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The unsteady cavitating flow and pressure fluctuation around the 3-D NACA66 
hydrofoil were simulated and validated based on detached eddy simulation turbu-
lence model and a homogeneous cavitation model. Numerical results show that 
detached eddy simulation can predict the evolution of cavity inception, sheet cav-
itation growth, cloud cavitation shedding, and breakup, as well as the pressure 
fluctuation on the surface of hydrofoil. The sheet cavitation growth, detachment, 
cloud cavitation shedding are responsible for the features of the pressure fluctua-
tion. 
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Introduction 

The unsteady oscillation of cavitation is responsible for the erosion, noise, and vibra-
tion in hydraulic machinery, so cavitation remains a challenge for the better understanding the 
cavitation dynamics. The extensive experimental and numerical studies conducted by Leroux, et 
al. [1] suggest that the cavity instability is triggered by the interaction between re-entrant jet and 
the cavity interface, as well as a shock wave induced by the collapse of cavitation cloud. 

Inspired by their work [2-5], the objective of this paper is to investigate an economi-
cal and accurate simulation method to analyze the cavitation shedding flow around a 3-D 
NACA66 hydrofoil by using detached eddy simulation (DES) and homogeneous cavitation 
models. The unsteady features of the cavitation shedding flow and pressure fluctuation were 
analyzed by both numerical and experimental results. 

Numerical method description and set-up  

Detached eddy simulation and cavitation model 

The DES [6] is a hybrid turbulence model of large eddy simulation (LES) and 
Reynolds-averaged Navier-Stokes (RANS). DES based on shear stress transport (SST) k-ω 
turbulence model [7] was employed in this paper, which can switch from the SST-RANS 
mode in wall boundary to LES mode in regions. When LES mode is activated in turbulence 
fully developed region, the local grid spacing ∆ is used for the calculation of the dissipation 
rate in the k-equation. 

The SST k-ω model is modified in the DES as: 
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where ε is the dissipation rate, ∆ – the maximum local grid spacing (∆ = max (∆i),  
Lt = k1/2/β*ω – the turbulent length scale, and CDES – the calibration constant in the DES for-
mulation, which is set to be 0.61. 

Zwart et al. cavitation model [8], a Rayleigh-Plesset based homogenous cavitation 
model, was employed to simulate the unsteady cavitating flow in this paper. 

Boundary conditions and mesh 

The simulation was conducted using the CFD code ANSYS CFX14.5. The hydrofoil 
NACA66 was used in this paper. The computational domain is illustrated in figs. 1 and 2. The 
geometry and boundary conditions were set exactly the same as the experiment conducted by 
Leroux et al. [1], e. g. angle of attack α = 6°, inlet velocity vref = 5.33 m/s, and outlet absolute 
pressure po = 17636.4 Pa.  

Corresponding to Reynolds number based on the hydrofoil chord length c,  
Re = Vref c/υ = 0.8·106, cavitation number 2

vap( )/(0.5 ) 0.99.o refp p Vσ ρ= − =  Time gap be-
tween two consecutive images is ∆t = 0.02 s, and cycle time of one period is 0.28 s, corre-
sponding Strouhal number Stc = 0.10. 

 
Figure1. Computational domain 

 
Figure 2. Mesh near the hydrofoil 

Results and discussion 

The numerical time evolution of cloud cavitation shedding is illustrated in fig. 3, in 
which one typical period is divided into 14 instants. Iso-surface with vapor volume fraction 
0.1 stands for the boundary of the vapor bubble. The predicted one typical cycle time is  
0.22 s, and Strouhal number is Stc = 0.128. Time gap between two consecutive images is  
∆t = 0.0157 s. Compared with the experiment visualizations [1], the predicted unsteady cavi-
tation features shows a good agreement with the experimental results in the non-dimensional 
time scale. However, the predicted cycle time is larger than the experimental data. As shown 
in fig. 3, the cavity grows slowly from fig. 3(a) to (e). Cavity is cut by the upstream flowing 
re-entrant jet and continues to roll up into vapor cloud in fig. 3(h) and (i). Main cloud detach-
es in fig. 3(j) and breaks down in fig. 3(k). Regeneration of sheet cavity at the head of hydro-
foil when vapor cloud collapses in fig. 3(l) to start a new cycle. 

The time domains of pressure fluctuation are presented in fig. 4. Numerical results 
also agree fairly well with the experimental results, although some discrepancies exist, e. g. 
the amplitude and the order of sequence. From the pressure fluctuation of cavitating flow, one 
typical period can be divided into 4 phases by 5 dashed lines: I~II, stable sheet cavity genera-
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tion; II~III, cavity detachment and primary shedding; III, main cloud cavity collapse; III~IV, 
oscillation of residual cavity; IV, free of cavity on suction side of hydrofoil; V, sheet cavity 
starts to grow again in another cycle. 

 
Figure 3. Comparison of experimental and numerical results of cavitation cloud cavitation 

(for color image see journal web-site) 

Conclusions 

The cavitating flow and evolution around NACA66 hydrofoil were well-predicted 
by DES and Zwart cavitation model. The correlation of the time domains of pressure fluctua-
tions and the instant cavities at different time steps all show that the one typical period can be 
divided into 4 phases: (1) steady cavity generation; (2) cavity detachment, primary shedding, 
and main cloud collapses; (3) oscillation of residual cavity; (4) free of cavity on suction side 
of hydrofoil.  
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Figure 4. Experimental and numerical comparison of pressure fluctuation on points C31, C5, C7, 
and C9 (for color image see journal web-site) 
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