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In this study, artificial neural networks have been used to model the effects of four
important parameters consist of the ratio of the length to diameter, the ratio of the
cold outlet diameter to the tube diameter, inlet pressure, and cold mass fraction on
the cooling performance of counter flow vortex tube. In this approach, experimen-
tal data have been used to train and validate the neural network model with
MATLAB software. Also, genetic algorithm has been used to find the optimal net-
work architecture. In this model, temperature drop at the cold outlet has been con-
sidered as the cooling performance of the vortex tube. Based on experimental data,
cooling performance of the vortex tube has been predicted by four inlet parameters.
The results of this study indicate that the genetic algorithm-based artificial neural
network model is capable of predicting the cooling performance of vortex tube in a
wide operating range and with satisfactory precision.
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Introduction

The vortex tube is a simple device consists of a simple circular tube, one or more tan-

gential nozzles, a cold-end orifice, and a hot-end control valve that is capable of producing cold

and hot gas flows from compressed gas. High pressure gas enters the vortex tube via the inlet

nozzles and achieves high angular velocity. Part of the gas swirls to the hot-end and exits but by

adjusting a control valve downstream of the hot outlet, another part of the gas reverse and move

from the hot-end to the cold -end orifice [1].

The streams of gas leaving through the hot and cold-ends are at higher and lower total

temperatures, compared to the inlet temperature. Figure 1 shows a schematic diagram of vortex

tube and the distribution of total temperature inside this device [2]. This phenomenon is referred

to as the temperature separation effect. Vortex tube was first discovered by Ranque [3].
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The vortex tube has many advantages compared to the normal commercial devices

such as: simplicity, the absence of moving parts (except the hot-end control valve), the absence

of need for electricity or chemicals, low cost, durability, smallness and lightness of weight, and

adjustability of temperature [4, 5]. Hence, it becomes an appropriate device for heating and

cooling gas, drying gas, separating particles in the waste gas industry, cooling for low tempera-

ture magic angle spinning, cooling equipment in laboratories, and other purposes [4, 6-8].

Although, vortex tube has a simple geometry, the temperature separation phenomenon

is quite complex. Thus far various experimental, analytical, and numerical investigations have

been carried out on the vortex tube. However, the fundamental mechanism of the process is still

unknown and it is not easy to predict the outlet temperatures without experiments [1].

Artificial neural networks (ANN) are powerful tools for pattern classification and con-

tinuous function approximation. Owing to the great ability of ANN in discovering complex rela-

tionships among large number of variables with complex interdependencies, they can be used as

an appropriate technique for developing predictive models in the short term. Many researchers

have used ANN for studying diverse mechanical problems such as: loss efficiency modeling of

compressors [9], performance study of solar-assisted air-conditioning system [10], performance

and exhaust emissions of gasoline engines [11], evaluation of boiler behavior [12], modeling

and control of evaporative condenser cooling load [13], and prediction of frost deposition [14].

Thus far, few researchers used ANN in order to study the performance of vortex tube

[15-18]. However, with the exception of one work [15], most of the studies were limited to the

validation of the developed models with the experimental data and the developed models were

not used for predicting the performance of the device in conditions where the experimental data

were unavailable [16-18]. Also, the effect of the ratio of the cold outlet diameter to the internal

diameter of the tube (d/D) has not been studied in previous works.

Furthermore, ANN models presented in the state of the art suffer from lack of general-

ization neglecting the importance of model selection. The main limitation of using neural net-

work for solving a regression problem is lack of generalization [19, 20], also known as

overfitting of the model. Therefore the model selection should be performed accurately to im-

prove the generalization of the model.
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Figure 1. Schematic diagram of a vortex tube and the temperature separation effect
(for color image see journal web site)



In this study, a multi-layer feed forward neural network model has been developed to

approximate the relationship among four important parameters (P, d/D, L/D, Y) and the cold out-

let temperature drop of the vortex tube. In contrast to the previous works the developed model

was used to predict the effects of these parameters in a wide operating range. Furthermore, we

tried to enhance the generalization of the model employing two strategies: (1) genetic algorithm

(GA) [20, 21] is used for model selection. The GA is used to find the optimized network archi-

tecture which results in better performance of the ANN model; (2) dividing data into three sub-

sets, i. e. training dataset (60% of samples), validation dataset (20% of samples), and test dataset

(20% of samples), and employing early stopping [19, 21] strategy in training phase. Training

and validation datasets were used in model selection and training phase, and testing subset is

used for evaluation of the performance of optimized network.

Theory

Artificial neural networks

The ANN are powerful tools for pattern classification and continuous function ap-

proximation [22]. A neural network is a computational model of the brain. Neural network mod-

els usually assume that computation is distributed over several simple units called neurons,

which are interconnected and operate in parallel. The neurons are arranged in layers of network

and connected through links which named as weights. By adjusting these weights the network

can map input vectors to desired outputs. This process is done by learning algorithm and named

as network training.

In this work a multi-layer feed forward neural network (fig. 2) has been applied for

predicting the cooling performance of vortex tube. Training is a step by step method for the cal-

culation of the weight factors and biases. During the training, the network which is presented

with training data learns to generate new outputs through an iterative method. Among the avail-

able methods to train a neural network, the back propagation method is most commonly used.

This method has been applied for training of neural network in this work. At the beginning of the

training process, initial weights are given to the connections randomly. Inputs are entered into

the input layer and move forward through the hidden layer of neurons to the output layer. Gener-

ated outputs would be compared with real outputs (experimental data). In general, for function

approximation problems regarding networks that contain up to few hundred weights, the

Levenberg-Marquardt (LM) algorithm attains the fastest convergence and the highest accuracy

[23]. Therefore LM was chosen as the network training method.
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Figure 2. The ANN structure



Genetic algorithm

Genetic algorithms (GA), to obtain a fast search and optimization technique, use the

survival of the fittest principle of natural evolution with the genetic propagation of characteris-

tics [24]. The most important aspect of a GA is that it determines many possible solutions simul-

taneously and explores different regions in desired space that choose by user [25]. Based on the

Darwinian principle of survival of the fittest, GA can obtain the optimal solution after a series of

iterative computations. The search process is composed of artificial mutation, crossover, and se-

lection [26].The parameters and procedures used in GA for tuning the number of neurons in hid-

den layers of ANN are described [27]:

Initialization: Three main parameters should be initialized before applying GA: (1)

number of genes, (2) population size, and (3) maximum number of generation. Our regression

problem has four inputs and one output. Therefore, the neural network has 4-x-y-1 architecture.

As mentioned previously, in this study we use GA to find optimal values for x and y, i. e., num-

ber of neurons in first and second hidden layer, respectively. Hence, number of genes in the GA

is equal to 2. The population size and the maximum number of generations are set to 100 and 50,

respectively.

Evaluating fitness: to prevent ANN from over fitting, root mean squared error, eq. (1),

of validation set is used as fitness function. This value is computed for each ANN set-up defined

by gene values of GA:

RMSE Target Predicted� ��
�

1
2

1n i

n
( ) (1)

Selection: The roulette wheel selection method is applied here to decide whether a

chromosome can survive to the next generation. The chromosomes that survive to the next gen-

eration are placed in a matting pool for cross-over and mutation operations.

Cross-over: The cross-over is performed between the parents to form a new offspring.

The probability of creating new chromosomes in each pair was set to 0.6. The newly created

chromosomes constitute a new generation of population.

Mutation: The mutation operation follows the cross-over operation, and determines

whether a chromosome should be mutated in the next generation. Here, we employed adaptive

feasible method for mutating selected chromosomes.

Stop condition: The process was repeated until the number of generations was equal to

50 (stopping criteria).

After convergence of GA, a 4-6-6-1 neural network is selected by GA as the best archi-

tecture to simulate vortex tube behaviors.

Preparation of training dataset

Many parameters affect the performance of vortex tube such as: the number of noz-

zles, shape of nozzles, inlet pressure (P), type of working fluid, L/D, d/D, cold mass fraction (Y),

angle of the control valve, the divergence angle of the tube, etc. [28-32]. Among the several pa-

rameters mentioned previously, the effects of four important parameters namely the inlet pres-

sure P, L/D, d/D, and Y have been studied in the present work.

The cold mass fraction is defined as the ratio of the cold outlet mass flow rate to the in-

let mass flow rate, eq. (2):
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Cold mass fraction can be controlled by the control valve that is placed at the hot out-

let. The cold outlet temperature drop (DTc) is defined as the difference between the cold outlet

temperature and the inlet temperature and reflects cooling performance of the vortex tube eq.

(3).

DTc = Tc – Ti (3)

In this work, we used two hundred and ninety six experimental data that were pre-

sented by Hamoudi [33] to model the effects of d/D, L/D, Y, and P on the cooling performance of

vortex tube. The internal

diameter of the vortex tube

was 2 mm, the cold outlet

diameter was 0.25D, 0.4D,

and 0.55D, respectively,

and the length of the vortex

tube (L) was 10D, 30D,

and 50D, respectively. The

vortex tube consisted of

four inlet nozzles and the

angle of the control valve

was fixed at 60°. Further-

more, the working fluid was compressed air. The experiments were conducted for three inlet

pressures (200, 300, and 400 kPa) and the cold mass fraction was gradually varied from 0.05 to

0.95 [33]. The geometry and operating condition of the experiment is shown in tab. 1.

In fact, the appropriate ranges of variation of these parameters were the main reason

for using these data. In order to improve the performance of the training process, the training and

validation data sets were normalized.

Optimization of ANN based on GA

As mentioned previously, GA has been applied for optimization of the structure of

ANN. In this study total available data were randomly divided into three parts: training subset

(60% of data), validation subset (20% data), and testing subset (20% data) and RMSE of testing

data was calculated by eq. (1). Also learning rate of network, training goal, and epoch have been

selected 0.05, 0.01, and 1000, respectively.

Results and discussion

In this study ANN have been used to investigate the effects of four important parame-

ters (Y, P, L/D, and d/D) on the cooling performance of the vortex tube. Figure 3 shows a linear

regression between the network outputs and the corresponding targets among three subsets. The

R values about three subsets and total data prove appropriate match between network outputs

and desired targets. Also the final network parameters (weights and biases) are shown in tabs.

2-5.

By choosing appropriate data and optimizing the network architecture, the developed

ANN model is capable of predicting the effects of these parameters in a common operating

range (10 < L/D <70, 100 kPa < P < 600 kPa, 0.2 < d/D < 0.7 and 0.05 < Y < 0.9). In 3-D dia-

grams (fig. 4) surfaces show the prediction of cooling performance by the ANN model, while

the points indicate the experimental data. In fact, these figures confirm the ability of the ANN

model in predicting the cooling performance of the vortex tube.
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Table 1. The description of the geometry of vortex tube
and operating condition

Diameter of tube
Diameter of cold outlet
Length of vortex tube
Angle of conical control valve
Number of nozzles
Dimension of nozzles
Inlet pressure
Inlet temperature
Cold mass fraction

2 mm
(0.5, 0.8, 1.1) mm
(20, 60, 100) mm

60°
4

Width = 0.382 mm, height = 0.164 mm
(200, 300, 400) kPa

296 K
(0.05-0.95)
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Figure 3. Linear regression between the network outputs and the corresponding
targets among three subsets

Table 2. Input weights of network

Input number/
Neuron number

I1 I2 I3 I4

N1

N2

N3

N4

N5

N6

0.279859
0.24495
0.351066
0.189232
0.06757
0.086276

0.159818
0.241257
0.493433
0.140633
0.250924
0.197375

1.011067
0.693288
0.338091
0.294957
0.391577
1.11096

2.251781
1.333692
0.292423
0.528894
0.905895
0.406038

Table 3. Weights that connect first layer to second layer

Input number/
Neuron number

I1 I2 I3 I4 I5 I6

N1
N2

N3

N4

N5

N6

0.567416
0.089218
0.216026
0.572936
0.489648
2.376985

0.049173
0.548828
0.738732
0.914109
1.488486
2.037587

0.399667
0.463642
0.669523
1.643914
0.830648
0.674295

1.758988
0.722959
0.230278
0.620357
2.124615
0.326412

0.013056
1.427054
1.531354
0.233510
1.599990
1.808234

1.794992
0.592396
0.962624
0.052885
0.566895
1.141541



Table 5. Network biases

Layer number/
Neuron number

L1 L2 L3

N1

N2

N3

N4

N5

N6

0.081958
1.742789
0.535839
0.017371
0.951375
1.633537

1.438152
1.729585
0.385201
0.146709
0.55413
2.080385

0.22036
–
–
–
–
–

Each of these figures shows the cooling performance of the vortex tube with constant

d/D and L/D but the pressure varies from 100 to 600 kPa and Y increases gradually from 0.05 to

0.95. According to these figures, an increase in the inlet pressure improves the cooling perfor-

mance of the vortex tube. Previous studies confirm this statement [34, 35].

Figure 4 also shows the effect of Y on the cooling performance of the vortex tube when

other parameters change. According to these figures, the optimum Y is almost independent of

L/D and P. However, it is dependent on d/D. Figures 5 and 7 shows these facts with more clarity.

According to fig. 5, the optimum value of Y is dependent on d/D and when d/D increases, the

maximum temperature drop occurs at higher Y. However, from fig. 7 it can be seen that under

constant d/D and P, when we change L/D, there is no significant change in the optimum Y. The

next important parameter studied in this work was the ratio of the cold outlet diameter to the in-

ternal diameter of the vortex tube (d/D).

The cold outlet diameter considerably affects the shape of streamlines and the temper-

ature separation phenomenon. In vortex tubes with small ratio of the cold outlet diameter to the

internal diameter of the tube, part of the cold inner flow cannot exit through the cold outlet and

reverses which results in the formation of a secondary circulation flow. Secondary circulation

flow degrades the cooling performance of the vortex tube due to the transfer of colder fluid ele-

ments near the cold outlet through the swirling secondary loop to the warmer flow region. How-

ever, in a vortex tube with a high value of d/D, instead of secondary circulation flow, another

performance degrading mechanism occurs and degradation could be due to the transfer of

warmer flow in the peripheral region to the cold inner region. Furthermore, cold outlet diameter

has an important effect on back pressure and back flow at cold outlet that can reduce the perfor-

mance of vortex tube [28, 35, 36]. According to fig. 4, d/D has an important effect on the cooling

performance of the vortex tube. However, fig. 5 shows this dependency with more clarity. From

these figures it is obvious that L/D does not have a significant effect on the optimum value of

d/D and the best cooling performance of the vortex tube always occurs at d/D = 0.5. The present

result agrees well with the past experimental and numerical studies [34-38]. Nevertheless, nu-

merical simulation was carried out to predict the cooling performance of vortex tubes with dif-

ferent cold outlet diameters.
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Table 4. Weights that connect second layer to third layer

Input number/
Neuron number

I1 I2 I3 I4 I5 I6

N1 0.644029 2.197503 1.025351 0.720903 0.923351 0.875025
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Figure 4. Experimental data and ANN prediction
(for color image see journal web site)



An axis-symmetric model was developed to model a vortex tube with the length of

60imm and three different cold outlet diameters. The detail of the geometry of vortex tube and

operating condition can be found in tab. 1. At the inlet, a circumferential slot was assumed in-

stead of the actual four nozzles. Previous stud-

ies show that for a numerical modeling of vor-

tex tubes with more than four nozzles, an

axis-symmetric swirl model can be as efficient

as 3-D model in predicting the cooling perfor-

mance of the device. However, when the nozzle

number is less than or equal to four the numeri-

cal solution cannot predict the performance of

the device with high accuracy [39]. Neverthe-

less, it can still be an efficient tool for qualita-

tive studies. The details of numerical modeling

have not been reported here for the sake of

brevity. However, the procedure can be found

in literatures [37, 40, 41]

Figure 6 shows the cooling performance of

vortex tube with three different d/D values as
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Figure 5. Predicting the effect of d/D on the cooling performance of the vortex tube

Figure 6. Predicting the effect of d/D on the
cooling performance of the vortex tube as
obtained by CFD mode



predicted by CFD model. This figure also shows the experimental data for a vortex tube with

cold outlet diameter of 0.5 mm (d/D = 0.25). Comparison between the CFD results and the ex-

perimental data for vortex tube with d/D = 0.25 indicates that the numerical model over pre-

dicted the cooling performance. However, both the numerical and experimental data show the

same trend so that the optimum cold mass fraction is almost identical.

According to the present numerical results, for a vortex tube with d/D = 0.5, the cool-

ing performance reaches its maximum value. This prediction agrees well with ANN model.

Moreover, it is seen that as we increase the cold outlet diameter the optimum cold mass fraction

increases. This prediction is consistent with the ANN predictions.

The last parameter examined in this study was the ratio of length to the diameter (L/D)

of vortex tube. Figure 7 shows the effect of L/D on the cooling performance of the vortex tube

for different d/D values. According to fig .7(b), for a vortex tube with L/D = 10, we have the low-

est cooling performance and from L/D = 10 to L/D = 40, there is a significant upward trend in the

cooling performance of the vortex tube. Beyond L/D = 40, we can see a slight increase but after

L/D = 60, there is a slight downward trend in the cooling performance of the vortex tube. There-

fore, it can be concluded that the best cooling performance of the vortex tube occurs at around

L/D = 60. This trend is seen in all the figures irrespective of the d/D ratio.
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Figure 7. Predicting the effect of L/D on the cooling performance of the vortex tube



Conclusions

In this study artificial neural network model has been used to investigate the effects of

four important parameters (L/D, d/D, P, and Y) on the cooling performance of a vortex tube.

Comparison between ANN predictions and experimental data has confirmed the acceptable pre-

cision of this model. It was observed that Genetic algorithm can play an important role in order

to choose appropriate ANN architecture so that the optimized ANN model can predict the cool-

ing performance in a wide operating condition.

According to this study, the maximum temperature drop occurs at a specific cold mass

fraction (Y) and the optimum value of Y is almost independent of pressure (P) and length to di-

ameter ratio (L/D) but dependent on the ratio of cold outlet diameter to the diameter of tube

(d/D). Also, the effect of pressure on cooling performance was investigated. The present results

indicate that an increase in the inlet pressure improves the cooling performance of the vortex

tube.

The effect of d/D has been studied in a wide operating range (0.2 < d/D < 0.7) and it

was observed that the optimum value of d/D is independent of other parameters. The present re-

sults indicate that the maximum temperature drop always occurs at d/D = 0.5. Furthermore, the

CFD simulations were carried out to study the effect of cold outlet diameter on cooling perfor-

mance of the device. Comparison among the experimental data, ANN predictions and 2-D CFD

results shows that the ANN model can predict the cooling performance of vortex tube with

higher accuracy. However, the predicted results with both the models agree well in qualitative

manner.

The effect of the length to the diameter ratio (L/D) on cooling performance of vortex

tube was studied at different d/D and Y. The present results show that an increase in length to the

diameter ratio results in an increase in the cooling performance of the vortex tube. However,

there is a critical value, so that further increase will lead to the reduction in the cooling perfor-

mance. Furthermore, it was observed that the optimum L/D ratio is almost independent of the

d/D.
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