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A numerical analysis is made to study magnetohydrodynamic flow and heat 
transfer for Maxwell fluid over an exponentially stretching sheet through a por-
ous medium in the presence of non-uniform heat source/sink with variable ther-
mal conductivity. The thermal conductivity is assumed to vary as a linear func-
tion of temperature. The governing partial differential equations are transformed 
into ordinary differential equations using similarity transformations and then 
solved numerically using implicit finite difference scheme known as Keller-box 
method. The effect of the governing parameters on the flow field, skin friction 
coefficient, wall temperature gradient (in prescribed surface temperature case), 
wall temperature (in prescribed heat flux case) and Nusselt number are com-
puted, analyzed and discussed through graphs and tables. The present results are 
found to be in excellent agreement with previously published work of El Aziz and 
Magyari and Keller on various special cases of the problem. 
Keywords: Maxwell fluid, porous medium, exponentially stretching sheet,  

non-uniform heat source/sink, variable thermal conductivity 

Introduction  

The flow of a non-Newtonian fluid over a stretching sheet has attracted considerable 
attention during the last two decades due to its vast applications in industrial manufacturing 
such as hot rolling, wire drawing, glass fiber and paper production, drawing of plastic films, 
polymer extrusion of plastic sheets and manufacturing of polymeric sheets. For the production 
of glass fiber/plastic sheets, thermo-fluid problem involves significant heat transfer between 
the sheet and the surrounding fluid. Sheet production process starts solidifying molten poly-
mers as soon as it exits from the slit die. The sheet is then collected by a wind-up roll upon 
solidification. To improve the mechanical properties of the fiber/plastic sheet we use two 
ways, the extensibility of the sheet and the rate of cooling. 

Many researchers [1-4] investigated the steady boundary layer flow of an incom-
pressible viscous fluid over a linearly stretching plate and gave an exact similarity solution in 
a closed analytical form under various physical conditions. Vajravelu [5] and Cortell [6, 7] 
investigated the boundary layer flows over a non-linear stretching sheet. Sajid et al. [8] found 
the analytic solution for axisymmetric flow over a non-linear stretching sheet. Akyildiz and 
Siginer [9] have investigated the flow and heat transfer over a non-linear stretching sheet by 
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using Legendre spectral method. Van Gorder and Vajravelu [10] have given the flow geome-
tries and the similarity solutions of the boundary layer equations for a non-linearly stretching 
sheet. The similarity solutions of the boundary layer equations for non-linearly stretching 
sheet have been found by Akyildiz et al. [11]. Kumaran and Ramanaiah [12] analyzed the 
problem of heat transfer by taking quadratic stretching sheet.  

Magyari and Keller [13] were the first to consider the boundary layer flow due to an 
exponentially stretching sheet and they also studied the heat transfer in the flow by taking an 
exponentially varying wall temperature. Elbashbeshy [14] numerically examined the flow and 
heat transfer over an exponentially stretching surface considering wall mass suction. Khan 
and Sanjayanand [15] investigated the flow of viscoelastic fluid and heat transfer over an ex-
ponentially stretching sheet with viscous dissipation effect. Recently Mukhopadhyay and 
Gorla [16] studied the effects of partial slip on boundary layer flow past a permeable expo-
nential stretching sheet. 

Water is widely used fluid as the cooling 
medium, but for a better rate of cooling we 
have to control its viscoelasticity by using po-
lymeric additives. If the fluid is electrically 
conducting, we can apply transverse magnetic 
field which alter the flow kinematics. Many re-
searchers [4, 17, 18] have analyzed the influ-
ence of transverse magnetic field on the flow 
and heat transfer in an electrically conducting 
viscoelastic fluid over a linear stretching sheet. 
Singh and Agarwal [19] studied the effect of 
magnetic field on heat transfer for a second 
grade fluid over an exponentially stretching 

sheet with thermal radiation and elastic deformation.  
In the rate of cooling, porous medium also plays a vital role. Eldabe and Mohamed 

[20] have obtained the solution for both heat and mass transfer in a magnetohydrodynamic 
(MHD) flow for a non-Newtonian fluid with a heat source over an accelerating surface 
through porous medium. The solution for the flow problem and heat transfer in a saturated 
porous medium has been obtained by Vajravelu [21]. Subhas and Veena [22] have studied the 
problem of viscoelastic fluid flow and heat transfer in a porous medium over a linear stret-
ching sheet. 

The rate of cooling also depends on the physical properties of the cooling medium 
but practical situation demands for physical properties with variable characteristics. Thermal 
conductivity is one of such properties, which is assumed to vary linearly with temperature. 
Some researchers [23-25] have studied the effect of variable thermal conductivity with tem-
perature dependent heat source/sink. Eldahab and Aziz [26] have included the effect of non-
uniform heat source with suction/bowling for viscous fluid only. 

In recent years, flows of viscoelastic fluids over a linearly or exponentially stret-
ching sheet (with and without heat transfer involved) have also been studied by some re-
searchers. The theoretical studies cited above are important but are confined mainly to po-
lymer industries due to the inherited shortcomings. Walters’ B model and Second-grade 
model which are used in most studies are known to be good for weakly elastic fluids subject 
to slowly varying flow but the shortcoming for these fluids are that they violate certain rules 
of thermodynamics [27] and the work cited above for these fluids are based on boundary 

Figure 1. Physical configuration of the problem
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layer theory which is still insufficient for non-Newtonian fluids. Obviously we use more 
realistic fluid to make the theoretical results to be of industrial significance. Maxwell model 
is one of such a fluid of industrial importance. Aliakbar et al. [28] investigate the influence 
of thermal radiation on MHD flow and heat transfer of Maxwellian fluid over a linear stret-
ching sheet, but no attention has been made so far for Maxwellian fluid over an exponential-
ly stretching sheet with variable thermal conductivity through porous medium as so far. In 
this paper we study the MHD flow and heat transfer for Maxwell fluid over an exponential-
ly stretching sheet with variable thermal conductivity (Prandtl number is also varies with in 
the thermal boundary layer).  

Basic equations 

Flow equations 

Consider, the steady 2-D boundary layer flow of an electrically conducting, viscoe-
lastic fluid past a stretching sheet coinciding with the plane y = 0 (fig. 1) with the following 
two assumptions (for details see [13, 29]). 
– The boundary sheet is assumed to be moving axially with a velocity of exponential order 

in the axial direction and generating the boundary layer type of flow. 
– The normal stress is of the same order of magnitude as that of the shear stress, in addition 

to the usual boundary layer approximations. 
Partha et al. [30] investigated the effect of viscous dissipation on the mixed con-

vection heat transfer from an exponentially stretching surface. Nadeem et al. [31] studied 
the boundary layer flow of nanofluid and Nadeem and Lee [32] studied the boundary layer 
flow of Jeffrey fluid over an exponentially stretching surface. Boundary layer theory is more 
appropriate for Maxwell fluids in comparison to other viscoelastic fluids [28]. The boundary 
layer equations of conservation of mass and momentum for the MHD flow of an incompres-
sible Maxwell fluid over an exponentially stretching sheet in usual notation can be written 
as [28]: 

 0u v
x y

∂ ∂
+

∂ ∂
=  (1) 

   
2 2 2 2 2

2 2
2 2 2 2u u

x y
u u u u B uu v u v uv u

x y ky x y
σ νν λ

ρ
∂ ∂
∂ ∂

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
+ = − + + − −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ′∂ ∂∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

 (2) 

where u and v are velocity components in x- and y-direction, respectively, ν – the coefficient 
of kinematic viscosity, σ – the electrical conductivity of the fluid, ρ – the fluid density, B – the 
strength of magnetic field (applied in the transverse direction), and k' – the permeability of the 
porous medium. Here the magnetic Reynolds number is taken small and the induced magnetic 
field is neglected. 

The boundary conditions for the flow are: 

 0( ) ex l
wu u x u= = ,  ν = 0  at  y = 0 and  u = 0 at y → ∞ (3) 

where u0 is a constant and l is the reference length. 
Introducing the similarity transformation, to convert momentum equation from PDE 

to ODE: 
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 2

0( , ) 2 ( , )ex lx y lu F xψ ν η=   (4) 

where ψ is the stream function, F – the dimensionless stream function and: 

 20 e
2

x lu
y

l
η

ν
=  (5) 

The velocity components u and v in terms of stream function ψ(x, y) are u = ∂ψ/∂y  
and ν = ∂ψ/∂y, which satisfy the continuity eq. (1).  

By using eqs. (4) and (5) in eq. (2), we do not find self-similar solution for the prob-
lem so we obtain local-similar solution of the problem by introducing a pseudo-similarity va-
riable. In order to obtain local-similarity solution F(x, η) should be assumed as f(η) (for detail 
see [29]). We get a third order non-linear ODE: 

 
2

2 * 32( ) 2( ) 3 2 ( )
2

f ff ff k f ff f f f M P
⎡ ⎤′′′

′ ′′ ′ ′ ′′ ′′′ ′− + + − = − +⎢ ⎥
⎣ ⎦

 (6) 

where k* = λu0ex/l/l is the local viscoelastic parameter, P = νl/k'u0ex/l is the local porosity pa-
rameter, and M = σB2l/ρu0ex/l is the local magnetic number. 

The boundary conditions of flow in terms of f are: 

 f = 0,    f' = 1    at    η = 0    and    f' = 0    as    η → ∞ (7) 

It should be pointed out that for k* = 0 corresponds to that of Newtonian fluid. 
The velocity components in terms of f are given as: 

 0 2
0

2
e and e

2
x l x llu

u u f v f
l

ν
′= = −  (8) 

Heat transfer equation 

The governing boundary layer energy equation with variable thermal conductivity 
and non-uniform heat source/sink Q is given by: 

 p
T T
x y

Tc u v k Q
y y

ρ ∂ ∂
∂ ∂

⎛ ⎞⎛ ⎞ ∂ ∂
 + = +⎜ ⎟⎜ ⎟ ∂ ∂⎝ ⎠ ⎝ ⎠

 (9) 

where T is the temperature of the fluid, and cp – the specific heat at constant pressure. Consid-
er the thermal conductivity k varies linearly [23-25] with temperature and it is of the form: 

 ( )
( )1 in PST case

1 g in PHF case
k
kk

ε η
ε η
θ⎡ ⎤

⎣ ⎦∞
⎡ ⎤⎣ ⎦∞

+    
+    

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
 (10) 

where ε is a small parameter known as variable thermal conductivity parameter which is nega-
tive for solids and liquids and positive for gases [33], k∞ – the thermal conductivity of the flu-
id far away from the sheet, θ(η) – a dimensionless temperature in prescribed surface tempera-
ture (PST) case, and g(η) – the non-dimensional temperature in prescribed heat flux (PHF) 
case. The non-uniform heat source/sink Q [23] is modeled as: 
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 (11) 

where A* and B* are the coefficient of space and temperature dependent heat source/sink re-
spectively, Tw is the wall temperature, and T∞ – the temperature outside the dynamic region. 
Here A* > 0, B* > 0 shows internal heat generation and A* < 0, B* < 0 corresponds to internal 
heat absorption. 

For solving energy eq. (9) we use two types of thermal boundary conditions. 

(1) Prescribed surface temperature case 

The boundary conditions in PST case is of the form: 

 T = Tw = T∞ + A1eax/2l at y = 0 and T → T∞ as y → 0   (12) 

where A1 and a are constants depends on the thermal properties of the liquid. θ(η) is a dimen-
sionless temperature in PST case as: 

 ( )
w

T T
T T

θ η ∞

∞

−
=

−
 (13) 

where  2
1e ( )ax lT T A θ η∞− =  (14) 

Using eqs. (10), (11), and (13) in eq. (9), we obtain the following non-linear ODE by 
taking a = 2: 

 2 * *(1 ) Pr 2Pr (1 )( ) 0f f A f Bεθ θ θ θ εθ εθ θ∞ ∞′′ ′ ′ ′ ′+ +  −  + + + + =  (15) 

With the boundary conditions: 

 (0) 1, ( ) 0θ θ= ∞ →  (16) 

where Pr∞ = μcp/k∞ is the ambient Prandtl number and µ – the coefficient of viscosity. From 
the definition of Prandtl number, it is clear that this is a function of viscosity, thermal conduc-
tivity, and specific heat. In this paper thermal conductivity vary across the boundary layer, so 
Prandtl number also varies with in the boundary layer. The assumption of constant Prandtl 
number inside the boundary layer may produce unrealistic results [34-37]. Therefore, it must 
be treated as variable rather than a constant with in the boundary layer. Prandtl number related 
to the variable thermal conductivity is defined by: 

Pr pc
k

μ 
=  

and in PST case 
[ ]

PrPr
1 ( ) 1 ( )

pc
k

μ
εθ η εθ η

∞

∞

 
= =

+ +
 

 [ ]Pr Pr 1 . ( )ε θ η∞ = +  (17) 

From eq. (17) it is clear that for small ε(ε → 0), Pr → Pr∞ and for η → ∞, θ(η) be-
comes zero therefore Pr = Pr∞. In light of the discussion by using eq. (17), the heat equation in 
PST case can be rewritten as: 
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 2 * *(1 ) (1 )Pr 2(1 )Pr (1 )( ) 0f f A f Bεθ θ εθ θ εθ θ εθ εθ θ′′ ′ ′ ′ ′+ + +  − +  + + + + =  (18) 

(2) Prescribed heat flux case 

The boundary conditions in PHF case is of the form: 

 
1

2
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b x
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y

k u A y T T y
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⎜ ⎟
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∞ ∞
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where constants A2 and b depends on the thermal properties of fluid. The non-dimensional 
temperature g(η) in PHF case is defined as: 

 
22

0
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2 ebx l

T T
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η
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∞

∞

−
=  (20) 

Using eqs. (10), (11), and (20) in eq. (9), we obtain energy equation in terms of g(η) 
as by taking b = 2: 

 2 * *(1 ) Pr 2Pr (1 )( ) 0g g fg f g g g A f B gε ε ε∞ ∞′′ ′ ′ ′ ′+ +  −  + + + + =  (21) 

With the boundary conditions: 

 1(0) ; ( ) 0
1

g g
ε

′ = − ∞ →
+

 (22) 

As from PST case, the heat equation in PHF case in terms of variable Prandtl num-
ber is: 

 2 * *(1 ) (1 )Pr 2(1 )Pr (1 )( ) 0g g g fg g f g g g A f B gε ε ε ε ε′′ ′ ′ ′ ′+ + +  − +  + + + + =  (23) 

Numerical procedure 

The system of non-linear ODE (6) and (18) together with the boundary conditions 
(7) and (16) for the flow and heat transfer in PST case are solved numerically by using impli-
cit finite difference method which is also known as Keller-box method [38, 39]. The numeri-
cal solutions are obtained using the following steps: 
– reducing equations (6) and (18) to a system of first order equations; 
– central differences are used to write the difference equations as: 
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 (24) 
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with the boundary conditions: 

 1 11 1
0 00, 1, 0, 1, and 0

2 2
n n

n
f ff ff

h h
θ θ− +− −−

= = = = =  (26) 

where the variables with bar are given arbi-
trary values from the previous steps: 
– linearizing the algebraic equations by 

Newton’s method, and writing them in 
matrix vector form; 

– linear systems of equations are solved 
by Gauss-elimination technique. 
To ensure the convergence of the nu-

merical solution, numerical procedure have 
been applied in order to choose a suitable 
grid size Δη = 0.001, a suitable η range and 
a direct Gauss elimination technique with 
Newton’s method is used in computer pro-
gram to obtain solutions of these difference 
equations. Similarly we can solve eqs. (6) 
and (23) together with the boundary condi-
tions (7) and (22) for the flow and the heat 
transfer in PHF case. The solutions are ob-
tained with an error tolerance of 10–6 in all 
the cases. 

Results and discussions  

To analyze the results, numerical computation has been carried out using the method 
described in the previous section for values of the local magnetic parameter M, local porosity 
parameter P, local viscoelastic parameter k, variable thermal conductivity parameter ε, varia-
ble Prandtl number, space dependent heat source/sink parameter A*, and time dependent heat 
source/sink parameter B*. For illustrations of the results numerical values are plotted in figs. 
2-16. Results of skin friction coefficient –f"(0) for selected values of local magnetic parameter 
M, local porosity parameter P, and local viscoelastic parameter k are listed in tab. 1. Results 
of –θ'(0) in PST case and g(0) in PHF case for selected values of local magnetic parameter M, 
local porosity parameter P, local viscoelastic parameter k, variable thermal conductivity pa-
rameter ε, variable Prandtl number, space dependent heat source/sink parameter A*, and time 
dependent heat source/sink parameter B* are listed in tab. 2. In order to verify the accuracy of 
the present results, we have compared our results to those of previous works for some special 
cases. Table 3 presents a comparison of –θ'(0) in PST case among the results of El-Aziz [40] 
and Magyari et al. [13] and in the present study for different values of Pr∞. 

Table 1. Values of skin friction –f"(0) for different 
values of M, P, and k 

M P k –f"(0) 

0.0

0.5 0.1 

1.67091202 

0.5 1.95296741 

5 3.58074703 

10 4.77728775 

0.5 

0.0

0.1 

1.67091232 

0.5 1.95296741 

1.0 2.19466884 

2.0 2.61135409 

0.5 0.5 

0.0 1.91259405 

0.2 1.99244782 

0.6 2.14273251 

0.9 2.24854579 
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Table 2. Values of wall temperature gradient {-θ'(0)} in PST case and wall temperature {g(0)} in PHF 
case for different values of physical parameters 

Table 3. Comparison of – θ'(0) among El-Aziz [40], Magyari and Keller [13] and the present results in 
the PST case for different values of Pr∞ 

M P k ε Pr A* B* –θ'(0) g(0) 
0.0 

0.5 0.1 –0.1 3.0 0.05 0.05 

2.38673459 0.47741446 
0.5 2.30290418 0.49387801 
5.0 1.80747360 0.62236517 
10 1.49214410 0.74815032 

0.5 

0.0 

0.1 –0.1 3.0 0.05 0.05 

2.38673459 0.47741446 
0.5 2.30290418 0.49387801 
1.0 2.22854295 0.50952915 
2.0 2.09929318 0.53937418 

0.5 0.5 

0.0 

–0.1 3.0 0.05 0.05 

2.31272027 0.49188060 
0.2 2.29333904 0.50154144 
0.6 2.25729697 0.61051502 
0.9 2.23226802 0.52697411 

0.5 0.5 0.1 

–0.5 

3.0 0.05 0.05 

2.99837111 0.74701061 
–0.1 2.30290418 0.49387800 
0.0 2.21991332 0.45274802 
0.1 2.15296643 0.41764473 
0.5 1.97942131 0.31805478 

0.5 0.5 0.1 –0.1 

3.0

0.05 0.05 

2.30290418 0.49387798 
4.0 2.75099817 0.41478409 
5.0 3.14349104 0.36366719 
7.0 3.82088948 0.29976386 

0.5 0.5 0.1 –0.1 3.0 

–0.5

0.05 

2.48226132 0.46317934 
–0.2 2.38433515 0.47890095 
0.0 2.31917772 0.49071709 
0.2 2.25412152 0.50396457 
0.5 2.15672683 0.52806183 

0.5 0.5 0.1 –0.1 3.0 0.05 

–0.5 2.45883317 0.41914169 
–0.2 2.37648955 0.45991588 
0.0 2.31806142 0.48708677 
0.2 2.25580715 0.51424809 
0.5 2.15060672 0.55497202 

k M Pr∞ Magyari and Keller. [13] El-Aziz [40] Present results 

0 0 

1 0.954782 0.954785 0.95478372 
2 1.47148921 
3 1.869075 1.869074 1.86907634 
5 2.500135 2.500132 2.50013481 
10 3.660379 3.660372 3.66037773 

0 1 1 0.53124395 



Singh, V.: MHD Flow and Heat Transfer for Maxwell Fluid … 
THERMAL SCIENCE, Year 2014, Vol. 18, Suppl. 2, pp. S599-S615 S607 

Figures 2(a) and 2(b) show the profiles of velocity components u and v along x- and 
y-directions with in the viscoelastic boundary layer for different values of the local magnetic 
parameter M. It is clear from these figures that an increase in the local magnetic parameter M 
decreases stream-wise velocity component, u, and transverse velocity component, v, through-
out the boundary layer flow field. It is because the application of transverse magnetic field 
will result in a resistive type force (Lorentz force which oppose the flow), similar to a drag 
force which tends to resist the fluid flow and thus reducing its velocity. The effect of local 
magnetic parameter M on the temperature profiles in both PST and PHF cases for the fluid is 
shown in figs. 3(a) and 3(b), respectively. It is evident from these figures that increase in the 
local magnetic parameter M also increases temperature profiles in both cases. This is due to 
the fact that Lorentz force tends to resist the flow and this resistance offered to the flow is re-
sponsible in broadening the thermal boundary layer thickness. 

P = 0.5, k = 0.1, ε = –0.1, Pr = 3.0, A* = 0.05, B* = 0.05 

 
Figure 2. The effect of local magnetic number M on the u and v velocity components  
(for color image see journal web-site) 

 
Figure 3. The effect of local magnetic number M on the temperature profiles in (a) PST and (b) PHF 
cases (for color image see journal web-site) 

Figures 4(a) and 4(b) demonstrate the effect of local porosity parameter P on the ve-
locity components, u and v. Like local magnetic parameter M, an increase in the local porosity 
parameter P the velocity components at any point decreases and temperature profiles in PST 
and PHF cases increase which is shown from figs. 5(a) and 5(b). We see that the non-di-
mensional wall temperature is unity in PST case and other than unity in PHF case for all pa-
rameters because of its differing boundary conditions. 
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M = 0.5, k= 0.1, ε = –0.1, Pr = 3.0, A* = 0.05, B* = 0.05 

 
Figure 4. The effect of local porosity parameter P on the u and v velocity components  
(for color image see journal web-site) 

 
Figure 5. The effect of local porosity parameter P on the temperature profiles in (a) PST and (b) PHF 
cases (for color image see journal web-site) 

Figures 6(a) and 6(b) show the effect of local viscoelastic parameter k on the veloci-
ty profiles above the sheet. An increase in the local viscoelastic parameter k is seen to de-
crease the velocity of the fluid element which is quite obvious. A decrease in the velocity 
component along x-direction means that the amount of heat transferred from the sheet to the 
fluid and a decrease in the velocity component along y-direction means the amount of fresh 
fluid which is extracted from the low-temperature region outside the boundary layer and di-
rected towards sheet is reduced thus decreasing the amount of heat transfer.  

The two effects are in the same directions reinforcing each other. The effect of local 
viscoelastic parameter k on temperature profiles in PST and PHF cases are shown in figs. 7(a) 
and 7(b), respectively. It is apparent from these figures the elasticity number increase fluid 
temperature at any given point above the sheet. 

The effect of variable Prandtl number on temperature profiles in PST and PHF cases 
illustrate from figs. 8(a) and 8(b), respectively. In both cases, an increase in the value of vari-
able Prandtl number is seen to decrease the temperature profiles because the thermal boundary 
layer becomes thinner to the large variable Prandtl number. The increase of variable Prandtl 
number means slow rate of thermal diffusion. Figures 9(a) and 9(b) demonstrate the effect of 
variable thermal conductivity parameter ε on the temperature profiles in PST and PHF cases, 
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respectively. In PST case, after increasing the value of variable thermal conductivity parame-
ter ε temperature profiles also increases throughout the boundary layer but in PHF case, tem-
perature profile decreases for small values of ε. 

M = 0.5, P = 0.5, ε = –0.1, Pr = 3.0, A* = 0.05, B* = 0.05 

 
Figure 6. The effect of local viscoelastic number k on the u and v velocity components  
(for color image see journal web-site) 

 
Figure 7. The effect of local viscoelastic number k on the temperature profiles in (a) PST and (b) PHF 
cases (for color image see journal web-site) 

M = 0.5, P = 0.5, ε = –0.1, k = 0.1, A* = 0.05, B* = 0.05 

 
Figure 8. The effect of variable Prandtl number on the temperature profiles in (a) PST and (b) PHF 
cases (for color image see journal web-site) 
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M = 0.5, P = 0.5, k = 0.1, Pr = 3.0, A* = 0.05, B* = 0.05 

 
Figure 9. The effect of variable thermal conductivity parameter ε on the temperature profiles in  
(a) PST and (b) PHF cases (for color image see journal web-site) 

Figures 10(a) and 10(b) show the graphical representation of temperature profiles 
with distance η for various values of space dependent heat source/sink parameter A* in PST 
and PHF cases, respectively. It is apparent from these figures in the case of heat source  
(A* > 0), the energy generated in thermal boundary layer causes the temperature profiles to in-
crease with an increase in the value of A*. On the other hand, for A* < 0 (heat sink) the tem-
perature θ(η) and g(η) decreases with increasing the strength of the heat absorption. The effect 
of time dependent heat source/sink parameter B* in PST and PHF cases for fluid is drawn in 
figs. 11(a) and 11(b), respectively. Like space dependent heat source/sink parameter A* the 
temperature profile increases by increasing the values of time dependent heat source parame-
ter B* and decreasing the temperature profiles with increasing the strength of heat absorption. 

M = 0.5, P = 0.5, ε = –0.1, Pr = 3.0, k = 0.1, B* = 0.05 

 
Figure 10. The effect of space dependent heat source/sink parameter A* on the temperature profiles in 
(a) PST and (b) PHF cases (for color image see journal web-site) 

Figures 12(a) and 12(b) demonstrate the graph of non-dimensional skin friction pa-
rameter Cfx vs. local viscoelastic parameter k for different values of the local magnetic parame-
ter M and local porosity parameter P, respectively. From these figures it is clear that local vis-
coelastic parameter k leads to the decrease of skin friction parameter Cfx. This is because of 
that elasticity property in viscoelastic fluid reduces the frictional force. This result  
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M = 0.5, P = 0.5, ε = –0.1, Pr = 3.0, k = 0.1, A* = 0.05 

 
Figure 11. The effect of time dependent heat source/sink parameter B* on the temperature profiles in 
(a) PST and (b) PHF cases (for color image see journal web-site) 

 
Figure 12. Variation of skin friction parameter Cfx vs. k for different values of (a) local magnetic 
number M with P = 0.5, and (b) local porosity parameter P with M = 0.5  
(for color image see journal web-site) 

may have great significance in polymer proceeding industry, as the choice of higher order 
viscoelastic fluid would reduce the power consumption for stretching the boundary sheet. 
We obtain the similar effect of local magnetic parameter M and local porosity parameter P 
on the skin friction coefficient as reduction of viscosity of the fluid in the decrease of fric-
tional force or drag force. 

The variations in Nusselt number, in terms of –θ'(0) in PST case and 1/g(0) in 
PHF case, with local viscoelastic parameter k for different values of local magnetic para-
meter M are presented in figs. 13(a) and 13(b), respectively. It is remarkable from these 
figures that increase in the local magnetic parameter M decreases Nusselt number in both 
cases. Moreover for given local magnetic parameter M the Nusselt number decreases with 
increasing the local viscoelastic parameter k. This is due to the fact that a larger local vis-
coelastic parameter k indicates more viscous fluid which decreases the fluid velocity and 
increase the fluid temperature.  

Similarly, figs. 14(a) and 14(b) depict the variation of Nusselt number, with local 
viscoelastic parameter k for selected value of local porosity parameter P in PST and PHF cas-
es, respectively. Like local magnetic parameter M, we get similar results for local porosity pa-
rameter P in both cases. The effects of local viscoelastic parameter k and variable Prandtl 
number on the Nusselt number are shown in figs. 15(a) and 15(b) for PST and PHF cases, re- 
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P = 0.5, A* = B* = ε = 0, Pr = 3.0 

 
Figure 13. Variation of Nusselt number vs. k for different values of local magnetic number M (a) –θ'(0) 
in (a) PST case and (b) 1/g(0) in PHF case (for color image see journal web-site) 

M = 0.5, A* = B* = ε = 0, Pr = 3.0 

 
Figure 14. Variation of Nusselt number vs. k for different values of local porosity parameter P  
(a) –θ'(0) in PST case and (b) 1/g(0) in PHF case (for color image see journal web-site) 

M = 0.5, P = 0.5, A* = B* = ε = 0 

 
Figure 15. Variation of Nusselt number vs. k for different values of variable Prandtl number  
(a) –θ'(0) in PST case and (b) 1/g(0) in PHF case (for color image see journal web-site) 
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spectively. The effect of increment in variable Prandtl number is observed to increase the 
Nusselt number in both cases. This is because that fluid with larger variable Prandtl number 
has larger heat capacity, and thus enhances heat transfer. From these figures we also find that 
at given values of variable Prandtl number the values of –θ'(0) in PST case and 1/g(0) in PHF 
case increasing with increasing local viscoelastic parameter k. 

Figures 16(a) and 16(b) display the variation of Nusselt number with local viscoelas-
tic parameter k at the selected values of variable thermal conductivity parameter ε for PST and 
PHF cases, respectively. The effect of increasing variable thermal conductivity parameter ε is 
observed to decrease the Nusselt number in PST and PHF cases. The values of –θ'(0) in PST 
case and 1/g(0) in PHF case for a given values of variable thermal conductivity parameter ε, 
increasing with increasing local viscoelastic parameter k. 

M = 0.5, A* = B* = 0, P = 0.5, Pr = 3.0 

 
Figure 16. Variation of Nusselt number vs. k for different values of variable thermal conductivity 
parameter ε (a) –θ'(0) in PST case and (b) 1/g(0) in PHF case (for color image see journal web-site) 

Conclusions 

The important findings of this work are listed below. 
● The effect of local magnetic parameter M and local porosity parameter P is found to de-

crease velocity and Nusselt number but increases the temperature profiles for both PST and 
PHF cases. 

● Skin friction coefficient increases with local magnetic parameter M and local porosity pa-
rameter P. 

● An increase in the local viscoelastic parameter k will produce a rise in the temperature pro-
files and decrease the velocity and Nusselt number for both PST and PHF cases. 

● The effect of increasing the value of variable Prandtl number decreases the temperature of 
the fluid above the sheet and increases the Nusselt number for both PST and PHF cases. 

● The increase in the variable thermal conductivity parameter ε increases the temperature of 
the fluid medium above the sheet in PST case but it behaves opposite in PHF case for small 
values of variable thermal conductivity parameter ε. The Nusselt number decreases for 
both the cases. 

● The presence of space dependent heat source parameter (A* > 0) or, time dependent heat 
source parameter (B* > 0) causes an increase in the temperature profile but an opposite 
trend is observed for the case of space dependent heat sink parameter (A* < 0) or, time de-
pendent heat sink parameter (B* < 0). 



Singh, V.: MHD Flow and Heat Transfer for Maxwell Fluid … 
S614 THERMAL SCIENCE, Year 2014, Vol. 18, Suppl. 2, pp. S599-S615 

 
● Comparison of results of PST and PHF boundary conditions reveals that PHF is better 

suited for effective cooling of the stretching sheet. 
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