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This paper focuses on applying the GDTM-Padé technique to solve the 
non-linear differential-difference equation. The bell-shaped solitary wave solu-
tion of Belov-Chaltikian lattice equation is considered. Comparison between the 
approximate solutions and the exact ones shows that this technique is an efficient 
and attractive method for solving the differential-difference equations.  
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Introduction  

Differential-difference equations arise in many fields, such as air permeability in fa-
brics [1], inverse heat conduction problem [2], nanoscale heat transfer [3], nanoscale hydro-
dynamics [4], thermal excitation [5], and others [6, 7]. In this paper we will study the Be-
lov-Chaltikian lattice equation, which is [8]: 
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Equation (1) is originally introduced in the study of lattice analogues of W-algebras 
and has many applications in the fluid, plasmas, crystal lattice and so on [9, 10].  

There are many analytical approaches to differential-difference equations, such as the 
Adomian decomposition method [11], the Exp-function method [12], the G'/G-expansion me-
thod [13], and the ADM-Padé technique [14]. In this paper the GDTM-Padé technique is 
adopted for solving the initial value problems of eq. (1). The GDTM-Padé technique is a com-
bination of the generalized differential transform method [15] and the Padé technique [16]. As 
shown in [17, 18], the differential transform method can efficiently obtain analytical solutions 
of the non-linear equations in the form of a polynomial. It is different from the traditional Tay-
lor series method, which requires the derivatives of the specified functions, resulting in expen-
sive computation for high orders. Furthermore, the GDTM does not involve the symbolic com-
putation of the integral and the perturbation technique. However, the approximate solution giv-
en by the GDTM may converge in a limited interval. To improve the convergence and the accu-
racy, the Padé approximation is applied to modify the approximate solution obtained by the 
GDTM.  
–––––––––––––– 
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The GDTM-Padé technique 

To illustrate the basic idea of the GDTM-Padé technique, we consider the general 
non-linear difference-differential equation:  

1 1 2[ ( ), ( ), ( ), ( ), ] 0.n n n nN u t u t u t u t+ − + =  

where N is a non-linear differential operator, un(t) is the unknown function with respect to the 
discrete spatial variable n and the temporal variable t.  

Applying the 1-D differential transform method (GDTM), the differential transform 
of the kth derivative of the function un(t) is defined by: 
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The differential inverse transform of Un(k) reads:  
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Particularly, the function un(t) can be formulated as a series when t0 = 0:  
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In practice, we can determine the coefficients U(n,k) (k = 1, …, m), and obtain the 
mth order approximation of the function un(t) given by: 
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The transformed operations 
for the GDTM are listed in tab. 1 
[17, 18]. 

To improve the accuracy of 
the GDTM solution (2), the Padé 
approximation is used. For sim-
plicity, we denote the [L, M] 
Padé approximation to

0( ) Σ k
k kf x a x∞
== by: 

f[L, M] = PL(x)/Qm(x) 

where PL(x) = p0 + p1x + p2x2 + 
… + pLxL, and QM(x) = 1 + q1x + 
+ q2x2 + … + qMxM with the 

normalization condition QM(0) = 1. The coefficients of PL(x) and QM(x) can be uniquely de-
termined by comparing the first L + M + 1 terms of the functions f[L, M] and f(x). In the prac-
tical computation, the construction of the [L, M] Padé approximation involves only algebra 
equations, which are solved by means of the Mathematica or Maple package. For simplicity, 
we call the solution obtained by the GDTM and the Padé approximation as the GDTM-Padé 
solution.  

Table 1. The operations for generalized differential 
transform method 

Original function Transformed function 

f(n, t) = g(n, t) + h(n, t) F(n, k) = G(n, k) + H(n, k) 

f(n, t) = αg(n, t) F(n, k) = αG(n, k) 

f(n, t) = ∂g(n, t)/∂t F(n, k) = (k + 1) G(n,k + 1) 

f(n, t) = g(n, t) h(n, t) 0( , ) ( , ) ( , )Σk
rF n k G n r G n k r== −  

f(n, t) = ∂mg(n, t)/∂tm F(n, k) = (k + 1) … (k + m) G(n,k + m) 

f(n, t) = g(n + s, t) F(n, k) = G(n + s, k) 
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Numerical example 

In this section, we test the Belov-Chaltikian lattice equation to verify the efficiency 
of the GDTM-Padé technique. We compare the performance of the GDTM-Padé technique 
with the original GDTM algorithm. All the numerical computations are performed by Ma-
thematica 7.0. 

Consider the initial value problem for the Belov-Chaltikian lattice eq. (1). We re-
mark that the bell-shaped solitary wave solutions to eq. (1) are given by [8]: 
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where g(n, t, z) = 1 + eη with η = pn + qz + rt + η0, r = λ–1 (ep – 1), q = λ–2 (e2p – 1),  
λ = (e1/2p – e3/2p)/(e3/2p – e–3/2p), p and η0 are constant, and z is an auxiliary variable. 

We suppose that the initial conditions to eq. (1) are defined by the above exact solu-
tions (3) at t = 0, i. e.  

un0 = un(0) and vn0 = vn(0) 

In this example, we set p = 0.5I, z = 1, and η0 = 0. 
Applying the GDTM, we can represent the transformed problem of eq. (1) in the re-

cursive form: 

0
( 1) ( , 1) ( , )[ ( 1, ) ( 1, )] ( , ) ( 1, )

k

s
k U n k U n s U n k s U n k s V n k V n k

=
+ + = + − − − − − + −∑  

 
0

( 1) ( , 1) ( , )[ ( 2, ) ( 1, )]
k

s
k V n k V n s U n k s U n k s

=
+ + = + − − − −∑  (4) 

The transformed initial conditions are U(n, 0) = un0, and V(n, 0) = vn0. 
Similarly, the implicit initial conditions can be constructed as U(n – 1, 0) = un–1(0), 

U(n + 1, 0) = un+1(0), U(n + 2, 0) = un+2(0), V(n – 1, 0) = vn–1(0). 
Based the recurrence (4), we can derive the coefficients U(n, k) one by one, and ob-

tain the approximate solution , 0( ) Σ ( , ) .m k
n m ku t U n k t==  The approximation , ( )n mv t =  

0Σ ( , )m k
k V n k t== can be obtained similarly. The 6th-order approximate solutions at n = 4 are 

given by: 

 
2 3

,6 0 1148046602 0 0318913430 0 0263832285 0 0086115113nu . I . t . I t . t= − − + +  
 4 5 60 0044383189 0 001570717 0 0006742217. I t  . t  . I t− − +  (5) 

 
2 3

,6 0 8128101475 0 0325816163 0 0380559556 0 0085976478nv . . I t . t . I t= + + −  
 4 5 60 0056223320 0 0015280270 0 0007627495. t . I t   . t− + +  (6) 

Applying the GDTM-Padé technique to the solution (5), we get the [3, 3] GDTM- 
-Padé approximation: 
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2 3

2 3
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The [3, 3] GDTM-Padé approximation to vn.6, eq. (6) can be derived in a similar 
way: 

 
2 3

2 3
0 8128101475 0 4462504887 0 0847152093 0 0560717919[3,3]

1 0 5089366486 0 0778056627 0 0526154048n
. . I t . t . I tv

. I t . t . I t
+ + +

=
+ + +

 

 

Figure 1. The compared results for the GDTM solutions (green), the GDTM-Padé solutions (blue) and 
the exact solutions (red) of eq. (1) when n = 4 (for color image see journal web site) 

 

Figure 2. The absolute error curves for the GDTM solutions (blue) and the GDTM-Padé solutions (red) 
of eq. (1) when n =4 (for color image see journal web site) 

In order to illustrate the efficiency of the GDTM-Padé technique, we plot the GDTM 
solutions (|un.6|), the GDTM-Padé solutions (|un.6[3, 3]|), and the exact solution (|un|) of eq. (1) 
in the left side of fig. 1. The comparisons for the |vn.6|, |vn[3, 3]|, and |vn| are shown in the right 
side of fig. 1. Figure 2 shows the absolute errors of the modulus of the GDTM solutions and 
the GDTM-Padé solutions. Obviously, the GDTM-Padé technique performs better than the 
GDTM method. We remark that the GDTM solutions are in good accordance with the exact 
solutions in the small interval –2 ≤ t ≤ 2, and high errors appear when |t| > 2. By the 
GDTM-Padé technique, the convergence domains of the approximations are improved large-
ly. In tab. 2, we list the absolute errors of the modulus of GDTM solutions and GDTM-Padé 
solutions. The numerical results confirm that the GDTM-Padé technique is efficient for solv-
ing the Belov-Chaltikian equation. 
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Conclusions  

This paper deals with the 
Belov-Chaltikian lattice equa-
tion by using the GDTM-Padé 
technique. The numerical results 
confirm the effectiveness and 
advantage of this method over 
the original GDTM method. In 
the future work, we will further 
extend this method to other non-
linear equations. 
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