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Introduction 

Fractional partial differential equations are generalization of the classical differential 
equations of integer order. In recent decades, fractional differential equations have gained a 
lot of attention as they are widely used to describe a variety of complex phenomena in many 
fields [1-3]. In the past, many powerful methods were established and developed to obtain ex-
act solutions and numerical solutions of the fractional differential equation (FDE), such as the 
finite difference method [4], the Adomian decomposition method [5], and so on.  

In this paper, we use the existed fractional sub-equation method to search for exact 
solutions for the space-time fractional Whitham-Broer-Kaup (WBK) equations in the sense of 
modified Riemann-Liouville derivative defined by Jumarie [6], which is a fractional version 
of the known (G'/G) method [7]. This method is based on the following fractional ODE: 

 2 ( ) ( ) ( ) 0t tD G D G Gα αξ λ ξ µ ξ+ + =  (1) 

Jumarie's modified Riemann-Liouville derivative  
and existed fractional sub-equation method  

We list some important properties for the modified Riemann-Liouville derivative 
[6]: 
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In order to obtain the general solutions for eq. (1), we suppose G(ξ) = H(η) and use 
the well-known fractional complex transformation [8], η = ξα/Γ(1 + α). Then by using eq. (2) 
and the first equality in eq. (4) and eq. (1) can be turned into the following second ODE: 

 ''( ) '( ) ( ) 0H H Hη λ η µ η+ + =  

since ( ) ( ) '( ) '( ) ,D G D H H D Hα α α
ξ ξ ξξ η η η η= = = we obtain: 

2 2

2 1 2
2

2 2

1 2

22

1 2

2 2

2 1 2

1

4 4sinh cosh
4 2 (1 ) 2 (1 ) , 4 0

2 2 4 4cosh sinh
2 (1 ) 2 (1 )

( ) (1 ) , 4 0
( ) 2 (1 )

4 4
sin cos

4 2 (1 ) 2 (1 )
2 2

cos

C C

C C

D G C
G C C

C C

C

α α

α α

α
ξ

α

α α

λ µ λ µ
ξ ξ

λ µλ α α λ µ
λ µ λ µ

ξ ξ
α α

ξ αλ λ µ
ξ α ξ

µ λ µ λ
ξ ξ

µ λλ α α

− −
+

− Γ + Γ +− + − >
− −

+
Γ + Γ +

Γ +
= − + − =

Γ + +

− −
− +

− Γ + Γ +− + 2

2 2

2

, 4 0
4 4sin

2 (1 ) 2 (1 )

 

Cα α

λ µ
µ λ µ λ

ξ ξ
α α

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪
⎪ − <
⎪ − −⎪ +

Γ + Γ +⎪⎩

(5) 

Description of the existed fractional sub-equation method 

In this section, we describe the main steps of the existed fractional sub-equation 
method. 

Step 1. Suppose that a non-linear FDE, say in two independent variables x and t: 

 ( , , , , , ) 0, 0 1t x t xP u u u D u D uα α α= < ≤  (6) 

where tD uα  and xD uα  are Jumarie's modified Riemann-Liouville derivatives of u, u = u(x, t) 
is an unknown function, P – a polynomial in u, and its various partial derivatives, in which the 
highest order derivatives and non-linear terms are involved. 

Step 2. By using the traveling wave transformation: 

 0( , ) ( ),u x t u x ctξ ξ ξ= = + +  (7) 

then, by the second equality in eq. (4) and eq. (6) can be turned into the following fractional 
ODE with respect to the variable ξ: 

 ( , , , , , ) 0P u cu u c D u D uα α α
ξ ξ′ ′ =  (8) 

Step 3. Suppose that the solution of eq. (8) can be expressed by a polynomial in 
/ :D G Gα
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where G = G(ξ) satisfies eq. (1), and ai(i = 0, 1, …, m) are constants to be determined later 
with am ≠ 0. The positive integer m can be determined by considering the homogeneous bal-
ance between the highest order derivatives and non-linear terms appearing in eq. (8). 

Step 4. Substituting eq. (9) into eq. (8), using eq. (1) and collecting all terms with 
the same order of /D G Gα

ξ  together, the left-hand side of eq. (8) is converted into another 
polynomial in / .D G Gα

ξ  Equating each coefficient of this polynomial to zero yields a set of al-
gebraic equations for ai(i = 0, 1, …, m). 

Step 5. Solving the equation system in Step 4 and using eq. (5), we can construct a 
variety of exact solutions for eq. (6).  

Applications 

The space-time fractional WBK equations: 
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can be used to describe the dispersive long wave in shallow water. Here u = u(x, t) is the field 
of horizontal velocity, v = v(x, t) is the height deviating from equilibrium position of liquid, β 
and γ are real constants that represent different diffusion powers. When α = 1, β = 0, and  
γ = 0, eq. (10) is the classical long-wave equations that describe the shallow water wave with 
diffusion. When α = 1, β = 0, and γ = 1, eq. (10) reduces to the variant Boussinesq equations 
[9] which are very important in fluid mechanics. 

Suppose that u = u(x, t), v = v(x, t), where ξ = x + ct + ξ0, k, c, ξ0 are all constants 
with k, c ≠ 0. Then by use of the second equality in eq. (4) and eq. (10) can be turned into: 
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Assume that the solution of eq. (11) can be expressed by: 
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Balancing the order of 2 ,D uα
ξ ,uD uα

ξ  3 ,D uα
ξ and ( )D uvα

ξ in eq. (11), we can obtain 
m1 = 1, and m2 = 2. 

We have: 
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Substituting eq. (13) into eq. (11), using eq. (1) and collecting all the terms with the 
same power of /D G Gα

ξ  together, equating each coefficient to zero, yields a set of algebraic 
equations. Solving these equations yields: 
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Substituting eq. (14) into eq. (13) and combining with eq. (5), we can obtain the ex-
act solutions of eq. (10). 

When λ2 – 4µ = 0, we have: 
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where ξ = kx + ct + ξ0. 

When λ2 – 4µ > 0: 
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where ξ = kx + ct + ξ0. 
When λ2 – 4µ < 0: 
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where ξ = kx + ct + ξ0. 
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Conclusions 

In this paper, the existed fractional sub-equation method has been successfully ob-
tained the exact solutions of the space-time fractional WBK equations. The above procedure 
shows that:  
● the fractional sub-equation method is an efficient and powerful method in solving a 

wide class of equations, and 
● the method is straightforward without any restrictive assumptions and special tech-

niques. Whether we can introduce other new feasible algorithms to solve FDE, we hope 
this question will be further studied. 
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