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This study investigates the steady-mixed convection boundary layer flow near a 
stagnation point that runs about a linearly stretched vertical surface filled with a 
Jeffery fluid in the presence of a transverse magnetic field. It is assumed that the 
external velocity impinges normally to the wall and the wall temperature varies 
linearly with the distance from the stagnation point. The governing partial differ-
ential equations that govern the fluid flow are transformed into a set of coupled 
ordinary differential equations, which are then solved numerically using a finite 
difference scheme. The numerical results are presented for some values of parame-
ters, namely Deborah number, Prandtl number, magnetic parameter, and the mixed 
convection parameter, for both assisting and opposing flows. 
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Introduction

Industrially, the process for stretching sheet has significant relevance to several prac-
tical applications, such as the extrusion of metals, plastics and polymers, etc. During the rubber 
and plastic sheets manufacturing process, a gaseous medium, through the not-yet solidified ma-
terial, is blown. As such, the study of heat transfer and flow field is necessary to determine the 
quality of the final products, as explained by Karwe and Jaluria [1]. It seems that Crane [2] was 
the first to give a similarity solution in closed analytical form for steady 2-D incompressible 
boundary layer flow caused by the stretching of a sheet, which moves in its own plane with a 
velocity varying linearly with distance from a fixed point. Flow which moves towards a vertical 
surface will create a flow with buoyancy force due to the existence of the temperature differ-
ence between the wall and the free stream. Such flow is known as the mixed convection flow. 
Hiemenz [3] was the first to investigate the 2-D stagnation flow towards a stationary semi-in-
finite wall by using similarity transformation in order to reduce the Navier-Stokes equation to 
a non-linear ordinary differential equation. Since then, lots of research have been carried out 
to investigate the mixed convection flow towards a vertical sheet, [4-9]. It is worth mentioning 
that the work of Ishak et al. [4] has been extended by Saleh et al. [10] to the case of a shrinking 
sheet. A study on the mixed convection boundary layer flow over a vertical permeable cylinder 
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has been conducted by Ellahi et al. [11]. On the other hand, MHD flow and heat transfer has 
been studied in [12-14].

In all previously mentioned papers, however, investigators confine their studies to 
Newtonian fluid flow problems, which is inadequate to describe some fluid properties. As such, 
non-Newtonian fluids, which exhibit a non-linear relationship between the stresses and the rate 
of strains, are found to be more interesting than Newtonian fluids. There are numerous refer-
ences on the stagnation point flow towards a vertical surface in various types of non-Newtonian 
fluids, which can be found in the literature, and some of them can be found in [15-19]. The 
MHD flow of a non-Newtonian fluid was considered in [20-27].

The aim of the present study is to extend the work done by Ishak et al. [4], by investi-
gating the flow of one kind of Oldroyd model, i. e. Jeffery’s version, which impinges normally 
on a heated or cooled vertical surface that is being stretched. This fluid model includes elastic 
and memory effects exhibited by dilute polymer solutions and biological fluids, Hayat et al. 
[28]. Even though the literature on the Jeffery fluid flow is scarce, the fluid is one of great im-
portance. Quite recently, the flow of a Jeffrey fluid in eccentric cylinders was investigated by 
Ellahi et al. [21].

Problem formulation

Consider a steady 2-D laminar boundary layer stagnation-point flow of an incom-
pressible electrically-conducting Jeffery’s fluid, impinging normally towards a vertical sur-
face. It is assumed that the ambient fluid moves with velocity ue(x) = ax in the y-direction 
towards the stagnation point on the plate, with the temperature varying linearly along it with  
Tw(x) = T∞ + bx, where a (> 0) and b are arbitrary constants. The continuous stretching plate is 
assumed to have a velocity of the form uw(x) = cx, where c > 0 is a constant. 

Assume that a uniform magnetic field of strength, B0, is applied in the positive y-direc-
tion normal to the plate, and the induced magnetic field due to the magnetic Reynolds number 
is taken to be small enough and assumed to be negligible in comparison to the applied magnetic 
field. Under these assumptions, along with the Boussinesq and boundary layer approximations, 
the basic equations of the problem can be written: 
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where u and v are the velocity components along the x- and y-axes, respectively, g – the accel-
eration due to the gravity, and T – the fluid temperature in the boundary layer. Further, ν, λ1, 
λ2, ρ, β, and α are, respectively, the kinematic viscosity, ratio of the relaxation and retardation 
times, relaxation time, fluid density, thermal expansion coefficient, and thermal diffusivity. The 
± sign in the last term of eq. (2) represents the influence of the thermal buoyancy force, with 
“+” and “–” signs pertaining to the buoyancy assisting and opposing flow regions, respectively. 
According to Ramachandran et al. [29], the assisting flow exists if the upper half of the flat plate 
is heated while the lower half of the plate is cooled. In this case, the flow near the heated flat 
surface tends to move upward, and the flow near the cooled flat plate tends to move downward. 
Therefore, this behaviour acts to assist the flow field. The reverse trend can be observed in the 
opposing flow.

We look at the solutions of eqs. (1)-(3) in the following forms: 
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where ψ is the stream function, it is defined in the usual way as u = ∂ψ/∂y and ν = – ∂ψ/∂x. Thus, 
we have:

 '( ), ( )u c x f v c fη ν η= = −   (6)

where prime denotes differentiation with respect to η. Substituting variables (5) and (6) into eqs. 
(1)-(3), eq. (1) is automatically satisfied and eqs. (2) and (3) are reduced to: 
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Here, γ = cλ2 is the Deborah number, M = aσB2
0/(ρc2) – the MHD parameter, Pr = ν/α – the 

Prandtl number, and λ = Grx/Re2
x – the mixed convection parameter where Grx = gβ(Tw – T∞)x3/ν2  

is the local Grashof number and Rex = uwx/ν is the local Reynolds number. We note that λ is a 
constant, with λ > 0 and λ < 0 corresponding to the opposing and assisting flows, respectively, 
while λ = 0 (i. e. Tw = T∞) for pure forced convection flow. It should be pointed out that for  
γ = λ1 = M = 0, the problem is reduced to that of Ishak et al. [4]. 

The physical quantities of principle interest are the skin friction coefficient, Cf , and the 
local Nusselt number, Nux, which are defined:
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where τw and qw are the wall shear stress and the heat flux from the surface, respectively, which 
are given by:
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where μ and k being the dynamic viscosity and the thermal conductivity, respectively. Substitut-
ing eqs. (5) and (6) into eq. (9), the scaled skin friction coefficient and the local Nusselt number 
reduce to: 
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where Rex = uwx/ν is the local Reynolds number. 

Results and discussions

The ordinary differential eqs. (7) and (8), subject to the boundary conditions (9), have 
been solved numerically using the Keller-box method for some values of the governing param-
eters, i. e. the magnetic parameter, M, the material parameter (Deborah number), γ, the mixed 
convection parameter, λ, the Prandtl number, and the velocity ratio of a/c. The detailed proce-
dure of this method can be found in the books by Cebeci [30] and Cebeci and Bradshaw [31].

In order to validate the present code, the present results obtained for the skin friction 
coefficient Cf  (Rex)1/2 when γ = M = λ = 0 for several values of a/c are compared with Ishak et 
al. [4], Mahapatra and Gupta [32], and Nazar et al. [33] and as shown in tab. 1, whereas the 
present values obtained for the Cf  (Rex)1/2 and the Nux(Rex)–1/2 for different values of Prandtl 

number when M = γ = 0 and  
λ = a/c = 1, for both assisting 
and opposing flows, are com-
pared with Ishak et al. [4] as 
tabulated in tab. 2, along with 
the new results obtained for the 
Cf  (Rex)1/2 and the Nux(Rex)–1/2 
for various values of the Deb-
orah number. For the sake of 
brevity, the following results of 
this paper are limited to λ1 = 0. 
It can be seen from tabs. 1 and 
2, the values of Cf  (Rex)1/2 and 
Nux(Rex)–1/2 obtained are found 
to be in a good agreement with 
previously published results, 
thus gives great confident to 
the numerical code used in the 
present study.

Various cases are plotted for 
the skin friction coefficient and 
the local Nusselt number for 
assisting and opposing flows, 
as shown in figs. 1-3. The effect 
of the Deborah number is illus-

Table 1. Comparisons of Cf (Rex)1/2 values obtained 
when γ = M = λ = 0 for some values of a/c

a/c Mahapatra and 
Gupta [32]

Nazar et 
al. [33]

Ishak et 
al. [4]

Present 
results 

0.1 –0.9694 –0.9694 –0.9694 –0.9694
0.2 –0.9181 –0.9181 –0.9181 –0.9181
0.5 –0.6673 –0.6673 –0.6673 –0.6673
2 2.0175 2.0176 2.0175 2.0175
3 4.7293 4.7296 4.7294 4.7293

Table 2. Values of Cf (Rex)1/2 and Nux(Rex)–1/2 obtained  
for various γ and Prandtl number when M = 0 and  
λ = a/c = 1; results in ( )  are those of Ishak et al. [4]

γ Pr
Buoyancy assisting flow Buoyancy opposing flow
Cf (Rex)1/2 Nux(Rex)–1/2 Cf (Rex)1/2 Nux(Rex)–1/2

0

0.72

6.8

20

0.3645
(0.3645)
0.1804

(0.1804)
0.1175

(0.1175)

1.0931
(1.0931)
3.2901

(3.2902)
5.6229

(5.6230)

–0.3852
(–0.3852)
–0.1832

(–0.1832)
–0.1183

(–0.1183)

1.0292
(1.0293)
3.2465

(3.2466)
5.5921

(5.5923)

1
0.72
6.8
20

0.2355
0.1091
0.0635

1.0806
3.2782
5.6127

–0.2419
–0.1026
–0.0637

1.0445
3.2581
5.5991

2
0.72
6.8
20

0.1719
0.0705
0.0433

1.0759
3.2747
5.6104

–0.1754
–0.0708
–0.0434

1.0501
3.2619
5.6011
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Figure 1. (a) skin friction coefficient and (b) local Nusselt number vs. λ for some values of γ when 
Pr = 0.7, M = 1, and a/c = 1
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Figure 2. (a) skin friction coefficient and (b) local Nusselt number vs. λ for some values of 
Prandtl number when γ = 1, M = 10, and a/c = 1
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Figure 3. (a) skin friction coefficient and (b) local Nusselt number vs. λ for some values of a/c 
when γ = 0.5, M = 0.2, and Pr = 0.68

0           1           2          3           4           5          6           7           8           9         10

λ

Assisting flow

Opposing flow

a/c = 0.5, 1.0, 1.5, 2.3

γ = 0.5,   M = 0.2,   λ1 = 0,   Pr = 0.68

a/c = 0.5

a/c = 1.0
a/c = 1.5

a/c = 2.3

-1
/2

N
u

Re x
x1/

2
Re f

x
C

6

5

4

3

2

1

0

–1

–2

–3

1.6

1.4

1.2

1

0.8

0.6

Assisting flow

Opposing flow

a/c = 1.5, 1.0, 0.5

a/c = 2.3

a/c = 0.5

a/c = 1.0

a/c = 1.5

γ = 0.5,   M = 0.2,   λ1 = 0,   Pr = 0.68

0           1           2          3           4           5          6           7           8           9         10
λ

(a)
(b)



Ahmad, K., et al.: Magnetohydrodynamic Flow and Heat Transfer of a Jeffrey Fluid ... 
272 THERMAL SCIENCE: Year 2017, Vol. 21, No. 1A, pp. 267-277

trated in fig. 1 when Pr = 0.7, M = 1, and a/c = 1. While the influence of the Prandtl number is 
depicted in fig. 2 for γ = 1, M = 10, and a/c = 1. Figure 3 shows the impact of a/c when γ = 0.5, 
M = 0.2, and Pr = 0.68. The profile of the dimensionless velocity f '(η) and the dimensionless 
temperature θ(η) are depicted in figs. 4-7 for some values of the Deborah number, the Prandtl 
number, the mixed convection parameter, λ, and the velocity ratio, a/c, for both assisting and 
opposing flows, respectively. 

Figures 1-3 suggest that for all positive values of the mixed convection parameter (as-
sisting flow), the values of the skin friction coefficients and the local Nusselt numbers are found 
to exist, while there are restricted values of the skin friction coefficient and the local Nusselt 
number for the opposing flow. The assisting buoyant flow is found to increase the skin friction 
coefficient, while the opposing buoyant flow creates decrement of the skin friction coefficient as 
illustrated in figs. 1(a), 2(a), and 3(a). This is due to the assisting buoyant flow, which enhances 
the buoyancy force and hence, increases the fluid velocity. This action subsequently increases 
the wall shear stress, which increases the skin friction coefficient, Ishak et al. [4]. Referring 
to figs. 1(a) and 2(a), it should be noted that all curves intersect at a point when the buoyancy 
force is zero, λ = 0. In this case, a/c = 1 gives Cf  (Rex)1/2 = 0. However, if a/c ≠ 1, it should be 
expected that the intersection point is no longer fixed at 0, as Cf  (Rex)1/2 is very much influenced 
by the stretching velocity and the velocity of the external stream given by the constants a and c, 
respectively, as depicted in fig. 3(a). The figure also provides an idea of the point of intersection 
taking various values of a/c. 

The effects of the material parameter γ on the skin friction coefficient and the local 
Nusselt number can be seen in figs. 1(a) and 1(b), when Pr = 0.7, M = 1, and a/c = 1 for both 
assisting and opposing flows. The values of Nux(Rex)–1/2 are found to coincide at 1.0458. The 
existence of the material parameter/Deborah number decreases the skin friction coefficient and 
surface heat transfer for the assisting flow. This is in line with the results obtained in tab. 2. 
Flow with a high Deborah number indicates that the fluid is dominated by elasticity, demon-
strating solid-like behaviour, Reiner [34]. As such, the result is expected. 

The effects of the Prandtl number on the skin friction coefficient and the local Nusselt 
number are depicted in figs. 2(a) and 2(b) when γ = 1, M = 10, and a/c = 1. It is seen that for a 
fixed value of λ, as Prandtl number increases, the value of the skin friction coefficient decreases 
and the local Nusselt number is found to increase for the assisting flow. Flow with a high value 
Prandtl number shows that the fluid is more viscous and, in return, retards the movement of 
the flow, hence reducing both the shear stress and the thermal conductivity on the surface. The 
implication can be seen in figs. 2(a) and 2(b), where the skin friction Cf  (Rex)1/2 decreases but the 
local Nusselt number Nux(Rex)–1/2 increases. The opposite trend occurs for the opposing flow. 
For a fixed value of Prandtl number, it is noted that the local Nusselt number slightly increases 
as the buoyant parameter λ is increased for assisting flow, as shown in fig. 2(b). 

Figures 3(a) and 3(b) show the effect of a/c on the skin friction coefficient and the 
local Nusselt number when γ = 0.5, M = 0.2, and Pr = 0.68. It is noted that for the assisting 
flow, as λ increases, the skin friction coefficient and the local Nusselt number will increase, too. 
This is due to a large λ, which produces a large buoyancy force and in turn yields high kinetic 
energy to accelerate the fluid flow and increase the skin friction coefficient and the local Nusselt 
number. An increment of a/c will result in the increment of the skin friction coefficient and the 
local Nusselt number.

As prescribed in eq. (9), the velocity profiles f ʹ (η) in figs. 4(a), 5(a), and 6(a) begin 
at 1 at the beginning of the motion for both the assisting and opposing flows. For the assisting 
flow (λ > 0), the velocity increases slowly (f ʹ  > 1 in the boundary layer) until it achieved a cer-
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Figure 4. (a) velocity and (b) temperature profiles for some values of γ when λ = 1, Pr = 0.7,  
M = 0.2, and a/c = 1
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Figure 5. (a) velocity and (b) temperature profiles for some values of Prandtl number when  
γ = 1, λ=1, M = 10, and a/c = 1
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Figure 6. (a) velocity and (b) temperature profiles for some values of λ when γ = 1, M = 1,  
Pr = 0.7 and a/c = 1
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tain value, then decreased asymptotically to a/c =1, (in this case) at the outside of the boundary 
layer. This is expected as the thermal expansion caused by the high wall temperature assists the 
flow. On the contrary, for the opposing flow, f ʹ  < 1 in the boundary layer due to the resistance of 
thermal expansion to the flow, Abbas et al. [16]. However, no boundary layer is formed when 
the buoyancy or mixed convection parameter is absent and the velocity f ʹ  = 1 throughout the 
flow domain, as illustrated in fig. 6(a). 

Figure 4(a) shows that the magnitude of the velocity f ʹ  decreases with the increase 
of the Deborah number. As such, it may be expected that as γ → ∞, f ʹ  = 1 in the whole flow 
domain. This is clear from the fact that γ measures the viscosity/elasticity of a fluid, as previ-
ously explained. The same phenomenon can be observed when Pr  → ∞, as shown in fig. 5(a). 
Increasing the Prandtl number causes the decrease of the velocity flow and the temperature at 
the surface, as depicted in figs. 5(a) and 5(b). This is due to the fact that an increase in Prandtl 
number indicates the increase of the fluid heat capacity or the decrease of the thermal diffusivi-
ty, causing a diminution of the influence of the thermal expansion to the flow, Abbas et al. [16]. 
This results in faster formation of the thermal boundary layer and in turn, decreases the thermal 
boundary layer thickness as Prandtl number increases for both assisting and opposing flows. 

The effect of the Deborah number and the mixed convection parameter are less pro-
nounced with a variation in temperature, as can be seen in figs. 4(b) and 6(b). These figures 
clearly show that for the assisting flow, no temperature difference occurs for various values of 
γ and λ, while the temperature difference is conspicuous in the opposing flow. However, there 
is a slight difference in the temperature distribution for the opposing flow, i. e. at any point in 
the boundary layer, the temperature increases with the increase of γ, fig, 4(b) and λ, fig. 6(b), 
respectively. The thermal boundary layer thickness for both assisting and opposing flows are 
found to be more or less equal, as depicted in these two figures. 

Figure 7(a) demonstrates the effect of a/c when λ = 1, Pr = 0.68, M = 0.2, and γ = 0.5.  
It is noted that the flow, when the stretching velocity is less than the free stream velocity  
(a/c > 1), has a boundary layer structure and the thickness of the boundary layer decreases with 
an increase in a/c for both assisting and opposing flows. According to Mahapatra and Gupta 
[32], an increase in a in relation to c (a/c > 1) implies an increase in straining motion near 
the stagnation region, resulting in increased acceleration of the external stream, leading to in-
creased velocity, which is then thinned by the boundary layer with an increase of a/c. This fact 
was experimentally confirmed by Flachsbart, Schlichting [35]. An inverted boundary layer is 

Figure 7. (a) velocity and (b) temperature profiles for some values of a/c when λ = 1,  
Pr = 0.68, M = 0.2, and γ = 0.5
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seen to form for a/c < 1 when the stretching velocity cx of the surface exceeds the velocity ax 
of the external stream. Figure 7(b) shows the temperature distribution in the thermal boundary 
layer. It is observed that the temperature of the fluid decreases as the distance from the surface 
is increased. The temperature at a point is 
found to decrease with the increase in a/c 
for both assisting and opposing flows. As 
such, flow with high a/c produces a thinner 
thermal boundary layer. The temperature for 
the opposing flow is slightly higher com-
pared with the assisting flow at all points in 
the boundary layer, and the buoyancy effect 
is more pronounced for small a/c. Despite 
various profiles depicted in figs. 4-7, all the 
velocity and temperature profiles presented 
in those figures satisfy the far field bound-
ary conditions (9) asymptotically, thus sup-
porting the validity of the numerical results 
obtained.

Figure 8 shows the streamlines obtained 
for Pr = 7, γ = 1, λ = 1, M = 10, and a/c = 1 
towards a stagnation point on a stretched 
vertical surface. The oncoming flow generated by the code is found to be satisfactory and hence 
we are confident of the results obtained in the present paper. 

Conclusion

In this paper, the steady 2-D stagnation-point flow of a Jeffery fluid towards a vertical 
stretched surface in the presence of buoyancy force and magnetic field is investigated numer-
ically using a finite difference scheme with an iterative technique. The problem is formulated 
in such a way that the stretching velocity and the surface temperature vary linearly with the 
distance from the stagnation point. The numerical solution obtained for the quantities of in-
terest, which are the skin friction coefficient and the local Nusselt number for some values of 

Figure 8. Streamlines for 2-D stretching sheet when 
Pr = 7, γ = 1, λ = 1, M = 10, and a/c = 1
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the parameters, are displayed and discussed 
for both assisting and opposing flows. The 
flow with a high Deborah number is found 
to decrease the magnitude of the skin friction 
and the local Nusselt number for the assisting 
flow, while the opposite trend occurs for the 
opposing flow.

Nomenclature
a, b, c – constants, [–]
B0 – uniform magnetic field, [T]
Cf – skin friction coefficient, [–]
f – dimensionless stream function, [–]
g – acceleration to gravity, [ms–1]
Grx – local Grashof number, [–]
k – thermal conductivity, [Wm–1K–1]
M – magnetic parameter, [–]

Nux – local Nusselt number, [–]
Pr – Prandtl number, [–]
qw – wall heat flux, [Wm–2]
Rex – local Reynolds number, [–]
T – fluid temperature, [K]
Tw(x) – temperature of the stretching sheet, [K]
T∞ – ambient temperature, [K]
u, v – velocity components along the x- and 

y-directions, respectively, [ms–1]
ue – velocity of the ambient fluid, [ms–1]
x, y – Cartesian co-ordinates along the surface 

and normal to it, respectively, 

Greek symbols

α – thermal diffusit, [m2s–1]
β – thermal expansion coefficient, [K–1]
γ – Deborah number, [–]
η – similarity variable, [–]
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θ – dimensionless parameter, [–]
λ – buoyancy or mixed convection  

parameter, [–]
λ1 – ratio of the relaxation and retardation  

times, [–] 
λ2 – relaxation time, [s]

μ – dynamic viscosity, [kgm–1s–1]
ν – kinematic viscosity, [m2s–1]
ρ – fluid density, [kgm–3]
σ – electrical conductivity, [Sm–1]
τw – shear stress, [kgm–1s–2]
ψ – stream function, [–]

Subscripts

w – condition at the stretching sheet 
∞ – condition at infinity

Superscript

ʹ – differentiation with respect to η

Acknowledgement

The first author gratefully acknowledge the financial support received in the form of 
a research grant (RAGS project code: RAGS13-003-0066) from the Ministry of Higher Edu-
cation, Malaysia.

References
[1] Karwe, M. V., Jaluria, Y., Numerical Simulation of Thermal Transport Associated with a Continuously 

Moving Flat Sheet in Material Processing, ASME Journal of Heat Transfer, 113 (1991), 3, pp. 612-619
[2] Crane, L. J., Flow Past a Stretching Plate. Zeitschrift für angewandte Mathematik und Physik ZAMP, 21 

(1970), 4, pp. 645-647
[3] Hiemenz, K., The Boundary Layer Analysis of a Uniformly Flowing Liquid Circulating in Straight Circu-

lar Cylinder (in German), Dinglers Polytechn. J, 326 (1911), pp. 321-324
[4] Ishak, A., et al., Mixed Convection Boundary Layers in the Stagnation-Point Flow toward a Stretching 

Vertical Sheet, Meccanica, 41 (2006), 5, pp. 509-518
[5] Ishak, A., et al., Unsteady Mixed Convection Boundary Layer Flow due to a Stretching Vertical Surface, 

Arabian Journal for Science and Engineering, 31 (2006), 2B, pp. 165-182
[6] Ishak, A., et al., MHD Mixed Convection Boundary Layer Flow towards a Stretching Vertical Surface 

with Constant Wall Temperature, International Journal of Heat and Mass Transfer, 53 (2010), 23-24, pp. 
5330-5334

[7] Pal, D., Heat and Mass Transfer in Stagnation-Point Flow towards a Stretching Surface in the Presence of 
Buoyant Force and Thermal Radiation, Meccanica, 44 (2009), 2, pp. 145-158

[8] Ali, F. M., et al., MHD Mixed Convection Boundary Layer Flow toward a Stagnation Point on a Vertical 
Surface with Induced Magnetic Field, ASME Journal of Heat Transfer, 133 (2010), 2, pp. 022502-022507

[9] Chen, C. H., Mixed Convection Unsteady Stagnation-Point Flow towards a Stretching Sheet with Slip 
Effects, Mathematical Problems in Engineering, 2014 (2014), ID 435697

[10] Saleh, S. H. M., et al., Mixed Convection Stagnation-Flow towards a Vertical Shrinking Sheet, Interna-
tional Journal of Heat and Mass Transfer, 73 (2014), June, pp. 839-848

[11] Ellahi, R., et al., A Study on the Mixed Convection Boundary Layer Flow and Heat Transfer over a Ver-
tical Slender Cylinder, Thermal Science, 18 (2014), 4, pp. 1247-1258

[12] Rashidi, M. M., Mehr, N. F., Series Solutions for the Flow in the Vicinity of the Equator of an Magneto-
hydrodynamic Boundary-Layer over a Porous Rotating Sphere with Heat Transfer, Thermal Science, 18 
(2014), Suppl. 2, pp. S527-S537

[13] Rashidi, S., et al. Study of Stream Wise Transverse Magnetic Fluid Flow with Heat Transfer around a 
Porous Obstacle, Journal of Magnetism and Magnetic Materials, 378 (2015), Mar., pp. 128-137

[14] Boričić, A. Z., et al., Magnetohydrodynamic Effects on Unsteady Dynamic, Thermal and Diffusion 
Boundary Layer Flow over a Horizontal Circular Cylinder, Thermal Science, 16 (2012), Suppl. 2, pp. 
S311-S321

[15] Lok, Y., et al., Unsteady Mixed Convection Flow of a Micropolar Fluid Near the Stagnation- Point on a 
Vertical Surface, International Journal of Thermal Sciences, 45 (2006), 12, pp. 1149-1157



Ahmad, K., et al.: Magnetohydrodynamic Flow and Heat Transfer of a Jeffrey Fluid ... 
THERMAL SCIENCE: Year 2017, Vol. 21, No. 1A, pp. 267-277 277

[16] Abbas, Z., et al., Mixed Convection in the Stagnation-Point Flow of a Maxwell Fluid towards a Vertical 
Stretching Surface, Nonlinear Analysis: Real World Applications, 11 (2010), 4, pp. 3218-3228

[17] Ahmad, K., Nazar, R., Unsteady Magnetohydrodynamic Mixed Convection Stagnation-Point Flow of a 
Viscoelastic Fluid on a Vertical Surface, Journal of Quality Measurement and Analysis, 6 (2010), 2, pp. 
105-117

[18] Das, K., Slip Effects on MHD Mixed Convection Stagnation-Point Flow of a Micropolar Fluid towards a 
Shrinking Vertical Sheet, Computers & Mathematics with Applications, 63 (2012), 1, pp. 255-267

[19] Makinde, O. D., et al., Buoyancy Effects on MHD Stagnation-Point Flow and Heat Transfer of a Nano-
fluid Past a Convectively Heated Stretching/Shrinking Sheet, International Journal of Heat and Mass 
Transfer, 62 (2013), July, pp. 526-533

[20] Ellahi, R., The Effects of MHD and Temperature Dependent Viscosity on the Flow of Non-Newtonian 
Nanofluid in a Pipe: Analytical Solutions, Applied Mathematical Modelling, 37 (2013), 3, pp. 1451-1457

[21] Ellahi, R., et al., M., Series Solutions of Magnetohydrodynamic Peristaltic Flow of a Jeffrey Fluid in 
Eccentric Cylinders, Applied Mathematics & Information Sciences, 7 (2013), 4, pp. 1441-1449

[22] Singh, V., Agarwal, S., MHD Flow and Heat Transfer for Maxwell Fluid over an Exponentially Stretching 
Sheet with Variable Thermal Conductivity in Porous Medium, Thermal Science, 18 (2014), Suppl. 2, pp. 
S599-S615

[23] Abdel-Rahman, G. M., Effects of Variable Viscosity and Thermal Conductivity on Unsteady MHD Flow 
of Non-Newtonian Fluid over a Stretching Porous Sheet, Thermal Science, 17 (2013), 4, pp. 1035-1047

[24] Yacob, N. A. et al., Hydromagnetic Flow and Heat Transfer Adjacent to a Stretching Vertical Sheet in a 
Micropolar Fluid, Thermal Science, 17 (2013), 2, pp. 525-532

[25] Sheikholeslami, M., et al., Effects of MHD on Cu-Water Nanofluid Flow and Heat Transfer by Means of 
CVFEM, Journal of Magnetism and Magnetic Materials, 349 (2014), Jan., pp. 188-200

[26] Zeeshan, A., et al., Magnetohydrodynamic Flow of Water/Ethylene Glycol Based Nanofluids with Nat-
ural Convection Through Porous Medium, The European Physical Journal Plus, 129 (2014), Dec., pp. 
261-270

[27] Lin, Y., et al. MHD Thin Film and Heat Transfer of Power Law Fluids over an Unsteady Stretching Sheet 
with Variable Thermal Conductivity, Thermal Science, 20 (2015), 6, pp. 1791-1800

[28] Hayat, T., et al., An Analysis of Peristaltic Transport for Flow of a Jeffrey Fluid, Acta Mechanica, 193 
(2007), 1-2, pp. 101-112

[29] Ramachandran, N., et al., Mixed Convection in Stagnation Flows Adjacent to Vertical Surfaces, ASME 
Journal of Heat Transfer, 110 (1988), 2, pp. 373-377

[30] Cebeci, T., Convective Heat Transfer, Horizon Publishing, Bishop, Cal., USA, 2002
[31] Cebeci, T., Bradshaw, P., Physical and Computational Aspects of Convective Heat Transfer, Springer, 

New York, USA, 1988
[32] Mahapatra, T. R., Gupta, A. S., Heat Transfer in Stagnation-Point Towards a Stretching Sheet, Heat Mass 

Transfer, 38 (2002), 6, pp. 517-521
[33] Nazar, R., et al., Unsteady Boundary Layer Flow in the Region of the Stagnation Point on a Stretching 

Sheet, International Journal of Engineering Science, 42 (2004), 11-12, pp. 1241-1253
[34] Reiner, M., The Deborah Number, Physics Today, 17 (1964), 1, p. 62
[35] Schlichting, H., Boundary Layer Theory, McGraw-Hill, New York, USA, 1968

Paper submitted: November 3, 2014
Paper revised: February 10, 2015
Paper accepted: February 24, 2015

© 2017 Society of Thermal Engineers of Serbia
Published by the Vinča Institute of Nuclear Sciences, Belgrade, Serbia.

This is an open access article distributed under the CC BY-NC-ND 4.0 terms and conditions


