.  
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Introduction  

In recent years, the study of exact solutions for the non-linear evolution equations 
has attracted much attention [1], and many non-linear phenomena were discovered [2-7]. 

In this work, we focus on some new non-linear phenomena, i. e., the kink degenera-
cy and rational breather solutions, for the (2+1) dimensional Potential Kadomtsev-Petviashvili 
(PKP) equation: 

 6 0xt x xx xxxx yyu u u u u+ + + =  (1) 

It is well-known that this equation arises in a number of remarkable non-linear prob-
lems in fluid mechanics and thermal science, and its solutions have been studied extensively. 
Solitary wave, soliton-like solution, and interaction among solitary waves were found [8-13]. 
Recently, exact periodic kink-wave and degenerative soliton solution of PKP were also eluci-
dated [14]. In this paper, a novel approach named as homoclinic breather limit process is pro-
posed to seek for rational breather-wave solutions.  

Homoclinic breather limit method 

In order to elucidate the new method, we consider a high dimensional non-linear 
evolution equation in the general form: 

 ( ,  ,  ,  ,  ,  ,  ) 0t x y xx yyF u u u u u u ⋅ ⋅⋅ =  (2) 

where u(x, y, t), and F is a polynomial of u and its derivatives. 
The new method takes following steps.  
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* Corresponding author; e-mail: luohongy1982@163.com 



Luo, H.-Y., et al.: Kink Degeneracy and Rogue Wave for Potential … 
1430 THERMAL SCIENCE, Year 2015, Vol. 19, No. 4, pp. 1429-1435 

Step 1. By Painleve analysis, a transformation: 

 ( )u T f=  (3) 

is made for a new and unknown function f. 
Step 2. Convert eq. (2) into Hirota bilinear form: 

 ( ,  ,  ;  ,  ) 0t x yG D D D f f =  (4) 

where D is the operator defined by: 

 ,  ( , ) ( , )
m k

m k
x t x x t tD D a b a x t b x t

x x t t ′ ′= =
∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ′ ′= − −⎜ ⎟ ⎜ ⎟′ ′∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 

Step 3. Solve eq. (3) using homoclinic test approach by assuming that [15]: 

 ( ) ( ) 2 2
0 1( , , ) 1 (e e )e eip x t ip x t y yf x y t b bα α γ γ− − − Ω + Ω += + + +  (5) 

or by the extended homoclinic test approach by assuming that: 

 ( ) ( )
0 1 1 1 1 1 1( , , ) e cos[ ( )] ep x y t p x y tf x y t b p x y t bα β ω γ α β ω γα β ω γ− + + + + + += + + + + +  (6) 

where α, β, Ω, α1, β1, ω1, p, p1, b0, b1, γ, and γ1 are constants to be determined, or by a more 
general approach by the exp-function method [16].  

Step 4. Substitute eq. (5) or eq. (6) into eq. (3), and equate all coefficients of 
( )e ,x y tα β ω γ− + + +  e ,x y tα β ω γ+ + +  1 1 1 1cos( ),x y tα β ω γ+ + +  1 1 1 1sin( ),x y tα β ω γ+ + + and con-

stant term to zero, we obtain the set of algebraic equation for α, β, ω, α1, β1, ω1, p, p1, b0, and b1. 

Step 5. Solve the set of algebraic equations in Step 4 using Maple and for α, β, Ω, α1, 
β1, ω1, p, p1, b0, and b1. 

Step 6. Substitute the identified values of α, β, ω, α1, β1, ω1, p, p1, b0, and b1 into eq. 
(2) and eq. (5) and deduce the exact solutions of eq. (1). 

Step 7. Using the relationship between p1 and p, or p and Ω of exact solution ob-
tained in the Step 6 and let p tends to zero, we can get the rational breather-wave solution. 

Kink degeneracy 

By using Painleve test we can assume that: 

 ( , , ) 2(ln )xu x y t f=  (7) 

where f(x, y, t) is an unknown real function to be determined. Substituting eq. (7) into eq. (1), 
we obtain the bilinear equation: 

 2 4( ) 0x t y xD D D D f f+ + ⋅ =  (8) 

Now we suppose that the solution of eq. (8) is: 

 0 1( , , ) e cos( ) ef x y t b bξ ξη−= + +  (9) 
where 

( )p x tξ β ω= + + ,      1 1 1( )p x t yη β ω α= − + +  
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and β, ω, α1, ω1, p, p1, b0, and b1 are some constants to be determined later. Substituting eq. 
(9) into eq. (8), we have: 

4 2 2 4 2 2 2
0 1 1 1 1 1 0 1 1 1 1[2 ( 6 ) cos( ) 8 ( )( ) sin( )]eb b p p p p p p pb b p p p p p ξβ β α η η+ + + − − − − + +

4 2 2 4 2 2 2
0 1 1 1 1 0 1 1 1[2 ( 6 ) cos( ) 8 ( )( ) sin( )]eb p p p p p p pb p p p p p ξβ β α η η −+ + + + − − + − + −  

2 2 2 2 4 2 2 4
0 1 1 0 1 0 1 12 8 8 2 32 0b p b b p b p p bα β β− + + + + =  

Equating all coefficients of different powers of eξ, e–ξ, sin(η), and cos(η) to zero, we 
get: 

 

4 2 2 4 2 2 2
1 1 1 1

0 1 1 1
2 2 2 2 4 2 2 4
0 1 1 0 1 0 1 1

 6 0
 8 ( )( ) 0

 2 8 8 2 32 0

p p p p p p
pb p p p p p

b p b b p b p p b

β β α

α β β

⎧ + + + − − =
⎪

− + =⎨
⎪

− + + + + =⎩

 (10) 

Solving the system of eqs. (10) with the aid of Maple, we get: 

       
2 2

20
1 1 12

( 8 )
, , 2 4

4( 4 )
b p

p p b p p
p

β
α β

β
−

= ± = = ± −
+

 (11) 

and β, ω, ω1, p, b0, are free. Substitute eq. (11) into eq. (9), we obtain the solution: 

 ( ) ( )
0 1 1 1 1( , , ) e cos[ ( ) ] ep x t p x tf x y t b p x t y bβ ω β ωβ ω α− + + + += + − + + +  (12) 

If 0 < b1 ∈ R, then we obtain the exact breather kink solution: 

 1 1 0 1 1 1

1 1 0 1 1 1

14 sinh ( ) ln( ) 2 sin ( )2( , , )
12 cosh ( ) ln( ) cos ( )2

p b p x t b b p x t y
u x y t

b p x t b b p x t y

β ω β ω α

β ω β ω α

+ + + − − + +
=

+ + + + − + +
   (13) 

Substitute eq. (11) into eq. (13), eq. (13) can be re-written as: 

 

2 22
0

2 2

2 22
0

2 2

( 8 )8
1 1 14 4( 4 )

( 8 )8
1 1 14 4( 4 )

12 sinh ( ) ln 2 sin ( )2( , , )
1cosh ( ) ln cos ( )2

b pp
p p

b pp
p p

p p x t p x t y
u x y t

p x t p x t y

ββ
β β

ββ
β β

β ω β ω α

β ω β ω α

−−
+ +

−−
+ +

⎡ ⎤± + + + − − + +⎢ ⎥⎣ ⎦=
⎡ ⎤± + + + + − + +⎢ ⎥⎣ ⎦

 (14) 

Solution u(x, y, t) represented by eq. (14) is a breather kink-wave solution. In fact, 
solution u(x, y, t)  is a kink wave as trajectory along the straight line 1 1 ,x t y pβ ω α= − −  
and meanwhile evolves periodically along the straight line ,x t pβ ω= − −  fig. 1(a). 

Let p tends to zero and take 0 2,b = ± we can get the following rational breather solu-
tion: 

1
3 2 2 2 2 2

1 1

4 (2 2 )
( , , )

2 ( 2 2 ) 12
x y

u x y t
A B t t

β ω ω β
β ωβ β ω βω βω

− + + +
=

+ − + − + + − −
 

where 

 
3

2

5 3
2 2

2
1

2 2
1

 2 ( 2 2 2 2 )

 2 (2 2 2 2 )

A x y x

B y t y

β βω βω β

β β β ω

⎧ = − + − − −⎪
⎨

= − + −⎪⎩
 (15) 
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The solution u(x, y, t) represented by eq. (15) is a breather solution and no longer the 
kinky. This shows that kink is degenerated when the period of breather wave tends to infinite 
in the breather kink-wave, fig. 1(b). this is a new non-linear phenomenon up to now. 

   
Figure 1. (a) the breather kink solution as  p = 1/10, β = –2, b0 = ω1 = ω = 1, y = 0, and (b) the rational 
breather-wave solution as α = ω1 = ω = 0, β = 4, y = 0 

Solutions (13) is kinky periodic-wave which has speed β, the forward-direction (or 
backward-direction) wave shows solitary feature meanwhile takes on kinky feature with space 
variable x, t for PKP equation. Specially, this wave shows both kinky and periodic feature to 
space variable t. Such a surprising feature of weakly dispersive long-wave is first obtained. 
Meanwhile, notice (15) when the t tends to infinity, u tends to zero. From fig. 1, it is observed 
that the kink of the solutions disappeared when the p tends to zero. More importantly, we ob-
tained a rational breather wave solution. 

From periodic soliton solution to  
rational breather wave solution 

In this section, by choosing special test function in application of HTA to (2+1) di-
mensional Potential-Petviashvili equation, we obtain a periodic soliton solution and a rational 
breather-wave solution. Setting: 

ξ = x – αt 

where α is a wave velocity. Equation (1) can be re-written as: 

 6 0yyu u u u uξξ ξ ξξ ξξξξα− + + + =  (16) 

Using Painlev´e analysis, we suppose that the solution of eq. (11) is: 

 ( , , ) 2(ln )u x y t f ξ=  (17) 

for some unknown real function f(x, y, t) and by substituting eq. (11) into eq. (12), we can ob-
tain the bilinear form: 

 0)( 422 =⋅++− ffDDD y ξξα  (18) 
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With regard to eq. (13), using the homoclinic test technique [14], we are going to 
seek the solution of the form: 

 2 2
1 2( , ) 1 (e e )e eip ip y yf y b bξ ξ γ γξ − Ω + Ω += + + +  (19) 

where p, Ω, γ, b1, and b2 are all real to be determined below. Substituting eq. (14) into eq. (13) 
yields the exact solution of eq. (12) in the form: 

        1
2( )

1 2

2 e sin( )
( , , )

1 2 cos( )e e

y

y y
b p p

u x y t
b p b

λ

γ γ
ξ

ξ

Ω +

Ω + Ω +

−
=

+ +
     (20) 

Computing 2 ,D f fξ ⋅  2 ,yD f f⋅ and 4 ,D f fξ ⋅  we obtain: 

 

2 2 2 2
1 2 1

2 2 2 2
1 2 1 2

4 4 2 2
1 2 1

 D 4 e [cos( )e cos( ) 2 e ]

 D 4 [cos( ) e cos( ) 2 e ]

 D 4 [cos( )e cos( ) 8 e ]

y y y

y y y
y

y y y

f f b p p b p b

f f e p b b p b b

f f b p e p b p b

γ γ λ
ξ

γ γ λ

γ γ λ
ξ

ξ ξ

ξ ξ

ξ ξ

Ω + Ω + Ω +

Ω + Ω + Ω +

Ω + Ω + Ω +

⎧ ⋅ = − + +
⎪⎪ ⋅ = Ω + +⎨
⎪

⋅ = + +⎪⎩

 (21) 

Substituting eqs. (16) into eq. (13) we get: 

2 2 4 2 2 2 2 4
1 2 1 2 1 2 1 1 1[(4 4 4 ) cos( )e (4 4 4 ) cos( )yb p b b b b p b p b p b b p pγα ξ α ξΩ ++ Ω + + + Ω + +  

2 2 2 2 4
1 2 1(8 8 32 )e ]e 0y yb p b b p γ γα Ω + Ω ++ + Ω + =  

Equating all coefficients of different powers of 2 2cos( )e ,yp γξ Ω +  cos( ),pξ  and e y γΩ +  
to zero, we get: 

 

2 2 4
1 2 1 2 1 2

2 2 4
1 1 1
2 2 2 2 4
1 2 1

 4 4 4 0

 4 4 4 0

 8 8 32 0

b p b b b b p b

b p b b p

b p b b p

α

α

α

⎧ + Ω + =
⎪⎪ + Ω + =⎨
⎪

+ Ω + =⎪⎩

 (22) 

Solving above equations we get: 

 
2 2

2 2 4 1
2 2

( 4 ), p bp p b
p

α
α

α
+

Ω = − − =
+

 (23) 

Substituting x tξ α= − into eq. (15), eq. (15) can be rewritten: 

 1

2 2 1

sin[ ( )]( , , )
1cosh[( ) ln( )] cos[ ( )]2

b p p x tu x y t
b y b b p x t

α

λ α

− −
=

Ω + + + −
 (24) 

Substituting eq. (18) into eq. (19), we get exact periodic soliton solution of eq. (1): 

1
2 2 2 2

21 1
12 2

sin[ ( )]( , , )
( 4 ) ( 4 )1cosh ln cos[ ( )]2

b p p x tu x y t
p b p bpy p b p x t
p p

α

α αα γ α
α α

− −
=

⎡ ⎤+ +
− − + + + −⎢ ⎥

+ +⎣ ⎦

 (25) 
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Let p tends to zero and γ = 0, b1 = 1, we can get the following rational breather-wave 
solution: 

 
2 2 3 2 2 2

4 ( )( , , )
2 3

x tu x y t
x x t t y

α α
α α α α

−
=

− + − +
 (26) 

    
Figure 2. (a) the periodic soliton solution as p = b1 = ,2 α = –100, γ = 0, y = x, and (b) the rational 
breather-wave solution as α = –6, y = x 

Solutions (25) is periodic solitary wave which have speed α, the forward-direction 
(or backward-direction) wave shows solitary feature meanwhile takes on periodical feature 
with space variable x, t for PKP equation. In particular, this wave shows both solitary and pe-
riodic feature to space variable t. This is a strange and interesting physical phenomenon to the 
evolution of 2-D flow of shallow-water waves having small amplitudes. We will study this in-
teresting phenomenon in further work. From fig. 2, it is observed that the kink of the solutions 
disappeared when the p tends to zero. More importantly, we obtained a rational breather wave 
solution  

Conclusions 

In summary, the aid of extended homoclinic test method, we successfully applied 
this method to the (2+1) dimensional PKP equation. Some exact periodic soliton solution, ex-
act breather cross-kink solutions and rational solutions are obtained. More importantly, it is an 
effective method for many equations seeking rational solutions. Our results enrich the variety 
of the dynamics of high-dimensional systems. This method is simple and straightforward. We 
will investigate other types of non-linear evolution equations and non-integrable systems. 
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