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In this paper, Painleve analysis is used to test the Painleve integrability of a 
forced variable-coefficient extended Korteveg-de Vries equation which can de-
scribe the weakly-non-linear long internal solitary waves in the fluid with contin-
uous stratification on density. The obtained results show that the equation is 
integrable under certain conditions. By virtue of the truncated Painleve expan-
sion, a pair of new exact solutions to the equation is obtained. 
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Introduction  

Non-linear evolution equations (NLEE) are usually related to some non-linear phys-
ical phenomena, for example, the celebrated Korteweg-de Vries (KdV) equation is a proto-
type model to govern some wave phenomena in the atmosphere, plasma, astrophysics, and 
transmission liners [1, 2]. Besides, the KdV equation can describe the internal solitary waves 
(ISW) in shallow water. As a type of non-linear wave in stratified fluid with continuous strati-
fication on the density or current, the ISW are frequently observed close to the oceanic re-
gions of steep topography such as the shelf-edges, ridges, and sills [3]. Since 1834 when the 
soliton phenomena was first observed and the KdV equation was solved by the inverse scat-
tering method [4], many exact solutions of NLEE have been obtained [3-8]. Testing Painleve 
integrability of NLEE plays an important role in finding exact solutions of NLEE, and has be-
come one of the most significant tasks in soliton theory. The present paper is motivated by the 
desire to use the Weiss-Tabor-Carnevale (WTC) method [9] of Painleve analysis to prove the 
following forced variable-coefficient extended KdV equation [3]: 

 2( ) ( ) ( ) ( ) ( ) ( )t x x xxx xu a t uu b t u u c t u d t u t u tγ Γ+ + + + + =  (1) 

has the Painleve integrability under certain conditions and hence construct its exact solutions, 
here the variable coefficients a(t), b(t), c(t), … γ(t), and Γ(t) are smooth functions of t. If the 
external force term Γ(t) vanishes, eq. (1) can describe the weakly non-linear long ISW in the 
fluid with continuous stratification on the density. Liu et al. [3], utilized Hirota’s  
bi-linear method to solve eq. (1) and obtained multi-soliton solutions under the constraint of 
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γ(t) = 0. In this paper, we shall employ the truncated Painleve expansion derived in the next 
section to construct new exact solutions without such a constraint. 

Painleve property 

We take a transformation: 

 ( ) d , ( , )u v t t v v x tΓ= + =∫  (2) 

then eq. (1) is converted into: 

2[ ( ) 2 ( ) ( )d ] { ( ) ( )d ( )[ ( )d ] ( )}t x xv a t b t t t vv a t t t b t t t d t vΓ Γ Γ+ + + + + +∫ ∫ ∫  

 2( ) ( ) ( ) ( ) ( )d 0x xxxb t v v c t v t v t t tγ γ Γ+ + + + =∫  (3) 

Further supposing: 
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and substituting eq. (4) into eq. (3), we have: 
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Substituting eq. (4) along with eq. (5) into eq. (3), and setting each coefficient of 
3 ,ϕ−  2 ,ϕ−  and 4jϕ −  to zero yields: 
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We therefore obtain resonance points j = –1, 3, 4, among them j = –1 corresponds to 
the arbitrariness of singular manifold. Thus, all vi in eq. (4) can be determined from eqs.  
(6)-(8) except for v3 and v4. Setting j = 3, 4, with the help of eqs. (5)-(7) we can derive the fol-
lowing constrains from the compatibility condition (8): 

 ( ) ( ) ( )( ) ( ) 2 ( ) , ( ) ( ) ( ) 2 ( ) ( )
( ) ( )

b t a t b tc t c t t a t a t t b t t
b t b t

γ γ Γ
′ ′⎡ ⎤′ ′= − + = − − +⎢ ⎥

⎣ ⎦
 (9) 

It is easy to see that if eq. (1) possesses Painleve property then eq. (9) must hold. In 
other words, eq. (9) gives the conditions that eq. (1) is fully integrable in the sense of WTC 
method. 

Exact solutions 

In order to construct exact solutions of eq. (1), we set v2 = v3 = v4 = 0, then eq. (8) 
gives v5 = v6 = … = 0. In this case, eq. (4) is truncated: 
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where φ satisfies the condition: 
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Selecting 1 exp[ ( )d ]kx w t tϕ = + + ∫  and substituting it into eq. (11), we have: 
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= − + +  (12) 

and hence obtain a pair of new exact solutions of eq. (1): 
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where w(t) is determined by eq. (12), while a(t), 
b(t), and c(t) satisfy two constrains in eq. (9). In 
fig. 1, a local structure of the kink-type solu-
tions eq. (13) is shown. 
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Figure 1. Local structure of kink-type solutions 
eq. (13) with (+) branch for parameters  
a(t) = tsin(t), b(t) = t2 + 1, d(t) = 1 + 0.5t tanh(t),  
k = 1.5, w(t) = 0.375[t2sin2(t)/(1 + t2) – 4.5t2 – 4 – 
– 2t tanh(t)], γ(t) = t/(1 + t2) – 1/t, and  
Γ(t) = [0.5sin(t) – t]/ (1 + t2) + 0.5t2sin(t)/(1 + t2)2 
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