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In this study, the stochastic biochemical reaction model is proposed based on the 
law of mass action and complex network theory. The dynamics of biochemical 
reaction system is presented as a set of non-linear differential equations and ana-
lyzed at the molecular-scale. Given the initial state and the evolution rules of the 
biochemical reaction system, the system can achieve homeostasis. Compared 
with random graph, the biochemical reaction network has larger information ca-
pacity and is more efficient in information transmission. This is consistent with 
theory of evolution.  
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Introduction 

The last decade has witnessed a new movement of research in the study of complex 
networks [1-3]. The structure of complex network is irregular, complex and dynamically 
evolving in time, with the main focus moving from the analysis of small networks to that of 
systems with thousands or millions of nodes, and with a renewed attention to the properties of 
networks of dynamical units. Historically, the study of networks has been mainly the domain 
of a branch of discrete mathematics known as graph theory. Since its birth in 1736, graph theo-
ry has witnessed many exciting developments and has provided answers to a series of practical 
questions [4-8] and it has been shown that many real-world networks share two fundamental 
properties. The first is called the small-world phenomenon that typical distances between verti-
ces are small [9]. The second is called a power-law degree sequence that the number of verti-
ces with degree k decays slowly for large k, often resulting graphs to be scale-free graphs [10]. 
Complex networks analysis has been applied for research in biology physics, engineering and 
even social sciences [11-14]. Take the internet for example; the internet can be considered as a 
complex network of routers and computers linked by various physical or wireless links [15]. 

Complex network analysis has been well exploited in system biology by combining 
mathematical modeling, experiments, and computer simulations. Milo et al. [16] employ net-
work motifs, patterns of interconnections occurring in complex networks at numbers that are 
significantly higher than those in randomized networks, to analyze the genetic networks of 
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Escherichia coli and Saccharomyces cerevisiae. Despite significant variation in kinds of indi-
vidual constituents and pathways, Jeong et al. [17] demonstrated that almost all metabolic 
networks have the same topological scaling properties and show striking similarities to the in-
herent organization of complex non-biological systems. Using a graph of 909 interactions 
among 491 yeast genes and complex network tools, Guelzim et al. [18] showed that the num-
ber of regulated genes per regulating protein has a broader distribution with a decay resem-
bling a power law. In view of cells and microorganisms, Oltvai and Barabasi [19] and Gug-
genheim [20] insist that capturing the system-level laws governing cell biology can be repre-
sented a search for the deeper patterns common to complex systems and networks in general. 
However, the existing studies just focus on analyzing biological network statically. Few 
works study the dynamics of biological network. In this work, we propose a dynamical bio-
chemical reaction network model based on complex network. Given the initial state and the 
evolution rules of the biochemical network, we demonstrated how the biochemical reaction 
network achieving homeostasis. 

Biochemical reaction network model 

In traditional literature, the time evolution of biochemical reacting system is often 
treated as a continuous and deterministic process [21, 22]. However this approach should not 
always be taken for granted. More and more studies [23-25] have accepted the fact that the 
time evolution of a spatially homogeneous biochemical system is a discrete, stochastic pro-
cess instead of a continuous, deterministic process. In this section, the stochastic biochemical 
reaction model (SBRM) is proposed to analyze the dynamics of biochemical network. For 
thermal equilibrium, the concentration of species is the most important index in a fixed vol-
ume. The traditional way of defining concentration is that the amount of biochemical species 
n is variable while the volume v is fixed. This definition is not feasible in view of complex 
network. 

To analyze the evolution process of biochemical reaction network, we define the rel-
ative concentration for the species i and j as: 
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where k is a constant and Vij – the relative interaction volume for species i and j. Vij is defined as: 
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where dij is the distance between species i and j, and dave – the average distance among all the 
species in the biochemical network. In the evolution process, it is easy to find that the relative 
volume is varying which will induce new biochemical reaction channels. The probability for 
constructing a new reaction channels between species i and j is given by: 
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where α and β are biochemical parameters determined by the activity of biochemical species. 
Setting P(x1, …, xN; t) as the probability that new biochemical reaction channels will be 

induced at time t, ai and bi as the stochastic reaction constants, the master equation is given by: 
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To simulate the stochastic evolution of the biochemical reaction system, the algo-
rithm of the SBRM is proposed, as shown in fig. 1.  

Figure 1. Schematic of SBRM 
algorithm. θ indicates a very 
small value judging whether 
the thermal equilibrium is 
achieved. C indicates the 
critical value judging the 
whether the new biochemical 
reaction channel is induced 

 

Experiments and analysis 

In the evolution process, the interaction probability plays an important role in induc-
ing biochemical reaction channel. As shown in fig. 2, the mean of induced biochemical reac-
tion channels changes from 990 to 6850 along with α varying from 0.1 to 0.85. The variance 
of of induced biochemical reaction channels changes from 25 to 565 along with β varying 
from 0.1 to 0.85. It can be found that α is essential for the mean of induced biochemical reac-
tion channels, while β is important for the variance of induced biochemical reaction channels. 
In system biology, homeostasis of biochemical reaction network is essential. Most biological 
functions are implemented when equilibrium state is achieved, such as biological adaptation 
[26] and calcium homeostasis in mammals. Figure 3 shows how the biochemical reaction 
network achieving equilibrium state. Given the fixed α and β, both the reaction channels and 
average degree of biochemical species demonstrate that the equilibrium state is achieved at  
t = 12 s. The biochemical reaction in real-world is always a stochastic process. The average 
degree and the edges always vary on a small-scale even if the system achieves homeostasis. 
From fig. 3, we can see that the average degrees are not increasing monotonically. 
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Figure 2. The roles of α and β in the induced biochemical reaction channels 

Conclusions 

In this work, the stochastic biochemical 
reaction model is proposed. The dynamics of 
the biochemical reaction system is studied by 
analyzing the evolution of induced biochemi-
cal reaction channels, average degrees, clus-
tering factor, and average path length. The 
experimental results demonstrated that the 
existing biochemical network has advantage 
over a random graph in information pro-
cessing and homeostasis is the most optimal 
condition. These findings are consistent with 
theory of evolution. This work provides a 
possible direction to study system biology 
using complex network theory. 
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