NEW MULTI-SOLITON SOLUTIONS FOR GENERALIZED BURGERS-HUXLEY EQUATION

by

Jun LIU^{a*}, Hong-Ying LUO^a, Gui MU^a, Zhengde DAI^b, and Xi LIU^c

^a College of Mathematics and Information Science, Qujing Normal University, Qujing, China
 ^b School of Mathematics and Statics, Yunnan University, Kunming, China
 ^c School of Information Science and Engineering, Yunnan University, Kunmming, China

Short paper DOI: 10.2298/TSCI1305486L

The double exp-function method is used to obtain a two-soliton solution of the generalized Burgers-Huxley equation. The wave has two different velocities and two different frequencies.

Key words: solitary solution, non-linear evolving equation, double exp-function method

Introduction

The Burgers-Huxley equation is encountered in the description of many non-linear wave phenomena [1]. It can be written [1]:

$$u_{t} + \alpha u^{n} u_{x} - u_{xx} - \beta u(u^{n} - \gamma)(1 - u^{n}) = 0$$
(1)

where α , β , γ , and n are constants.

This equation can be solved by various analytical methods, such as the variational iteration method [2], the homotopy perturbation method [3-5], and the exp-function method [6, 7]. A complete review on various analytical method is available in [8, 9]. In this paper the double exp-function method [10] is adopted to elucidate the different velocities and different frequencies in the travelling wave.

Double exp-function method

The multiple exp-function method was first proposed in [10], and the double exp-function method was used to search for double-soliton solutions in [11]. Assume that the solution of eq. (1) can be expressed in the form:

$$u = \frac{a_1 e^{\xi} + a_2 e^{-\xi} + a_5 + a_3 e^{\eta} + a_4 e^{-\eta}}{k_1 e^{\xi} + k_2 e^{-\xi} + k_5 + k_3 e^{\eta} + k_4 e^{-\eta}}$$
(2)

where $\xi = c_1 x + c_2 t$, and $\eta = c_3 x + c_4 t$.

^{*} Corresponding author; e-mail: liujunxei@126.com

Substituting eq. (2) into eq. (1) and equating all coefficients of $e^{(i\xi+j\eta)}$ to zero, we have a set of algebraic equations. Solving the resulting system with the aid of some a mathematical software, we can identify the constants in eq. (2).

Case 1. One-soliton solution

$$u(x,t) = \frac{a_5}{k_1 e^{\xi} + a_5 + k_4 e^{-\xi}}$$
(3)

where k_1 , k_4 , and a_5 are free parameters, and:

$$\xi = \frac{\alpha}{4} - \frac{\sqrt{\alpha^2 + 8\beta}}{4} x + c_2 t$$

Case 2. Two-soliton solution

$$u(x,t) = \frac{\frac{sk_3k_4}{k_2}e^{\xi} + k_2e^{-\xi} + sk_3e^{\eta} + k_4e^{-\eta}}{k_1e^{\xi} + k_2e^{-\xi} + k_3e^{\eta} + k_4e^{-\eta}}$$
(4)

where

$$\xi = \left(\frac{\alpha}{4} - c_3 - \frac{\alpha \gamma}{4} + \frac{\delta}{4}\right) x + (2c_3 - \alpha) \left(\frac{\alpha}{4} - c_3 - \frac{\alpha \gamma}{4} + \frac{\delta}{4}\right) t$$

$$\eta = c_3 x + \left\{ -\frac{1}{2} \alpha c_3 - \frac{\beta}{2} - \frac{1}{2} \alpha \gamma c_3 + \frac{\beta \gamma^2}{2} + \left(\frac{1}{2} \alpha - 2c_3 - \frac{1}{2} \alpha \gamma\right) \left(\frac{\alpha}{4} - c_3 - \frac{\alpha \gamma}{4} + \frac{\delta}{4}\right) \right\} t$$

$$\delta = \sqrt{8\beta \gamma^2 - 16\beta \gamma + 8\beta + \alpha^2 \gamma^2 - 2\alpha^2 \gamma + \alpha^2}$$

Alternatively by the following transformation:

$$u = v^{\frac{1}{n}} \tag{5}$$

eq. (1) becomes:

$$vv_{t} + \alpha nv^{2}v_{x} + \left(1 - \frac{1}{n}\right)v_{x}^{2} - vv_{xx} + \beta nv^{2}(v - 1)(v - \gamma) = 0$$
(6)

By the similar solution process as above, we have:

Case 1. One-soliton solution

$$u(x,t) = \frac{\gamma k_5}{k_3 e^{\xi} + k_5} \tag{7}$$

where k_3 , and k_5 are some free parameters, and:

$$\xi = c_3 x + c_4 t$$

$$c_3 = \frac{1}{2} \left[\alpha \gamma n - \sqrt{(\alpha \gamma n)^2 + 4\beta \gamma^2 (1+n)} \right] (1+n)^{-1}$$

$$c_4 = \frac{-n\lambda \left[\beta \gamma + c_3 \alpha - \beta (1+n) \right]}{1+n}$$

Case 2. One-soliton solution

$$u(x,t) = \frac{\gamma^3 k_2^2 e^{\eta} + a_5 \gamma^2 k_2}{k_2^2 \gamma^2 e^{\eta} - a_5 (a_5 - \gamma k_5) e^{-\eta} + k_5 \gamma^2 k_2}$$

$$\eta = c_1 x + c_2 t$$

$$c_1 = \frac{1}{2} \left[\alpha \gamma n - \sqrt{(\alpha \gamma n)^2 + 4\beta \gamma^2 (1+n)} \right] (1+n)^{-1}$$

$$c_2 = \frac{-n\lambda [\beta \gamma + c_3 \alpha - \beta (1+n)]}{1+n}$$
(8)

Case 3. Two-soliton solution

$$u(x,t) = \left[\frac{\gamma k_4 (k_2 e^{-c_1 x - c_2 t} + k_4 e^{-c_3 x - c_4 t})}{k_1 k_4 e^{c_1 x + c_2 t} + k_2 k_4 e^{-c_1 x - c_2 t} + k_2 k_1 e^{c_3 x + c_4 t} + k_4^2 e^{-c_3 x - c_4 t}}\right]^{\frac{1}{n}}$$
(9)

where k_2 , k_4 , and c_3 are free parameters

$$c_1 = \frac{-2c_3(1+n) + \alpha \gamma n^2 + \sqrt{\delta}}{2(1+n)}$$

$$c_2 = -c_4 + \beta n \gamma - \frac{1}{2} \alpha \gamma n \left[\alpha \gamma n^2 - 2c_3(1+n) + \sqrt{\delta} \right] + (-\beta \lambda^2 n - \gamma n \alpha c_3)(1+n)^{-1}$$

$$\delta = \gamma^2 n^2 \left[\alpha^2 \gamma^2 n^2 + 4\beta(1+\gamma n) \right]$$

Conclusions

Using the double exp-function method, new two-solition solutions are obtained for generalized Burgers-Huxley equation. This method can also be applied to solve other types of non-linear evolution equations.

Acknowledgments

The work was supported by Chinese Natural Science Foundation Grant No. 11061028, 11361048, Yunnan NSF Grant No. 2010CD086, 2011Y012 and Qujin Normal University NSF Grant No. 2012QN016, 2010QN018.

References

- [1] Ablowitz, M. J., Clarkson, P. A., *Nonlinear Evolution Equation and Inverse Scattering*, Cambridge University Press, Cambridge, UK, 1991
- [2] Singh, J., Gupta, P. K., *et al.*, Variational Iteration Method to Solve Moving Boundary Problem with Temperature Dependent Physical Properties, *Thermal Science*, *15*, (2011), Suppl. 2, pp. S229-S239
- [3] He, J.-H., Homotopy Perturbation Method for Bifurcation of Nonlinear Problems, *Int. J. Non-linear Sci. Num. Sim, 6* (2005), 2, pp. 207-208
- [4] He, J.-H., Application of Homotopy Perturbation Method to Nonlinear Wave Equations, *Chaos, Solitons & Fractals*, 26 (2005), 3, pp. 695-700
- [5] He, J.-H., Homotopy Perturbation Method for Bifurcation of Nonlinear Problems. *International Journal of Nonlinear Sciences and Numerical Simulation*, 6 (2005), 2, pp. 207-208
- [6] He, J.-H., Wu, X.-H., Exp-Function Method of Nonlinear Wave Equations, Chaos, Solitons & Fractals, 30 (2006), 3, pp. 700-708
- [7] He, J.-H., Abdou, M. A., New Periodic Solutions for Nonlinear Evolution Equations Using Exp-Function Method, *Chaos, Solitions & Fractals, 34* (2006), pp. 1421-1429
- [8] He, J.-H., Some Asymptotic Methods for Strongly Nonlinear Equations, Int. J. Mod. Phys. B, 20 (2006), 5, pp. 1141-1199
- [9] He, J.-H., Asymptotic Methods for Solitary Solutions and Compactons, Abstract and Applied Analysis 2012, (2012), ID 916793
- [10] He, J.-H., An Elementary Introduction to Recently Developed Asymptotic Methods and Nanomechanics in Textile Engineering, *International Journal of Modern Physics B*, 22 (2008), 21, pp. 3487-3578
- [11] Dai, Z. D., et al., New Two-Soliton and Periodic Solutions to KdV Equation, Int. J. Nonlin. Sci. Num., 11 (2010), 4, pp. 237-244

Paper submitted: March 20, 2013 Paper revised: April 3, 2013 Paper accepted: May 1, 2013