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The paper presents a closed form approximate solution of the non-linear diffu-
sion equation of a power-law non-linearity of the diffusivity developed by the 
heat-balance integral method. The main step in the initial transformation of the 
governing equation avoiding the Kirchhoff transformation is demonstrated. The 
consequent application of the integral method is exemplified by a solution of a 
Dirichlet problem with an approximate parabolic profile. Cases with predeter-
mined positive integer and optimized non-integer exponents have been analyzed.  
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Introduction  

The paper addresses the non-linear diffusion equation with a power-law dependent 
diffusivity 0

ma a u=  [1] of integer positive index (exponent), namely: 

 0
mu u ua u

t x x
∂ ∂ ∂⎛ ⎞= ⎜ ⎟∂ ∂ ∂⎝ ⎠

,    0m > ,    (0, ) 1u t = ,    ( , 0) 0u x =  (1) 

This model describes a variety of physical processes and in contrast to the linear dif-
fusion equation (m = 0), eq. (1) is uniformly parabolic in any region where u is not zero, but 
degenerates in the vicinity of any point where u = 0 [2]. The main feature of this type of de-
generacy is that any disturbances propagate at finite speed giving rise to a front or interface in 
the solution. Therefore, owing the non-linearity of the diffusivity coefficient there exist solu-
tions with well-defined front separating the disturbed (u ≠ 0) and the undisturbed medium  
[3, 4]. Fronts of this type are commonly observed in creeping flows [5, 6], non-linear heat 
conductivity [7, 8], diffusion with a concentration-dependent diffusivity coefficient [2, 9], etc.  

The range of processes described by (1) is wide. The second-order equations with  
m = 2 is known as the porous media equation modelling of gas filtration in porous media  
[10-12]. Models (m = 3) are relevant to the process of isolation oxidation of silicon [13] and 
the lubrication theory approximation [5]. With m = 1 we have the Boussinesq equation [14] or 
a non-linear reaction-diffusion equation [15]. Many problems with various positive integer 
values of m are analyzed in [3, 6, 16] and the references therein. 
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The difficulties inherent in obtaining solutions for this class of equations have moti-
vated a variety of solution methods, both exact and approximate ones. There exist several ap-
proaches to solve eq. (1), among them: 
– waiting-time solutions [6, 14, 17] describing evolution of u(x) behind a front at a fixed po-

sition during a finite waiting time tw, 
– asymptotic methods [11, 13], 
– similarity solutions [1, 4, 18, 19] using the Boltzmann similarity variable,  
– analytic methods, based on the moment method, about solutions close the front [2], and 
– the Kirchhoff transformation [20] 0 du mw u u= ∫ is the common approach to transform eq. 

(1) into: 

 
2

0 2
w wa
t x

∂ ∂
=

∂ ∂
 (2) 

The final solution may be developed either analytically [8, 13, 21-24]. For accuracy 
of the literature background, Heat-balance integral method (HBIM) to heat conduction with 
temperature-dependent diffusivity has been applied by Goodman [26] by a quasi-Kirchhoff 
transformation involving only the thermal properties at the surface = 0. 

Approximate solution  

In this paper we focus on an approximate solution of the Dirichlet problem by the 
heat-balance integral method [26] and a generalized parabolic profile [27, 28]. The approach 
avoids the Kirchhoff transform and by change of the variables muϕ =  and τ = t/m allows eq. 
(1) to be expressed as: 

 
2 2

0 2
a m

x x
ϕ ϕ ϕϕ
τ

⎡ ⎤∂ ∂ ∂⎛ ⎞= +⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎣ ⎦
,    (0, ) 1tϕ = ,    ( , 0) 0xϕ =  (3) 

The structure of eq. (3) reveals that the time evolution of ϕ  is a result of superposi-
tion of non-linear wave propagation (the first term in RHS) and a diffusion (the second term 
in RHS) [12].  

The approximate solution to eq. (3), with a Dirichlet boundary condition (u = us = 1, 
x = 0, t = 0, and u = 0, x → ∞, t > 0), is expressed by a parabolic profile with undefined expo-
nent φa = (1 – x/δ)q [27] behind the front δ(t) and Goodman’s boundary conditions 

0, 0ϕ ϕ= ∂ ∂ =x  for x = δ [26]: 

 1 1ϕ
δ δ

⎛ ⎞ ⎛ ⎞= − ⇒ = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

qq
m

a a
x xu  (4a, b) 

where ( )/( )a su u u u u∞ ∞= − −  and ( )/( ),a sϕ ϕ ϕ ϕ ϕ∞ ∞= − − , respectively.  
The conditions of a sharp front at δ(t) are satisfied because for x = δ we have: 0u =

and 0u x∂ ∂ =  as well as 0, 0ϕ ϕ= ∂ ∂ =x . 
Integrating eq. (3) from 0  to δ and applying the Leibniz rule to the left-side, we have: 

 
2 2

0 2
0 0 0

d d d d
d

x a x m x
x x

δ δ δ
ϕ ϕϕ ϕ

τ

⎡ ⎤∂ ∂⎛ ⎞⎢ ⎥= +⎜ ⎟⎢ ∂ ⎥∂⎝ ⎠⎣ ⎦
∫ ∫ ∫  (5) 
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The use of φa(x) in eq. (5) instead φ(x) results in an ordinary differential eq. (6a) de-
fining the propagation of the front δ(t). Taking into account that δ(t = 0) = 0 and τ = t/m we 
have eq. (6b): 

 
2

0 0
d 2 ( 1) 2 ( 1)1
d 2 1 m

q q qa a t q qq
q m

δ δ
τ

+ ⎛ ⎞= ⇒ = + ∆+ −⎜ ⎟− ⎝ ⎠
 (6a, b) 

In the expression (6b) the term (a0t)–1/2 [2q(q + 1)]–1/2 = δ0 is the front depth in case 
of 0m =  [27]. The ratio 0m δ δ∆ =  shows that the penetration depth decreases with increase 
in the non-linearity of the model (increase in the value of m), namely: 

 
1 1 1

(2 1)m
mq

m q m
⎡ + ⎤⎛ ⎞∆ = −⎜ ⎟⎢ ⎥− ⎝ ⎠⎣ ⎦

 (7) 

The approximate profile can be expressed as {denoting η = x/[(a0t)–1/2] and  
Fa = [2q(q + 1)]1/2} as:  

 1 1
qq
m

a a
q m q m

u
F F
η ηϕ ⎛ ⎞ ⎛ ⎞= − ⇒ = −⎜ ⎟ ⎜ ⎟∆ ∆⎝ ⎠ ⎝ ⎠

 (8a, b) 

Constraints imposed on the exponent of the approximate profile  

Approach 1  

First of all, we have two physically imposed conditions: (1) From the conditions im-
posed to eq. (1) we have m > 0. (2) The front depth should be positive δ > 0 that implies  
[1/(2q – 1)](q/m + q – 1) > 0, and we have two cases: (1) q > 1/2 and q > m/(m + 1) if both 
terms are assumed positive, and (2) q > 1/2 and q < m/(m + 1) if the both terms are assumed 
as negative.  

If we suggest integer order of the approximate profile (not a linear one with 1)q =  
of the profile approximating the solution of the transformed eq. (3), then the first conditions 
are reasonable. The constraints are automatically satisfied if this approximate profile is de-
fined as quadratic (q = 2) or cubic (q = 3) as in the classical HBIM [26, 27]. In this case, if m 
= 1, then q > 1/2, which automatically satisfies the condition 0δ > . Further, with 3m =  we 
should defined q > 1/3 and 0.75q > , respectively.  

Approach 2  

The constraints applied to the exponent q  established by Approach 1 are mechanis-
tic ones, i. e. imposed by the final form of the approximate profile and the initial assumption 
that q  should be integer. Now, we focus the attention on the fact that the approximate profile 
satisfies the heat-balance integral (5) but not the original heat conduction eq. (1), a detail 
omitted in the Approach 1.Therefore, the function σ[ua(x, t)]: 

 0[ ( , )] ma a
a a

u u
u x t a u

t x x
σ

∂ ∂∂ ⎛ ⎞= − ⎜ ⎟∂ ∂ ∂⎝ ⎠
 (9) 

should be zero if au  matches the exact solution. 
With the approximate profile (8b), denoting n = q/m we have ua = (1 – x/δ)n and the 

next goal is to attain a minimum of σ[ua(x, t)] for a certain value of the exponent n  (the only 
unspecified parameter of the approximate profile). In this case we have: 
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1 ( 1) 2

2 2
d [ ( 1) 1]1 , 1
d d

n n m
ma a
a

u unx x n n m xu
t t x x

δ
δ δδ δ

− + −∂ ∂∂ + −⎛ ⎞⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
 (10a,b) 

Then, for example at x = 0: 

 2
[ ( 1) 1](0, )T

n n mtσ
δ
+ −

= −  (11) 

Searching for positive values of n , the heat equation is satisfied for n = 1/(m + 1). 
However, in order to satisfy the Goodman’s boundary conditions ua(δ, t) = ua(δ, t)/∂x = 0, it is 
required that n(m + 1) > 1, that is n > 1/(m + 1). Further, for x δ→  we have: 

 
( 1) 2

2
[ ( 1) 1]( , ) lim ( , ) lim 1

n m

T x T x
n n m xt tδ δσ δ σ δ

δδ

+ −

→ →
+ − ⎛ ⎞= = − −⎜ ⎟

⎝ ⎠
 (12) 

With the previous constraint, n > 1/(m + 1), it follows from eq. (12) that the heat 
conduction equation is satisfied at x = δ when n = 2/(m + 1). For 0m = , we have 2n > as it 
was established by Mitchell and Myers [28] (see further in this article).  

Error of approximation and optimal exponents 

Langford criterion: general approach  
and integer order of the exponent q 

Following the Langford criterion [29] the accuracy of the approximations can be 
quantified by calculating the mean-squared error of approximation, namely: 

 
2

0

0

d
δ
⎡∂ ∂ ∂ ⎤⎛ ⎞= − =⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎣ ⎦∫ ma a a

u a
u u u

E a u x
t x x

 

 
22 2

0 0 2
0

d min
τ

ϕ
ϕ ϕ ϕ

ϕ
τ

⎡ ⎤∂ ∂ ∂⎛ ⎞= = − − →⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎢ ⎥⎣ ⎦
∫ a a aE a a m x

x x
 (13a,b) 

For simplicity of calculations we will use the form of (13b). Taking into account the 
expressions for δ(τ), as well as eqs. (6b) and (7), we have (avoiding the cumbersome calcula-
tions): 

  
2

0 03
1 d 3 4 1 3 3( 1) ( 1) min

d (2 1)(3 2) 3 2ϕ
δ
τδ

⎧ ⎫⎡ ⎤− − −⎪ ⎪= ∆ + − + − →⎨ ⎬⎢ ⎥− − −⎪ ⎪⎣ ⎦⎩ ⎭
q

q q qE F m a mq q a mq q
q q q

 (14) 

From eq. (14) we have that Eφ decays in time with a speed 3 3 2.δ τ− −≡  Moreover, 
dδ/dτ = a0/2τ1/2, so neglecting the terms decaying in time, i. e. the method of Myers [30] we 
reduce eq. (14) to: 

 0 0
3 3( 1) ( 1) min
3 2

qa mq q a mq q
q

⎡ ⎤−
− + − →⎢ ⎥−⎣ ⎦

 (15) 

Setting expression (15) equal to zero, the trivial solution 1 0q =  is unphysical, while 
the second one is q2 = 1. Hence, from expression (15) we have (with assumption a0 = 1 for 
simplicity) an extreme case: 
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2

2 3 1 60
2 2 2

m mq q q
m m

⎛ ⎞−
− + = ⇒ = − +⎜ ⎟⎜ ⎟

⎝ ⎠
 (16a, b) 

Further, from eq. (16a) we have the conditions: q > 0 ⇒ m > 0, and m2 – 6 m > 0 ⇒ 
⇒ m > 6. 

Calculating the errors of approximation for particular values of m  and n , we have 
to bear in mind that the common values of a0 ∼ 10–6 m2/s. Hence, the second term in expres-
sion (15) can be neglected (order of O(10–12) which results in: 

 0 0
3 3( 1) ( , )
3 2

qE a mq q a e m q
qϕ ϕ

⎡ ⎤−
→ − =⎢ ⎥−⎣ ⎦

 (17) 

The classic application of the heat-balance integral method assumes integer values 
of the exponent q  and some calculated values of eφ(m, q), as well as the factors qF  and ∆m, 
are summarized in tab. 1. The data reveal that we have a minimal error of approximation with 
eφ(m, q) = eφ(2, 2) ≡ 3a0. The calculated values of q/m strongly indicate that the exponent 
n q m=  of the final approximate profile is not integer even though we used 2q =  and 3q =
. The values of m∆ for all case with 1q >  are 1m∆ < which simply means that the front of 
penetration becomes shorter with increase in the diffusion non-linearity, i. e. increase in the 
value of m [7], a fact well-known where the diffusion processes with a power-law diffusivity 
[31] which are classified as: slow diffusion with 0m >  and fast diffusion with m < 0.  

Table 1. Correction factors of the penetration depth length and estimation of the mean squares errors 
of approximation 

 
The numerical experiments with fixed integer values of q  presented in figs. 1(a) and 

(b) clearly reveal that with increase in the value of the exponent m there exists a retardation in 
the propagation of the front δ(t). This is well presented by the line A in the plane m – η. Fur-
ther, there is a decreases about 3 times in the penetration depth length when the value of m
increases from 0.6  to about 2.75, fig. 1(a). Moreover, there is a change in the shape of the 
profile from concave to convex with increase in the value of m, a fact which we will comment 
further in this article. These numerical experiments present qualitative results only because 
both q  and m  are predetermined.  

Modified method of Mitchell and Myers [28]  

Now, we try to find answers to the question raised in the last paragraph of the preced-
ing section: what is the optimal ratio q/m? In this direction, we refer to the approach Mitchell  

 m = 0 m = 1 m = 2 m = 3 

∆m ∆m Fq ∆m Fq ∆m Fq ∆m 

q = 2 – – 3.464 1 3.464 0.577 3.464 0.192 

q/m – – 2 – 1 – 0.666 – 

L2 ≡ eφ(m, q) – – – – 3 D0 4.5 D0 

q = 3 – – 4.899 – 4.899 – 4.899 – 

q/m – – 3 1 1.5 0.591 1 0.447 

L2 ≡ eφ(m, q) – – – – (72/7) D0 (108/6) D0 
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Figure 1. Approximate profiles as functions of the similarity variable η and m > 1 for two 
predetermined integer exponents of the profile exponent: q = 2, and q = 3 

and Myers [28] representing the approximation profile V = (1 – x/δ)q (see 4a) in a new co-
ordinate ξ = x/δ, 0 < ξ < 1, V(ξ, t) = (1 – ξ)q. Hence, the heat eq. (3) can be expressed as: 

 
2 2

0 2 2 2
d
d

mV V m V V Va
t t

δ ξ
δ ξ ξδ δ ξ

⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂⎢ ⎥− = +⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦
 (18) 

Then, setting ∂V/∂t = 0 which comes naturally from the definition of V and the 
transfer from a moving region 0 x δ≤ ≤  to the fixed one 0 1ξ≤ ≤ , as well as with 0 1a = (for 
convenience) the equivalent of the squared error function is: 

 
21 2 2

2
0

d d
d

m
MT

V V VE m V
t
δ ξδ ξ

ξ ξ ξ

⎡ ⎤⎛ ⎞∂ ∂ ∂= ⎢ ⎥+ −⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦
∫  (19) 

The method developed in [28] uses the fact that for 0m =  the product δ(dδ/dt) is 
time-independent and the function MTE depends only on q. For the Dirichlet problem ana-
lyzed here this specific feature is also valid (for any value of m) because the non-linearity has 
no effect on the time in the penetration depth and the squared-root still exists, eq. 6(b), as in 
the linear diffusion: the product is δ(dδ/dt) = |a0 (Fq∆m)2|/2.  

Integrating eq. (19) and using the HBIM solutions of eqs. (6b) and (8b) we may 
express EMT as EMT(HBI) = eMT(HBI) (q, m)/t2 with eMT(HBI) (q, m) which is time-independent. 
The expression of eMT(HBI) (q, m = 1), for example, is: 

 
(HBI) 2

4 2 3 8 8 7 6

2

1

1 108 279 1891 762 1787 3878 1440 1290 1237
3 (3 1)(3 2)( 1)(4 3)(2 3)(4 1)

M TE
t

q q q q q q q q
q q q q q q

⎛ ⎞= ⋅⎜ ⎟
⎝ ⎠

⎡ ⎤− + − + − + + −
⋅⎢ ⎥

− − − − + −⎣ ⎦

  (20) 

Therefore, the error of approximation decreases in time with a rate t2 and we have to 
minimize EMT(HBI) with respect to q. To this end, we have two options: (1) to minimize 
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EMT(HBI) with respect to q at given m in the zone for q > 1 (precisely for q > 2 to avoid the sin-
gularity near q = 1) where the curve EMT(HBI) is decaying smoothly, fig. 2, and find the optimal 
exponents, and (2) to solve EMT(HBI) (q, m) = 0 finding approximate roots and then to find for 
which of them EMT(HBI) obtains minima. The first approach seems reasonable because EMT(HBI) 
is a scaled function. With the second approach we formally envisage exact solutions,  
although, in fact, we look for approximate ones; performing numerical solutions of  
EMT(HBI) (q, m) = 0 we really determine approximately points where EMT(HBI) gets minima, be-
cause practically exact solutions do not exist. Then, by evaluation of EMT(HBI) for these roots 
we may establish the optimal exponents of the profile. 

  
Figure 2. Behaviour of the function EMT(HBI) = f(q) for m = 5. (a) Overall behavior with zones: q < 1 
and q > 1; (b) enlarged zone 1 < q < 3.5 with minima determined by minimization of EMT(HBI) 

With the first approach, all values of q  are generally greater than 1, tab. 2. Oppo-
sitely, with the second approach all values of q  are lower than 1. For the second case we pro-
vide some details (the data are summarized in tab. 2). 

Table 2. Optimal exponents of the parabolic profile developed by the method of Mitchell and Myers 
[28] and HBIM approximate solutions. Two approaches in determination of the optimal exponents 

For m = 1 the solution of eMT(HBI) (q, 1) = 0 provides 3 roots (solved numerically by 
Maple): q1 ≈ 0.2106, q2 ≈ 0.3794, and q3 ≈ 0.6109. Taking into account the constraints  
n = q/m > > 1/(m + 1) the only root satisfying it is q3 ≈ 0.6109 with EMT(HBI) (q, 1) ≈ 0.02790. 
Hence, from n = q/m we have nopt = 0.6109. Similarly, for m = 2, the solution of eMT(HBI)  

 Numerical solution of 
EMT(HBI), n < 1

By minimization of  
EMT(HBI), n > 2  

qopt nopt EMT(HBI) = f(q) qopt nopt EMT(HBI) = f(q) 

m = 0.5 – – – 3.319 6.638 6.330 

m = 1 0.610 0.610 0.02790 2.681 2.681 11.0683 

m = 2 0.509 0.254 7.47·10–3 2.395 1.197 29.4347 

m = 3 0.302 0.100 2.22·10–3 2.270 0.756 60.5617 

m = 4 0.299 0.074 7.524·10–3 2.187 0.546 106.697 

m = 5 0.256 0.051 1.11·10–3 2.126 0.425 170.220 
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(q, 2) = 0 provides 6 roots but only 3 of them satisfy the constraint, namely: q2 ≈ 0.3907 and 
q3 ≈ 0.509. The evaluation of the EMT(HBI) (q, 2) for any of them provides a minimal error of 
approximation for eMT(HBI) (q3, 2) ≈ 7.46·10–3. 

For m = 3, the optimization procedure results only one root satisfying the constraint 
q ≈ 0.302 and EMT(HBI) (q, 3) ≈ 2.22·10–3. Additionally, for m = 4 we have qopt ≈ 0.2998 with 
EMT(HBI) (q, 4) ≈ 7.524·10–4, while for m = 5 the optimal exponent is qopt ≈ 0.2567 with 
EMT(HBI) (q, 5) ≈ 1.11·10–3.  

Now, let us look again at the data summarized in tab. 1. The ratios q m n=  are 
non-integer but they are far away from the optimal ones: for m = 1, we have 0.6109optn ≈ , 
while 2q m =  for 2q = , and 3q m =  for 3q =  are defined ad hoc trough predetermined 
integer values of q : the values of the error measure are ( )HBI ( 2,1) 2.9621MTE q = ≈  and 

( )HBI ( 3,1) 7.5623MTE q = ≈ , respectively. In this context, for 2m = , the ratios 1q m = and 
1.5q m = lead to ( )HBI ( 1, 2) 0.533= = ≈MTE q m and ( )HBI ( 3, 2) 1.558= = ≈MTE q m , respec-

tively. It is evident, that, to some extent, these cases may be solved approximately with inte-
ger values of q  and acceptable errors of approximations, but the approach to determine the 
optimal exponent (either q  or n q m= ) is the accurate one.  

The plots of the approximate solutions generated by the parabolic profile with opti-
mal exponents determined by the two approaches are shown in figs. 3(a) and (b).  

    
Figure 3. Dimensionless temperature profiles with various degrees of non-linearity (the parameter m); 
(a) Approximate solutions with nopt determined by numerical solution of EMT(HBI) = 0, and q < 1,  
(b) Approximate solutions with nopt determined by minimization of EMT(HBI) in the range 2 < q < 3.5 

The plots in fig. 3(a) reveal strong change in the profile shape from concave to con-
vex when the optimal exponent is determined by 1q < , while the same behaviour exhibited 
by the profiles in fig. 3(b) is not so well demonstrated. Therefore, there exist ambiguous re-
sults and the situation should be clarified by comparing the approximate HBIM solution to 
reference solutions of the problem. The determination of the correct exponents is the principle 
question and to find the right answer we will compare our results to the series solution of 
Heaslet and Alksne [32] as it was done in other studies, in [2] for instance. 

Determination of the correct exponent of the  
profile and numerical examples 

The comparison of the approximate HBIM solutions to the series solution of Heaslet 
and Alksne [32] presented in figs. 4 and 5, definitely indicates that the concave profiles de-
veloped on the basis of optimal q > 2, fig. 5(a), are by far away from the series solutions, 
while the convex profiles developed with q < 1, fig. 4(a), are too close to them. The profiles in 
fig. 4(a) reveal that the HBIM solutions are more adequate (close to the series solutions) with 
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increase in the value of m. Further, the pointwise errors between the HBIM and the series so-
lutions support this standpoint, that is, the profiles generated on the basis of q < 1 demonstrate 
pointwise errors less than 4%  in contrast to 25-30% when the optimal exponents are deter-
mined on the basis of q > 2. 

The plots in figs. 3, 4, and 5 are presented in the form u(ξ, t) = (1 – ξ)n, where 0 < ξ = 
= x/δ < 1. It is worth to note, that the value of δ  is different for different values of the param-
eter m because δ  depends on n  and m. Alternatively, ξ  may be presented as ξ = η/Fq∆m,  

    
Figure 4. Dimensionless temperature profiles determined on the basis of q < 1; (a) comparison to the 
series solution of Heaslet and Alksne [32] (4 terms solutions), (b) pointwise error between the 
approximate HBIM solutions and the series solutions [32] 

  
Figure 5. Dimensionless temperature profiles determined on the basis of q > 2; (a) comparison to the 
series solution of Heaslet and Alksne [32] (4 terms solutions), (b) pointwise error between the 
approximate HBIM solutions and the series solutions [32] 

eqs. 8(a, b). When the profiles are expressed against the similarity variable η only, then the 
curves cross the abscissa at different positions because the condition 0u =  means q mFη = ∆  
which depends on both the values of m  and nopt as it is shown in fig. 6. Otherwise, when  
ξ = η/Fq∆m as independent variable, all curves cross the abscissa at ξ = 1; this allows compar-
ing the approximate HBIM profiles and those developed by the series solutions, figs. 4 and 5.  

The plots in fig. 6 clearly show the retardation effect of the non-linearity with in-
crease of the parameter m. The increase in m  reduces the penetration depth and this the effect 
is visible when the similarity variable η is used as independent variable (fig. 6), but becomes 
indistinguishable when the profiles are presented against ξ = x/δ = η/Fq∆m as independent var-
iable, figs. 3, 4(a), and 5(a). 

As a final comment, we have to mention the parabolic profile used in the HBIM so-
lutions are generates convex distributions with steep fronts only when n < 1, otherwise for  
n > 1 the parabolic profile generates concave distributions.  
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Conclusions 

The paper reports an approximate solution of non-linear heat conduction problem 
with power-law heat diffusivity (positive exponent) and Dirichlet boundary condition  

  
Figure 6. Dimensionless temperature profiles with various degrees of non-linearity (m as a parameter); 
(a) large-scale profiles, (b) short-distance profiles. Note: nopt is determined by numerical solution of 
EMT(HBI) = 0, i. e. on the basis of q < 1, tab. 2 

by the heat-balance integral method (HBIM) utilizing a parabolic profile with undefined ex-
ponent. The application of the HBIM is possible due to an initial transformation of the non-
linear degenerate diffusion equation into an equivalent diffusion-wave equation, thus avoiding 
the common conjectures such as the Kirchhoff transformation.  

The approximate solution allows to be optimized with respect to the value of the ex-
ponent of the parabolic profile. The application the global optimization through the method of 
Mitchell and Myers [28] provides optimal non-integer exponents through a minimization of 
the squared-error function with respect to q, then defining n = q/m. The numerical simulations 
clearly indicate the retardation of the propagation of the heat front as the exponent m of the 
power-law diffusivity increases. 

The numerical experiments demonstrate definitively that convex profiles of the cor-
rect HBIM solution have non-integer exponents lower than 1; these profiles approach the se-
ries solutions of Heaslet and Alksne [32] and the maximal absolute error between them does 
not exceed 0.1for m = 5.  
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