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In this study, a continuous ant colony optimization algorithm on the basis of 
probability density function was applied to the inverse problems of 1-D coupled 
radiative and conductive heat transfer. To overcome the slow convergence of the 
ant colony optimization algorithm for continuous domain problems, a novel hy-
brid ant colony optimization and particle swarm optimization algorithm was pro-
posed. To illustrate the performances of these algorithms, the thermal conductivi-
ty, absorption coefficient, and scattering coefficient of the 1-D homogeneous 
semi-transparent medium were retrieved for several test cases. The temperature 
and radiative heat flux simulated by the finite volume method were served as in-
puts for the inverse analysis. Through function estimation and parameter estima-
tion, the hybrid colony and particle swarm optimization algorithm was proved to 
be effective and robust. 
Key words: inverse problem, ant colony optimization, particle swarm 

optimization, coupled heat transfer 

Introduction 

Coupled radiative and conductive heat transfer in absorbing-emitting-scattering ma-
terials is pervasive in engineering applications, such as ceramic component for high-
temperature use, tempering of glass windows, and insulating techniques for the protection of 
aero-engines [1]. If only considering the radiation or conduction in thermal analysis of these 
issues, it will produce an obvious deviation [2]. In the last two decades, considerable attention 
has been paid to the development of accurate and efficient methods for handling coupled radi-
ative and conductive heat transfer [3-6]. 

Recently, due to the wide applications of coupled radiation and conduction, the in-
verse problems of them have drawn much attention all over the world [7-10]. A wide variety of 
solution techniques have been successfully employed in the inverse analyses of heat transfer, 
which can be roughly divided into two categories. One is the traditional algorithm based on 
gradient, and the other is the intelligent optimization algorithm [11]. Compared with traditional 
gradient-based methods, the intelligent optimization algorithms have the following outstanding 
characteristics: (1) both ill and non-linear inverse problems could be solved, (2) the inverse 
problems with complicated or no analytic expression could be solved, (3) the derivative of the 
objective function is not necessary, and (4) the priori information is not needed [12]. 
–––––––––––––– 
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The ant colony optimization (ACO) algorithm is a potential heuristic bionic evolu-
tionary algorithm. It was proposed by Colorni et al. [13] in the early 1990s. The development 
of this algorithm was inspired by the ants’ foraging behavior. It was first formalized by Dori-
go et al. [14]. After more than ten years of development, the ACO algorithm has drawn the 
global attention, and its application fields have been rapidly expanded. Numerous studies 
show that ACO algorithm has positive feedback, parallelism, and robustness [15]. There are 
several types of ACO algorithms that can be used for continuous domain optimization prob-
lems. The probability density function (PDF) based ACO algorithm is one of the most effi-
cient. The logical adaption would be to shift from the discrete probability distribution to a 
continuous PDF [16]. 

Although the ACO algorithm has many outstanding characteristics, it has its own 
defects. One of the most obvious drawbacks is that the convergence speed is too slow espe-
cially in the later stage. Many scholars focus on improving the performance of the ACO algo-
rithm [17-19]. Particle swarm optimization (PSO) algorithm is one of the famous intelligent 
optimization algorithms, which has been successfully applied to continuous domain optimiza-
tion [20-24]. Inspired by the PSO algorithm, a novel hybrid ACO and PSO (HAPO) algorithm 
is proposed based on the ACO algorithm. 

In this paper, the novel HAPO algorithm is applied to solve the inverse problems of 
coupled radiative and conductive heat transfer. A 1-D homogenous participating gray slab 
medium is investigated. Several test cases are designed, where the thermal conductivity, ab-
sorption coefficient and scattering coefficient are retrieved by measuring the steady-state tem-
perature and radiative flux on the borders. Through function estimation, parameter estimation 
and measurement error analysis, the HAPO algorithm is proved to be effective and robust. 

Theories and methods 

Forward model 

Let us consider the steady-state coupled radiative and conductive heat transfer in an 
absorbing, emitting, and isotropic scattering plane-parallel slab with thickness L as shown in 
fig. 1 [7]. The refractive indices of the slab and the surroundings are both uniform and equal 
to 1.0. The boundaries of the slab are opaque diffuse gray. The emissivity of the left wall 
(x = 0) and the right wall (x = L) are given as εw1 and εw2, respectively. The left wall is sub-
jected to a convection boundary condition with the ambient temperature, Tf1, and convective 
heat transfer coefficient, hf1. The right wall is also subjected to a convection boundary condi-
tion but with the ambient temperature, Tf2, and convective heat transfer coefficient, hf2. The 
thermal conductivity, λ, absorption coefficient, κa, and scattering coefficient, κs, are supposed 
to be uniform and do not change over time. 

Figure 1. The schematic of coupled radiative and conductive heat transfer [7] 
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The 1-D energy conservation equation governing the steady-state coupled radiative 
and conductive heat transfer with constant physical parameters is defined: 

 
2
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where T is the medium temperature, rq∇  – the divergence of the radiative heat flux. It is giv-
en by: 
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where Ib = σT4/π is the blackbody radiation intensity, σ – the Stefan-Boltzmann constant,  
I – the radiation intensity at direction ,Ω



 and Ω – the solid angle. 
The convection boundary conditions are expressed: 
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where w1T  and w2T  are the temperatures of the left and right wall, respectively, r
w1q  and r

w2q  
– the radiative heat fluxes on the left and right wall, respectively. They are defined: 
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where Ω


 is the radiative direction, w1n  and w2n  are the outer normal directions of the left 
and right wall. 

The radiative intensity I in eqs. (2), (5), and (6) can be calculated by radiative trans-
fer equation (RTE) for absorbing-scattering-emitting gray slab medium, which is written: 
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where ds  is the length along the direction ,Ω


 eκ  – the extinction coefficient, ( , )I s Ω


 – the 
radiative intensity at position s and direction ,Ω
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 – the scattering phase function 
between incoming direction ,′Ω



 and scattering direction .Ω


 
The boundary conditions of opaque diffuse gray wall are expressed: 
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where w1I +  and w2I −  are the radiative intensities to the internal medium from left and right side 
of the wall, respectively, w1I  and w2I  – the radiative intensities in direction Ω



 on the left 



Zhang, B., et al.: A Novel Hybrid Ant Colony Optimization and Particle … 
464 THERMAL SCIENCE, Year 2016, Vol. 20, No. 2, pp. 461-472 

and right side of the wall, respectively, and b,w1I  and b,w2I  – the blackbody radiative intensi-
ties on the left and right side of the wall, respectively. 

The energy equation and RTE can be simultaneously solved by finite volume method 
(FVM) for 1-D coupled radiative and conductive heat transfer model [25]. The temperature and 
the radiative intensity in each control solid angle can be calculated in each control volume. Fur-
thermore, the temperatures and radiative heat fluxes on the borders can also be obtained. 

Inverse model 

Principle of PDF-based ACO algorithm  

The original ACO algorithm is introduced to solve discrete optimization problems. 
However, the inverse problems of coupled radiative and conductive heat transfer are continuous 
domain optimization problems. The logical adaption would be also changing from using the 
discrete probability distribution to a continuous PDF. Instead of choosing a component at the ith 
inversion parameter, the ants would generate a random number according to a certain PDF [16]. 

The number of the inversion parameters is assumed as N, and the amount of the 
dominant ant ranks is set as Nd. In each of N construction steps, an ant chooses a value ix  for 
exactly one of the dimensions. For performing this choice, an ant uses a Gaussian kernel, 
which is a weighted superposition of several Gaussian functions, as PDF. The probability 
density distribution of the ith inversion parameter with the jth rank at iteration t is expressed: 
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where ( )j tt  is the pheromone value of the jth rank at iteration t. It can be defined: 
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where α is a positive parameter which determines the relative importance of the rank. 
The probability density distribution of a normal distribution 
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where , ( )i j tµ  is the retrieval value of the ith inversion parameter with the jth rank at iteration t, 
, ( )i j tσ  – the standard deviation of the ith inversion parameter with the jth rank at iteration t. It 

can be defined: 
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where β is a positive parameter which regulates the speed of convergence. The higher the val-
ue of β is, the lower the convergence speed of the algorithm will be. 

Principle of HAPO algorithm 

In PSO algorithm, each particle changes its 
position in the search space and updates its velocity 
according to its own flying experience and its 
neighbors’ flying experience [20]. In a specific 
problem, one’s flying experience denotes the local 
individual best location l, ( )iP t , and the neighbors’ 
flying experience denotes the global best position 

g, ( )iP t . As shown in fig. 2, the algorithm updates 
the position ( 1)ix t +  and the velocity ( 1)iv t +  for 
each dimension of the ith inversion parameter according to the following equations: 

 ( 1) ( ) ( 1)i i ix t x t v t+ = + +  (15) 

 1 1 l, 2 2 g,( 1) ( ) rand [ ( ) ( )] rand [ ( ) ( )]i i u i i u i iv t w v t c P t x t c P t x t+ = + − + −  (16) 

where w  is the inertia weight coefficient, which controls the impact of the previous velocity 
on the current velocity. The 1c  and 2c  are two positive constants called acceleration coeffi-
cient, randu1 and randu2 are two uniform random numbers in [0, 1]. 

In order to accelerate the convergence speed, the idea of the PSO algorithm is 
employed in updating the retrieval values of the ith inversion parameter with rank 2 to Nd at 
iteration t. 
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where ρ is the positive parameter less than one, ξ – the small positive parameter, which de-
termines the convergence speed. 

Computation procedures of HAPO approaches 

The procedure for implementing the HAPO algorithm is described as the following 
steps and the flowchart of the HAPO algorithm is shown in fig. 3. 

 
Figure 2. The schematic for bird foraging 
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Step 1. Input the size of the colony, Na, the 
amount of the dominant ants, Nd, the number of the in-
version parameters, N, the number of the measurement 
positions, Nm, the maximum of the iterations, Ng. Set the 
factor of pheromone value, α, the factor of heuristic in-
formation, β, the tolerance for minimizing the objective 
function, εo, the tolerance for minimizing the standard 
deviation, εd, the convergence speed control parameter, 
ξ, the acceleration coefficients, 1c  and 2c . Estimate the 
initial search space [low , high ]i i  of each inversion pa-
rameter. Initialize the number of the iterations t = 1 and 
the probability density distribution, , ( )i jP t . 

Step 2. Calculate the probability density distribu-
tion , ( )i jP t  of the thi  inversion parameter with the jth 
rank at iteration t using eq. (10). Solve the forward 
model based on the inversion parameter ix using 
FVM. Furthermore, obtain the value of the objective 
function, Fobj. If the Fobj is smaller than the value of 
the Nd

th rank 
dobj, ,NF the corresponding retrieval value

d, ( )i N tµ  will be replaced, and the retrieval value of 
each rank will be reordered according to the values of 
their objective functions.  

Step 3. When all the ants finish constructing their 
solutions, update the retrieval value of each rank 

, ( 1)i j tµ +  using eq. (17). Furthermore, update the 
standard deviation , ( 1)i j tσ +  of the ith inversion pa-
rameter with the jth rank using eq. (14). Then, set 

1t t= +  and complete one iteration. 
Step 4. Loop to Step 2 until the program satisfies 

one of the following three stop criterions: 
(a) the value of objective function reaches the toler-

ance for minimizing the objective function oε , 
obj oF ε< ; 

(b) the maximum of the standard deviation meets the 
tolerance for minimizing the standard deviation 

dε , { },max ( )i j tσ <  dε ;
(c) the number of the iteration exceeds the maximum 

of the iterations g ,N  gt N> . 

Results and discussions 

Function estimation 

To compare the performances of the ACO and HAPO algorithms, three famous 
benchmark optimization functions are used, which are described in tab. 1. 

In the ACO algorithm, the system data and control parameters are set as Na = 30, 
Nd = 30, Ng = 1000, α = 0.5, β = 1.5, 8

o 10ε −= , and 4
d 10 .ε −=  Besides the same parameter va-

lues, we set the other parameters as 1 0.3c = , 2 0.7,c =  and 410x −=  in HAPO algorithm.

Figure 3. The flowchart of the HAPO 
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Table 1. Details of the test functions 

Table 2 shows the robustness analysis results for the proposed HAPO algorithm, in 
which the HAPO algorithm is implemented for 100 times. For comparison with the ACO al-
gorithm, this paper has adopted two robustness measures, named succeed ratio and average 
valid evaluation number, which are given: 

 s

t
SR 100

N
N

=  (20) 
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N

l
l

t

N
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where sN  is the number of successes, which means the times of that the objective function 
reaches required accuracy in the tN  independent runs. 

Table 2. Results of robustness analysis for the ACO and HAPO algorithms 

From tab. 2, it can be observed that the results obtained by the ACO and HAPO al-
gorithms are very close to theoretical optima when there is no local minimum, and the HAPO 
algorithm is superior to the ACO algorithm. When there are many local minimums, the per-
formances of the two algorithms get deteriorate with the increasing of the dimensions. 

Function Expression Space Required accuracy 

Sphere 2
1 1

N
ii

f x
=

=∑  [–100, 100]N 10–2 

Rosenbrock 1 2 2 2
2 11

[100( ) (1 ) ]N
i i ii

f x x x−
+=

= − + −∑  [–30, 30]N 10–2 

Rastrigin 2
3 1

[ 10 cos(2π ) 10]N
i ii

f x x
=

= − +∑  [–5.12, 5.12]N 10–2 

Dim. 

Sphere Rosenbrock Rastrigin 

ACO HAPO ACO HAPO ACO HAPO 

SR [%] AVEN SR [%] AVEN SR [%] AVEN SR [%] AVEN SR [%] AVEN SR [%] AVEN 

1 100 8.48 100 6.47 −  −  −  −  100 11.31 100 10.79 

2 100 20.28 100 16.41 100 163.48 100 98.29 100 55.48 100 46.04 

3 100 36.65 100 27.49 99 911.04 98 491.03 90 235.04 78 258.65 

4 100 62.67 100 45.92 96 1000.0 94 819.81 49 530.37 44 571.22 

5 100 96.65 100 68.86 95 1000.0 97 1000.0 4 702.50 4 797.00 

6 100 142.85 100 96.05 97 1000.0 98 1000.0 −  −  −  −  

7 100 207.51 100 135.52 76 1000.0 66 993.36 −  −  −  −  

8 100 290.92 100 187.19 1 1000.0 3 1000.0 −  −  −  −  

9 100 405.79 100 253.05 −  −  −  −  −  −  −  −  

10 100 558.26 100 331.78 −  −  −  −  −  −  −  −  
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Parameter estimation 

To demonstrate the validity of the ACO algorithms in the inverse problems of cou-
pled radiative and conductive heat transfer, two test cases of 1-D homogeneous semi-
transparent gray slab medium model are investigated in the present study. The thermal con-
ductivity, absorption coefficient, and scattering coefficient are retrieved to illustrate the per-
formance of the ACO algorithms. The accuracies and efficiencies of the ACO and HAPO al-
gorithms are compared. 

Single parameter retrieval 

In the model depicted in the chapter Forward model, the parameters are set:  
L = 5 m, εw1 = 0.9, εw2 = 0.7, Tf1 = 1000 K, hf1 = 20 W/m2K, Tf2 = 500 K, hf2 =  

= 10 W/m2K. The thermal conductivity and scattering coefficient are known as λ = 20 W/mK 
and κs = 4.5 m–1. The absorption coefficient κa is retrieved by measuring the temperature and 
radiative heat flux on the borders under the true absorption coefficients *

aκ  of 0.5, 1.5, 2.5, 
3.5, and 4.5 m–1. The measured values can be obtained by using the FVM approximation with  
Nx = 5000 and Nθ = 100. 

The model validation and grids independence have been investigated in our previous 
work [7]. Finally, the FVM approximation with Nx = 300 and 300xN =  and Nθ = 50 is used 
as the forward model in the inversion, and the objective function can be defined: 

 
r r* 2 r r* 2

* 2 * 2w1 w1 w2 w2
obj w1 w1 w2 w24 4

( ) ( )1 ( ) ( )
4 10 10

q q q qF T T T T
 − −

= − + + − + 
  

 (22) 

where w1T , w2T , r
w1q , r

w2 ,q  and *
w1T , *

w2T , r*
w1q , r*

w2q  represent the estimated and measured 
values, respectively. 

Since the ACO-based algorithm is a stochastic optimization method, every optimiza-
tion has certain randomness. The ACO and HAPO algorithms are repeated 100 times to re-
duce the effect of the randomness. The system data and control parameters are set: a 30N = , 

d 5N = , g 1000N = , 0.5α = , 1.5β = , 8
o 10ε −= , 1 0.3c = , 2 0.7,c =  and 410x −= . 

The retrieval results are shown in tab. 3, in which the initial search space of the ab-
sorption coefficient aκ  is [1, 10] . Because there is a linear relationship between iteration 
number and calculating time on the same computer configuration, while the iteration number 
is similar on different computer configurations, here we use the number of iterations instead 
of computation time. As shown in tab. 3, the efficiency of the HAPO algorithm is significant-
ly higher than that of the ACO algorithm. However, the HAPO algorithm does not lose the 

Table 3. The retrieval results of absorption coefficient using ACO and HAPO algorithms 

No. * 1
a [m ]κ −  

ACO HAPO 
* 1
a [m ]κ −  Iteration, t * 1

a [m ]κ −  Iteration, t 

1 0.5 0.500±2.4·10–5 6.1±0.98 0.500±4.1·10–5 5.5±0.85 

2 1.5 1.500±2.9·10–5 6.0±1.11 1.500±4.8·10–5 5.2±0.75 

3 2.5 2.500±5.7·10–5 5.4±0.98 2.500±5.3·10–5 5.1±0.85 

4 3.5 3.500±1.1·10–4 5.0±0.97 3.500±1.1·10–4 4.6±0.77 

5 4.5 4.500±2.2·10–4 4.6±0.89 4.500±2.3·10–4 4.3±0.75 
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accuracy compared with the ACO algorithm. The standard deviation of the iteration numbers 
calculated by the HAPO algorithm is smaller than that by the ACO algorithm. 

Multi-parameter retrieval 

In order to illustrate the performance of the ACO algorithms, the thermal conduc-
tivity, λ , absorption coefficient, aκ , and scattering coefficient, sκ , are retrieved simultane-
ously. In the model depicted in the chapter Forward model, the boundary conditions are set as 
the same as that in the section Single parameter retrieval. The three parameters are retrieved 
simultaneously by measuring the temperature and radiative heat flux on the borders when the 
true values are assumed: * 20 Wm/Kλ = , * 1

a 0.5 m ,κ −=  and * 1
s 4.5 mκ −= , where the meas-

ured values are obtained by using the FVM approximation with 5000xN =  and 100Nθ = . 
To further illustrate the performance of the ACO algorithms, random errors are con-

sidered. Measured values with random errors are obtained by adding normal distributed errors 
to the actual measured values: 

 exa, n mrand , ( 1, 2, , )l l lM M l Nσ= + =   (23) 

where lM  is the actual measured value in the lth position, exa, lM  – the exact measured value 
in the lth position, randn is a normal distributed random variable with zero mean and unit 
standard deviation. The standard deviation of measured value lσ , for a measurement error of 

%γ  at 99% confidence, is determined: 

 
*
,exa %
2.576

l
l

z γ
σ =  (24) 

where 2.576 arises from the fact that 99% of a normal distributed population is contained 
within ±2.576 standard deviation of the mean value. 

Measured values with %γ  noise are used to estimate the thermal conductivity, ab-
sorption coefficient, and scattering coefficient, where the measurement errors %γ  are set as 
1, 2, and 5%, respectively. Taking the FVM approximation with 300xN =  and 50Nθ =  as 
the forward model in the inversion, the inversion parameters are retrieved by using the two 
ACO algorithms. The system data and control parameters and the stop criterion parameters 
are set as the same as that in the section Single parameter retrieval. The ACO algorithms are 
both implemented for 100 times to reduce the randomness. The retrieval results are shown in 
tab. 4. The initial search space of the inversion parameters are set as [0, 100]λ∈ , 

a [0, 10],κ ∈  and s [0, 10]κ ∈ , respectively. 
As shown in tab. 4, compared with the ACO algorithm, the efficiency of the HAPO 

algorithm is much higher, although the accuracy of the HAPO algorithm is slightly decreased. 
For average retrieval results, the largest relative error of these two algorithms is less than 
4.6% even with a measurement error of 5%, which demonstrates the robustness of the PDF-
based ACO algorithms is high. It is noteworthy that the standard deviation of the iteration 
numbers seems decreasing with the increase in measurement errors. That is because we set the 
maximum number of iterations as g 1000N = . This does not mean that the stability of the  
ACO algorithm increases with the increasing of measurement errors. We can also see from 
tab. 4 that the standard deviation of the retrieval results and the iteration numbers increase 
with the increasing of the measurement errors. Averaging multiple retrieved results can effec-
tively reduce the retrieval errors of the stochastic optimization algorithms, especially when re-
trieving multiple parameters by few measurement values. 
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Table 4. The influence of measurement errors on the retrieval results of the three parameters 

Conclusions 

In the present study, a PDF-based ACO algorithm for continuous domain has been 
applied to the inverse problems of coupled radiative and conductive heat transfer. By bringing 
in the idea of the PSO algorithm, the HAPO algorithm is developed on the basis of the ACO 
algorithm. The thermal conductivity, absorption coefficient, and scattering coefficient can be 
retrieved simultaneously by four steady-state measured signals on the borders. The HAPO al-
gorithm is proved to be more effective and robust via several test cases. By increasing the 
number of the inversion parameters, the accuracies of the retrieval results are decreasing cor-
respondingly. However, the errors of the average multiple retrieval results are still in the tol-
erant limit. It is an effective way to reduce the retrieval error for measured values with normal 
distributed errors especially for retrieving multiple parameters by few measured values. 
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Nomenclature 
c1, c2 − acceleration coefficient, [−] 
F − objective function value, [−] 

,i j
fη − probability density function, [−] 

h − convective coefficient, [Wm–2K–1] 
high − high limit of the search space, [−] 
I − radiative intensity, [Wm–2sr–1] 
k − the control parameter of colony size 
L − length of the media, [m] 
low − low limit of the search space, [−] 
M − measured value, [−] 
N − number, [−] 
n − outward normal direction, [−] 
Pi,j − probability, [−] 
P1, Pg − local and global best position, [−] 
q − heat flux, [Wm–2] 

randn − normal random number, [−] 
randu − uniform random number, [−] 
s − distance along a certain direction, [m] 
Tf1 − temperature of the left ambient, [K] 
Tf2 − temperature of the right ambient, [K] 
t − iteration, [−] 
vi − particle velocity, [−] 
wτj − weight factor, [−] 
xi − location, [−] 

Greek symbols 

α − weight control parameter, [−] 
β − convergence control parameter, [−] 
γ − measurement error, [%] 
ε − emissivity, [−] 

Algorithm γ% Iteration, t 1 1[Wm K ]λ − − 1
a [m ]κ − 1

s [m ]κ −

ACO 

0 510±154 19.96±0.14 0.505±0.017 4.491±0.213 

1 983±80 19.97±0.90 0.513±0.059 4.455±0.218 

2 1000±0 20.15±1.50 0.516±0.064 4.450±0.222 

5 1000±0 19.70±2.89 0.520±0.126 4.364±0.238 

HAPO 

0 77±21 19.92±0.30 0.510±0.035 4.483±0.213 

1 145±56 19.87±1.15 0.518±0.083 4.493±0.230 

2 311±227 19.93±1.37 0.522±0.097 4.350±0.259 

5 785±286 19.81±2.80 0.523±0.105 4.434±0.272 
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εd, εo − tolerance, [−] 
θ − angle with x direction 
κa, κe, κs − radiative parameters, [m–1] 
λ − thermal conductivity, [Wm–1K–1] 
μi − mean best retrieval value, [−] 
μi,j − retrieval value, [−] 
ρ − speed control parameter, [−] 
σ − Stefan-Boltzmann constant, [Wm–2K–4]  
σi,j − standard deviation, [−] 
Φ − scattering phase function, [−] 
Ω − solid angle, [sr]  

, ′Ω Ω
 

 − incoming and outgoing direction, [−] 
ξ − acceleration control parameter, [−] 

Superscripts 

+ − positive direction 
− − negative direction 
r − radiative 

Subscripts 

a − ant 
b − black body 
d − dominant ant ranks 
exa − exact 
f − ambient 
g − generation 
i − inverse index 
j − rank index 
l − measurement index 
obj − objective function 
s − success 
t − total 
w − wall 
x − space mesh 
θ − angle mesh 
* − true value 
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