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This paper presents an analytical and numerical computation of laminar natural 
convection in a collection of vertical upright-angled triangular cavities filled 
with air. The vertical wall is heated with a uniform heat flux; the inclined wall is 
cooled with a uniform temperature; while the upper horizontal wall is assumed 
thermally insulated. The defining aperture angle φ is located at the lower vertex 
between the vertical and inclined walls. 
The finite element method is implemented to perform the computational analysis 
of the conservation equations for three aperture angles φ = 15º, 30º, and 45º and 
height-based modified Rayleigh numbers ranging from a low Ra = 0 (pure con-
duction) to a high 10

9
. Numerical results are reported for the velocity and tem-

perature fields as well as the Nusselt numbers at the heated vertical wall. The 
numerical computations are also focused on the determination of the value of the 
maximum or critical temperature along the hot vertical wall and its dependence 
with the modified Rayleigh number and the aperture angle. 

Key words: natural convection, laminar flow, upright-angled triangular cavity, 
steady-state, finite element method 

Introduction 

Buoyancy induced flows inside enclosures is an active research field due to its prac-

tical application in nature, science and engineering. The basic topics of the subject are usually 

covered in any undergraduate heat transfer book [1, 2] and state-of-the-art reviews are usually 

included in chapters of specialized handbooks [3, 4]. In general, natural convection studies 

inside enclosures are classified in two main groups: rectangular and non-rectangular enclo-

sures. Despite that a large body of literature exists that describe and analyze fluid flow and 

heat transfer inside rectangular cavities, non-rectangular enclosures are also considered of 

prime interest due to its plethora of applications. In particular, triangle shaped enclosures are 

encountered in many engineering applications such as natural convection in house and build-

ings attics, solar collectors, electronic equipment, etc. 
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There are numerous theoretical, numerical and experimental studies in the open lit-

erature devoted to natural convection inside triangular cavities with different orientations and 

various thermal boundary conditions either for laminar or turbulent regimes [5-11]. Although 

the impact of thermal boundary conditions has been examined, most researches have focused 

on the consideration of prescribed uniform temperatures and insulation at selected walls of the 

triangular cavity. Normally, one of the walls is modeled as a hot wall with uniform tempera-

ture, facing a cold wall with uniform temperature and the remaining walls are assumed to be 

thermally insulated. 

The case of natural convection from heated vertical walls in a triangular cavity is of 

special interest due to its direct application in electronics cooling [12-14], where air has been 

and continues to be the most widely used working fluid for heat rejection [14]. In fact, a con-

figuration of relevance to the electronic industry consists of a heated vertical wall being part 

of a square or rectangular cavity [12, 13], where heat exchange by natural convection takes 

place between the heated vertical wall and the opposite cold wall or between the heated verti-

cal wall and an adjacent cold wall [9]. However, in this type of configurations it is clear that 

natural convection cooling does not provide a constant-temperature bath along the heated 

vertical wall, producing the appearance of hot spots which if not properly managed, may ex-

ceed critical temperatures affecting adversely the performance and reliability of electronic 

components. Therefore, a more realistic analysis would be envisioned if the hot wall is mod-

eled as a uniformly heated wall instead of an isothermal hot wall. Obviously, in these situa-

tions an uneven temperature profile emerges along the hot wall. Knowledge of the value and 

location of the maximum or critical temperature along the hot vertical wall is crucial for a 

correct design of the heat rejection mechanism in these components. 

This paper addresses an analytical and numerical computation of laminar natural 

convection in vertical upright-angled triangular cavities filled with air. Its peculiarity revolves 

around a combination of thermal boundary conditions. This configuration may find applica-

tion in the miniaturization of electronic packaging subjected to space and/or weight con-

straints, as stated by Simons et al. [12] and Bar-Cohen et al. [13]. In this work, the vertical 

wall is uniformly heated with a prescribed heat flux, a prescribed cold temperature is assigned 

at the inclined wall, while the upper horizontal wall is assumed thermally insulated. The nu-

merical solutions of the Navier-Stokes and energy equations are obtained with the implemen-

tation of the finite element method in a suitable computational grid. Numerical results are 

obtained for the velocity and temperature fields as well as the Nusselt numbers at the heated 

vertical wall for different values of the height-based Rayleigh number and aperture angles. 

Two different Nusselt numbers are determined: the first is based on the maximum temperature 

along the heated vertical wall, whereas the second one is based on the mean temperature 

along the vertical wall. Knowledge of the Nusselt number as a function of the Rayleigh num-

ber and aperture angle will allow analysts to estimate the maximum or critical temperature 

along the heated vertical wall. 

Physical system and mathematical model 

The physical system to be considered is sketched in fig. 1. It consists of air confined 

to a vertically-oriented right-angled triangular cavity made with three impermeable walls. The 

aperture angle, φ, identifies the bottom vertex of the triangular cavity. A uniform heat flux, 

qH, is imposed at the vertical wall of length, LH, the inclined wall of length, LC, is maintained 

at a uniform cold temperature, TC, while the upper connecting horizontal wall of length, LA, is 

thermally insulated. 
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Owing that the dimension perpendicular to the plane of the diagram is long com-

pared to the triangular cavity dimensions, the air motion is conceived to be laminar and 2-D. 

Because the gravitational acceleration, g, acts parallel to the vertical wall, the buoyant air 

convection may be modeled by the following system of steady conservation equations: 

 mass conservation 
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− energy conservation 
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In the preceding equations, the Boussinesq 

approximation is invoked, where, ρ, denotes a 

reference density evaluated at the cold temper-

ature of the inclined wall, TC. Additionally, the 

physical properties of the fluid are assumed to 

be temperature-invariant and β = 1/TC is the 

coefficient of volumetric thermal expansion. 

Assuming that the trapped air does not slip 

at the cavity walls, the velocity boundary con-

ditions are ux = uy = 0. The thermal boundary 

conditions refer to a prescribed low tempera-

ture, TC, at the inclined wall and a prescribed 

uniform heat flux, qH, at the vertical wall. At 

the top horizontal wall, the heat flux is zero to 

comply with a thermally insulated condition, 

namely ∂T/∂y = 0. 

For convenience, the system of coupled 

conservation equations is expressed in terms of 

suitable dimensionless variables. In order to accomplish this, it is necessary to introduce a 

characteristic velocity, which can be obtained from the kinetic energy gained by the fluid as a 

result of the work done by the buoyancy forces. A measure of the buoyancy forces per unit 

volume within the cavity is given by gβρΔT, where ΔT stands for the existing temperature 

difference in the fluid. The buoyancy forces do work on the fluid as it flows inside the cavity. 

Therefore, a measure of the work done on the fluid can be obtained as the product of the 

buoyancy forces and a measure of the distance over which these forces act, i. e. a characteris-

tic size of the cavity. In this paper, the cavity height, LH, is considered as the characteristic 

length of the cavity. Thereby, equating the magnitude of the work done by the buoyancy forces 

and the kinetic energy gained by the fluid, leads to: 

Figure 1. Sketch of the upright right-angled 
triangular cavity 
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The majority of natural convection problems can be classified in one of the two 

broad categories: 

 external flow around objetcs where the surface temperature, Tw, and ambient temperature, 

T∞, are given as input parameters. In these cases a figure of merit refers to a temperature 

difference in the flow given by ΔT = Tw  T∞, and 

 internal flow that occurs within enclosed regions where prescribed uniform hot, TH, and 

prescribed uniform cold, TC, temperatures are specified along some of the walls. Then, a 

figure of merit refers to a temperature difference in the flow given by ΔT = TH  TC. 

In contrast, in the problem under consideration here, a uniform cold temperature, TC, 

is prescribed along the inclined wall and a uniform heat flux, qH, is prescribed along the verti-

cal wall. In this case, the vertical wall temperature increases with height, and is expected to 

reach a maximum at the upper edge of the wall. In order to quantify the temperature changes 

in the flow, the heat flux at the vertical wall is related with fluid temperature field by virtue of 

the Fourier´s law: 
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The order of magnitude of the temperature gradient within the fluid along the verti-

cal co-ordinate stipulates that: 
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where Tw is the temperature of the vertical wall at the vertical position y and Ly – the hori-
zontal distance from the vertical wall to the inclined wall at position y. As a result, the 
temperature along the vertical wall is supposed to increase with the vertical position, re-
sulting in a maximum, which is located at the upper corner of the cavity. Then, the order 
of the temperature changes existing in the flow produces: 
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Combining eqs. (5) to (8), the magnitude of the characteristic velocity of the 
flow is quantified: 
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For convenience, we drop the factor 2 from the square root and also replace 
LA ~ LH, to obtain the following approximate expression for the characteristic velocity: 
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In view of this, the governing equations can be non-dimensionalized by employ-
ing the characteristic velocity, Vc, as the scaled velocity, giving way to the following set 
of dimensionless variables: 
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Correspondingly, the transformed system of steady coupled conservation equa-
tions is re-written: 
 mass conservation 
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 horizontal momentum 
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 vertical momentum 
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 energy conservation 
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where the modified Rayleigh number is: 
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The dimensionless velocity boundary conditions are UX = UY = 0 at all walls. 
The dimensionless thermal boundary conditions are established by prescribed values of 
θ = 0 at the inclined wall, ∂θ/∂X = 1 at the vertical wall and ∂θ/∂Y = 0 at the top adia-
batic wall. 

In view of the foregoing, the velocity field UX(X, Y), UY(X, Y), and the tempera-
ture field θ(X, Y) are controlled by the aperture angle, φ, the modified Rayleigh and 
Prandtl numbers. 

Computational procedure 

The set of coupled governing equations and boundary conditions were solved nu-

merically using the commercial finite element code, COMSOL Multiphysics version 3.5 [15] 

in conjunction with the numerical solver UMFPACK [16]. Three computational meshes con-

sisting of roughly 2400, 6300, and 10300 triangular elements were tested to make a decision 

with regards to the optimal grid size. In all cases care was taken to increase the element densi-

ty in vulnerable areas where high velocity and temperature gradients would occur, such as 

near the walls and vertices. 

Table 1 shows the results of the grid sensitivity analysis for a critical case corre-

sponding to the widest aperture angle (φ = 45º) and the highest modified Ra = 10
9
. Important 

parameters such as the maximum dimensionless velocity and temperature values and the 

Nusselt numbers at the hot vertical wall are reported. It can be seen that numbers listed in tab. 

1 are similar and no appreciable differences (lower than 0.1%) are found when increasing the 

grid size from 6300 to 10300. As a result, in this work a mesh consisting of roughly 6300 

triangular elements was chosen to carry out the totality of numerical computations involving 

suitable combinations of φ ≤ 45º and Ra ≤ 10
9
. 
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For completeness, the computed results 

were validated against experimental results 

in previous works [9] for the same geometry 

but with a prescribed high temperature 

boundary condition at the vertical wall. 

Results and discussion 

Results are reported for the velocity (UX, 

UY) and temperature, θ, fields as well as the 

Nusselt numbers at the hot vertical wall, based on the maximum and average hot wall temper-

ature. In this paper, numerical results are reported for three different aperture angles φ = 15º, 

30º, and 45º and height-based modified Rayleigh numbers that range from a low Ra = 0 (pure 

conduction) to a high Ra = 10
9
. It should be noted that the modified Rayleigh number is based 

on the idea that the temperature changes existing in the flow are of the order given by eq. 

(8). Once the numerical simulations were performed, it was confirmed that the tempera-

ture differences were much lower, which results in a difference of approximately two 

orders of magnitude in case the Rayleigh number is based on the actual maximum tem-

perature difference. 

All numerical computations were performed for air at standard atmospheric 

pressure. The cold wall temperature, TC, and the uniform heat flux along the hot wall, qH, 

were set to fixed values of 287 K and 20 W/m
2
, respectively. Perfect gas behavior was as-

sumed, so the thermal expansion coefficient, β, is given by 1/TC. The thermophysical proper-

ties of the fluid were assumed constant and, initially, equal to those for dry air evaluated at the 

cold wall temperature, TC, using the code REFPROP [17]. Consequently, all the numerical 

computations share a same Prandtl number (Pr = 0.72), so for a given aperture angle, φ, the 

velocity and temperature fields are solely controlled by the modified Rayleigh number. How-

ever, a brief analysis of the possible effect of the Prandtl number appears as an addendum in 

the final section of the paper. 

For a given geometry (defined by the aperture angle and cavity height) and fixed 

values of the heat flux and cold wall temperature, the modified Rayleigh number was con-

trolled through the variation of the gravitational constant, g. In particular, the extreme case for 

g = 0 corresponds to the limiting conduction regime, i. e., Ra = 0. 

Velocity and temperature fields 

Figure 2(a) shows the velocity streamlines for the air flow in 15º, 30º, and 45º trian-

gular cavities induced by a low Ra = 10
3
. The maximum values of the dimensionless velocity 

for the three cavities are listed in tab. 2. Dimensional values for a case relevant in practical 

electronic cooling applications are also included [18]. Results show that the velocity 

field (for the three configurations) exhibits a single clockwise rotatin g vortex, which 

takes the shape of the cavity. The vortex moves the warm fluid from the left vertical 

hot wall along the top insulated wall of the cavity and then comes down along the 

cold inclined wall. It is also seen that the velocity field approaches zero at the bound-

ing walls. Even though the shape of the velocity field is qualitatively similar for the 

three cavities, two important differences are observed when increasing the cavity aperture 

angle from the slender 15º to the wide 45º cavity: the vortex continually moves down towards 

the center of the cavity. As a consequence, the maximum value of the dimensionless velocity, 

Umax, increases. 

Number of elements Umax Nu1 Nu2 

2404 4.44·102 14.89 29.32 

6304 4.32·102 14.86 29.33 

10334 4.32·102 14.86 29.33 

Table 1. Grid sensitivity for the widest triangular 

cavity with φ = 45º and the highest Ra = 109 
(Pr = 0.72) 
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Table 2. Maximum dimensionless velocity and temperature values for the three cavities at Ra = 103, 
106, and 108 (Pr = 0.72). Dimensional values for a practical application with TC = 298 K and LH = 0.1 m 
(g = 9.81 ms–2) 

φ Ra Umax θmax umax (m·s-1) Tmax (K) 

15º 

103 

106 

108 

2.61·10-3 

5.12·10-2 

5.09·10-2 

0.220 

0.228 

0.107 

1.50·10-5 

9.32·10-3 

9.26·10-2 

298 

300 

406 

30º 

103 

106 

108 

1.05·10-2 

7.34·10-2 

5.07·10-2 

0.381 

0.262 

0.110 

6.04·10-5 

1.34·10-2 

9.23·10-2 

298 

301 

409 

45º 

103 

106 

108 

2.67·10-2 

7.55·10-2 

5.27·10-2 

0.508 

0.268 

0.108 

1.54·10-4 

1.37·10-2 

9.59·10-2 

298 

301 

407 

The similarity picture obtained for the velocity field in the three cavities entails that 

a similar temperature field should also be obtained, which is confirmed in the isotherms repre-

sented in fig. 2(b). It can be seen that the main orientation of the temperature isotherms is 

vertical which signifies that, for the low modified Rayleigh number, the process is primarily 

dominated by conduction. The minimum temperature is obtained along the cold inclined wall, 

θmin = 0, whereas the maximum temperature, θmax, occurs always at the upper edge of the 

heated vertical wall. This trend should be expected, since the separation between the heated 

wall and the cold wall grows gradually from the bottom to the top of the cavity. It can also be 

observed that the isotherms are normal to the top insulated wall, in harmony with the imposed 

adiabatic boundary condition. 

Table 2 also includes the numerical results for θmax for the three triangular cavities, 

as well as the corresponding dimensional values for a practical application. The maximum 

dimensionless temperature increases considerably when the aperture angle is augmented from 

15º to 45º. In numbers, for φ = 15º a value of θmax = 0.220 is obtained. However, for the 45º 

cavity the dimensionless temperature shoots up to a value of θmax = 0.508; more than a two-

fold factor. This behavior must be attributed to an increased conductive heat transfer related to 

the small separation between the hot and cold walls for the slimmer configurations rather than 

to an almost imperceptible convective contribution.   

Figure 2. Streamlines (a) and isotherms (b) at Ra = 103 for the three aperture angles (φ) 15º, 30º, and 
45º (Δθ = θmax/10) 
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Figure 3 illustrates the same patterns but for a high Ra = 10
8
. When comparing the 

streamlines of the cavities in fig. 3(a) with those in fig. 2(a), it is clear that the vortices have 

moved to the bottom of the cavity. Similar to the Ra = 10
3
 case, the velocity field for the 15º 

and 30º cavities contains a single clockwise rotating vortex, which takes the shape of the cavi-

ty. However, it can be seen that the higher separation between the hot and cold walls for the 

wider 45º cavity configuration produces that the single vortex, that prevails near the cavity 

walls, splits into two smaller ones in the center of the cavity. 

From the values of Umax collected in tab. 2 it is evident that the velocity values 
are increased significantly when compared against those for the Ra = 10

3
 case. This in-

crement in the velocity field translates into the fluid flow being now dominated by natural 
convection. Figure 3(b) clearly shows that individual thermal boundary layers develop 
along the vertical hot wall and the cold inclined wall because of the natural convection. 
However the development of the boundary layer is hindered by the presence of the top 
adiabatic wall. As a consequence, the boundary layer becomes much thicker and a ther-
mally stratification region develops in the core of the cavity, where the isotherms are 

arranged horizontally instead of vertically. 
Since higher velocities are obtained, a 
more effective heat transfer is expected, 
which is confirmed by the lower maxi-
mum temperature values along the hot 
vertical wall, tab. 2. However, it should be 
noted that under these conditions the max-
imum dimensionless temperature is nearly 
invariant with the shape of the cavity. 

To have a clearer map of the temperature 

field, the temperature profiles along the hot 

vertical wall are scrutinized for the cases 

considered previously. In fig. 4, the dimen-

sionless temperature along the hot wall is 

plotted for a low Ra = 10
3
, intermediate 

Ra = 10
6
 and high Ra = 10

8
 values, in asso-

ciation with the 15º, 30º, and 45º cavities. 

Focusing on the Ra = 10
3
 case, it is clear that the heated wall temperature decreases consider-

ably with decreasing aperture angles, φ. It can also be seen that the dimensionless tempera-

ture increases with a nearly constant slope, except in the vicinity of the upper edge where the 

Figure 3. Streamlines (a) and isotherms (b) at Ra = 108 for the three aperture angles (φ) 15º, 30º, and 

45º (Δθ = θmax/10) 

Figure 4. Dimensionless temperature profiles 
along the heated vertical wall at various Ra = 103, 

106, and 108 for the three aperture angles (φ) 15º, 
30º and 45º 
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temperature profile changes smoothly to a zero slope value (in harmony with the top wall 

adiabatic boundary condition). For the intermediate Ra = 10
6 
case, it is also observed that the 

dimensionless temperature increases with the aperture angle φ, though two main differences 

are palpable with respect to the results related to Ra = 10
3
. The first main difference is that the 

temperature profiles for the three cavities are closer than for the Ra = 10
3
 case, especially 

between the 30 and 45º configurations. The second main difference is that, now, the tempera-

ture profiles present a nearly constant and gently slope along the middle part of the wall, but 

abrupt temperature changes near the edges. In addition, it can be seen that the slope of the 

dimensionless temperature along the heated 

vertical wall (𝜕𝜃 ∂𝑌⁄ |X=0 ) is lower for the 

Ra = 10
6
 case than for the Ra = 10

3
case in the 

vicinities of the bottom edge of the cavity, but 

higher near the upper edge. Finally, for the 

highest Ra = 10
8
 case tested, the temperature 

profiles are nearly coincident for the three 

cavities and lower than for the previous Ray-

leigh number cases.  

A closer look at the results shown in fig. 4, 

for the slender 15º cavity, reveals that the 

maximum vertical wall temperature (which 

occurs at the top vertex of the wall) is the 

highest for the intermediate Ra = 10
6
 case, tab. 

2. This behavior can be explained better with 

help from the results shown in figs. 5 and 6 

for the 15º cavity. Shown in fig. 5 are the 

dimensionless temperature profiles, θ, along 

the vertical wall, Y, for selected values of 

Rayleigh number; whereas fig. 6 displays 

the corresponding numerical results of the 

Y-component of the dimensionless tempera-

ture gradient (𝜕𝜃 ∂𝑌⁄ |X=0). For low Ra < 10
4
 

values, the velocity field is so weak that the 

effect of Rayleigh number on the heated 

wall temperature profiles is insignificant. 

For higher modified Rayleigh values 

(Ra > 10
4
) it can be seen that, far down from 

the upper edge of the wall, the values of θ and 

𝜕𝜃 ∂𝑌⁄ |X=0 decrease with increments in Ray-

leigh number, as a consequence of an increas-

ing natural convective contribution that results 

from higher upward air velocities along the 

vertical wall. However, due to the buoyancy forces, the hot air tends to accumulate at the left-

upper edge of the cavity hindering the cooling of the heated vertical wall. As a result a mini-

mum value for 𝜕𝜃 ∂𝑌⁄ |X=0 is reached for an intermediate value of the dimensionless vertical 

position, Y. Up from this point, θ, increases more rapidly along the vertical wall 

(𝜕𝜃 ∂𝑌⁄ |X=0increases) with higher values of the modified Rayleigh number. Finally, close to 

the upper edge of the wall a maximum value for 𝜕𝜃 ∂𝑌⁄ |X=0 is attained to become of null 

Figure 5. Dimensionless temperature profiles 
along the heated vertical wall at different modi-

fied Rayleigh numbers for the φ = 15º cavity 

Figure 6. Y-component of the dimensionless 
temperature gradient along the heated vertical 

wall (𝝏𝜽 𝛛𝒀⁄ |𝑿=𝟎 ) at different modified Ray-
leigh numbers for the φ = 15º cavity 
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value at the upper edge of the wall (𝜕𝜃 ∂𝑌⁄ |X=0,Y=1 = 0). The previous mentioned tendencies 

are more pronounced with elevations in the modified Rayleigh number.   

In summary, the numerical results in fig. 6 demonstrate that when the modified Ray-

leigh number grows, this produces two opposite effects. On the one hand the air velocity in-

creases, favoring the cooling of the lower portion of the heated vertical wall. On the other 

hand the heated air raises to the top-left corner of the cavity where nearly stagnant fluid re-

gions exist, hindering the heat removal from the upper region of the vertical wall. The final 

result that emerges from the combination of these opposite effects can be seen in fig. 5; that 

is, in the low Rayleigh range (0 ≤ Ra ≤ 3·10
5
), an unexpected (a priori) heat transfer deterio-

ration is found with incremental values of Rayleigh number. This deterioration finds its max-

imum for a modified Rayleigh number of Racrit = 3·10
5
 which holds a dimensionless tempera-

ture at the upper edge of θmax = 0.246, representing an increment of around 12% with respect 

to the limiting pure conduction case at Ra = 0 (θmax = 0.219). For Rayleigh values higher than 

Racrit, the dimensionless wall temperature decays rapidly with Rayleigh number, as expected. 

The heat transfer deterioration phenomenon was also observed for the other 30º and 45º cavi-

ties, though the values of Racrit are slightly different. 

Heat transfer features 

For the purpose of numerically analyzing the heat transfer features of the cavity 
the Nusselt numbers along the vertical walls are calculated: 

  
 

H H

C

1
Nu

( ) ( )

q L
Y

k T Y T Y
 


 (19) 

Two different Nusselt numbers are evaluated. The first one is the minimum 
Nusselt number along the hot wall, Nu1, which is readily determined from the maximum 
temperature along the hot vertical wall, and given by: 

  1

max

1
Nu Nu 1Y


    (20) 

The second is the mean Nusselt number, Nu2, given by: 
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(21) 

The minimum Nusselt numbers, Nu1, are plotted in fig. 7 as a function of the modi-

fied Rayleigh number for the three aperture angles analyzed (15º, 30º, and 45º). Numerical 

results indicate that for low Rayleigh numbers, the Nusselt number decreases softly with the 

modified Rayleigh number for the three aperture angles. This deterioration in the heat transfer 

behavior was already explained in the section Velocity and temperature fields and is main-

tained until a critical modified Rayleigh number, Racrit, is reached (which is represented by 

filled black symbols in fig. 7). For modified Rayleigh values higher than Ra crit, the 

Nusselt number shoots up with increasing values of Rayleigh number for the three aper-

ture angles. Then, taking into account the gently dependency of Nusselt number with 

Rayleigh number for Ra < Racrit when compared with that for Ra > Racrit, the critical 

modified Rayleigh number may be also considered as the modified Rayleigh value that 

marks the demarcation point between the conduction and convection heat transfer modes. 

Also fig. 7 reveals that the critical modified Rayleigh number augments when the aperture 

angle diminishes.   
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Upon comparing the results for the three aperture angles reflects that when the aper-

ture angle is drastically reduced from 45º to 15º, the minimum Nusselt number, Nu1, ascends 

remarkably in the low Ra < Racrit range. However, for values of the modified Rayleigh num-

ber higher than Racrit, the Nu1 curves for the three cavities tend to overlap and merge into a 

single curve. In essence, this means that from the point of view of controlling the wall tem-

peratures (controlling the maximum or critical temperature) the three cavities perform similar-

ly once the modified Rayleigh value is high enough to guarantee that the convective heat 

transfer mode is dominant. 

Plotted in fig. 8 is the same set of results delineated before, but for the mean Nusselt 

number, Nu2, instead. An analysis of the curves in fig. 8 leads to similar conclusions that 

those sustained for fig. 7. However, now, for Ra < Racrit, the Nusselt number elevates softly 

with the modified Rayleigh number for the three aperture angles. Since Nu2 is based on the 

hot wall average temperature rather than on the maximum or critical temperature, the values 

of Nu2 are higher than Nu1 by a factor be-

tween 1.5 and 2.  

Effect of the Prandtl number 

The previous results shared a common 

Prandtl number of Pr = 0.72, which corre-

sponds to air at a temperature equal to TC and 

standard atmospheric pressure. It is well 

known that, for air as well as many gases, 

typical values of the Prandtl number are 

around 0.6 to 0.8. However, in order to visu-

alize the effect of the Prandtl number, addi-

tional computations were also performed for 

three Prandtl numbers of 0.25 and 0.5 (binary 

gas mixtures) and 1 (vapors), for the widest 

cavity size, φ = 45. In tab. 3, the numerical 

results of these computations are collected 

and compared with those for Pr = 0.72. It can 

Pr Ra Nu1 Nu2 

0.25 

103 

106 

108 

1.97 

3.67 

8.93 

3.00 

6.96 

18.50 

0.50 

103 

106 

108 

1.97 

3.72 

9.24 

3.00 

7.12 

18.17 

0.72 

103 

106 

108 

1.97 

3.73 

9.27 

3.00 

7.17 

18.35 

1 

103 

106 

108 

1.97 

3.73 

9.22 

3.00 

7.20 

18.46 

Figure 7. Variation of the minimum Nusselt 
number with the modified Rayleigh number for 
the three aperture angles 15º, 30º, and 45º (Solid 

filled points represent results for Ra = Racrit) 

Figure 8. Variation of the mean Nusselt number 
with the modified Rayleigh number for the three 

aperture angles 15º, 30º, and 45º (Solid filled 
points represent results for Ra = Racrit) 

Table 3. Effect of the Prandtl number on the heat 

transfer features for the widest triangular cavity 
with φ = 45º at Ra = 103, 106, and 108 
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be recognized that the minimum and average Nusselt numbers are almost invariant with 

Prandtl number, producing maximum deviations (with respect to the baseline value for 

Pr = 0.72) of 3.8% for the relatively low Pr = 0.25 case. Therefore, results of this paper can 

be safely used by those analysts that employ binary mixtures of gases as working fluids for 

cooling. 

Conclusions 

In this paper the problem of natural convection in a right-angled triangular cavity 

filled with air has been analyzed from the perspective of thermal boundary conditions. A 

prescribed heat flux was imposed to the vertical wall, a prescribed cold temperature was 

assigned at the inclined wall and the upper horizontal wall was assumed thermally insulat-

ed. Using the finite element method, the analysis was performed for height-based modified 

Rayleigh numbers that range from a low Ra = 0 (pure conduction) to a high Ra = 109 (vig-

orous natural convection) in conjunction with the three aperture angles of 45º, 30º, and 15º. 

The numerical computations were channeled through the determination of the minimum 

Nusselt number, Nu1, and a mean Nusselt number, Nu2, along the hot vertical wall, both are 

based on the maximum and mean temperatures along the hot vertical wall, respectively.  

The following major conclusions are drawn from the detailed analysis of the nu-

merical results. 

 For all suitable combinations of the height-based modified Rayleigh number and aper-

ture angle, as expected the maximum temperature occurs always at the upper edge of 

the heated vertical wall. 

 A critical modified Rayleigh number exists that marks the threshold between the con-

duction mode and the natural convection mode. The value of the critical Rayleigh num-

ber decreases for higher aperture angles. 

 For all configurations Nu2 increases with increments in Rayleigh number, i. e., the 

mean temperature along the hot wall decreases with Rayleigh number. 

 For all configurations Nu1 increases with increments in Rayleigh number when 

Ra > Racrit, whereas Nu1 decreases with Rayleigh number for Ra < Racrit. This means 

that a heat transfer deterioration surfaces up with increasing values of Rayleigh number 

in the low Rayleigh range (Ra < Racrit), i. e., higher values of the maximum wall tem-

perature are attained. 

 For low modified Rayleigh numbers the thermal performance (Nu1 and Nu2) improves 

for lower aperture angles. This behavior must be attributed to an increased conductive 

heat transfer related to the small separation between the hot vertical and cold inclined 

walls. 

 In contrast, for high modified Rayleigh numbers, the thermal performance is merely 

equal for the three aperture angles studied. Then, the same value of the maximum or 

critical temperature along the hot vertical wall is prevalent. 

 

Nomenclature 

g  – gravitational acceleration, [ms2] 
k  – thermal conductivity, [Wm1K1] 
L  – length of wall, [m] 
Nu  – Nusselt number, {= qHLH/[k(TTC)]} [] 
Nu1  – minimum Nusselt number along the hot  
    vertical wall 

Nu2  – mean Nusselt number along the hot vertical 
   wall 

P  – pressure, [Pa] 
Pr  – Prandtl number, [= υ/α] [] 
p  – dimensionless pressure, p/(ρVc

2) [] 
q  – heat flux, [Wm2] 
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Ra  – modified Rayleigh number, 

   [= gqHLH
4/(αυkTC)] [] 

s  – distance along a wall measured from the 
   bottom vertex, [m] 

T  – absolute temperature, [K] 
ΔT  – temperature differences in the fluid, [K] 
U  – dimensionless velocity, (= u/Vc) [] 
u  – velocity, [ms1] 
Vc  – characteristic velocity, eq. (10), [ms1] 
X, Y  – dimensionless Cartesian co-ordinates, 

    x/LH, y/LH, [] 
x, y  – Cartesian co-ordinates, [m] 

Greek symbols 

  – thermal diffusivity, [m2s1] 
  – coefficient of volumetric thermal  
             expansion, [K1] 

θ  – dimensionless temperature,  
    [= (TTC)/(qH·LH/k)] [] 
μ  – dynamic viscosity, [kgm1s1] 
υ  – kinematic viscosity, [m2s1] 
ρ  – density, [kgm3] 
φ  – aperture angle, [º] 

Subscripts 

A  – adiabatic 
C  – cold 
cri  – critical 
H  – hot 
w  – wall surface 
x, y  – components in the x- and y-directions 
X, Y  – dimensionless x, y 
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