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The numerical simulation of blood flow in arteries using non-Newtonian viscosity 
model, presents two major difficulties; the first one is the choice of an appropri-
ate constitutive equation, because no one model is universally accepted as a re-
flection of the true behavior of blood viscosity until now. Another difficulty lies in 
the numerical convergence of the complex scheme solving the highly non-linear 
set of equations governing the blood motion. In this paper, the pulsatile blood 
flow through an arterial stenosis has been numerically modeled to evaluate the 
flow characteristics and the wall shear stress under physiological conditions. The 
Navier-Stokes equations governing the fluid motion are solved using the finite el-
ement method in unsteady 2-D case. The behavior of blood is considered as the 
generalized power-law and Cross models, where the shear-thinning characteris-
tics of the streaming blood are taken into account. Constants in the constitutive 
equations of previous models have been obtained by fitting experimental viscosity 
data. The numerical simulations are performed for a wide range of apparent 
shear rates (10 s–1-750 s–1) with good convergence of the iterative scheme. Re-
sults from the blood flow simulations indicate that non-Newtonian behavior has 
considerable effects on instantaneous flow patterns. However, it seems that the 
generalized power-law model will be slightly better for describing the non-Newt-
onian characteristics of blood than the Cross model. 
Key words: pulsatile blood flow, Generalized power-law, Cross law, stenosis, 

finite element method, Galerkin, penalty function 

Introduction 

The study of the blood flow has attracted many researchers over the past years. Due 
to its significant effect on several human cardiovascular diseases, detailed knowledge of blood 
flow in physiological conditions is required. Among the various cardiovascular diseases, arte-
riosclerosis is a major one which affects the flow of blood through the arteries. This abnor-
mality, frequently occurring in man, is characterized by progressive narrowing and hardening 
of artery over time. It results in its advanced stages, in lesions that protrude into the arterial 
lumen, leading ultimately to vessel stenosis and obstruction of blood flow. The problem of 
blood flow through stenosis has been reported by several investigators, under various condi-
tions, to explore the relationship between various flow characteristics and early atherosclerot-
ic lesion development. Extensive experimental and numerical approaches for steady flow 
through stenosis have been carried out, treating blood as a Newtonian fluid [1-3]. These stud-
–––––––––––––– 
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ies mainly provided insights into the dependence of flow patterns on geometry and upstream 
Reynolds number. Pulsatile flow effects in stenotic geometries have also been numerically 
studied in the 2-D and 3-D cases [4-6], with the flow being considered as a Newtonian fluid. 
However, it has demonstrated that human blood behaves as a Newtonian fluid at large shear 
rates [7], and exhibits predominantly the behaviour of non-Newtonian fluid at low shear rates; 
particular, in some diseased conditions and in the pulsatile flow case, in which blood is sub-
jected to cyclic low shear rates for a major part of the time period [8, 9]. 

In order to have a complete understanding of the flow through stenotic artery from 
the physical point of view, one needs to be fully conversant with the hemodynamic behaviour 
of blood together with its rheological properties. The mathematical study of meaningful con-
stitutive models that can accurately capture the rheological response of blood, over a range of 
shear rate, is recognized as an invaluable tool for the interpretation and analysis of blood flow 
in physiological and pathological conditions. Several theories have proposed to describe the 
complex behaviour of the non-Newtonian fluid of blood, especially in unsteady flow, by us-
ing different blood viscosity models [10-15]. Details of a recent comparison between a New-
tonian, Casson, Power-law, and Quemada model are to be found in the paper of Neofytou 
[16], in the case of channel flow where part of one of the channel walls was forced to oscillate 
laterally. The Casson and Quemada models were seen to agree well in their predictions and 
were preferred over the Power-law model. Tu and Deville [17] considered blood obeying the 
Hershell-Bulkley, Bingham and Power-law fluid models, through arterial stenosis. The mod-
els predictions were compared to those obtained with the Newtonian fluid law for both steady 
and pulsatile flow. Buchanan et al. [18] employed the Quemada and Power-law models in 
pulsatile laminar flow through an axisymmetric stenosed tube; they found that the rheological 
models could affect wall shear stress quantities. More recently, Modarres Razavi et al. [19] 
compared for the same rheological models with Newtonian one, the hemodynamic wall pa-
rameters in pulsatile nature of blood flow for various Womersley numbers, they concluded 
from their investigations that the non-Newtonian rheology of blood affects the flow field. 
These studies have all indicated the significant role of non-Newtonian behavior of blood in 
flow characteristic through stenotic artery. However, due to the complex chemical structure of 
the blood and the increased rate of collisions between aggregates, none of the constitutive 
equations studied so far seems to be completely satisfactory in all deformation ranges. 

The purpose of this paper is to simulate the periodic flow through a stenotic artery 
by a finite element method, using penalty function approach, and to compare the effects of 
non-Newtonian blood viscosity model on flow patterns during the cardiac cycle. The blood is 
treated using the namely cross and Generalized power-law (GPL) constitutive equations. Our 
choice of the first model is dictated by capturing some of the physical properties of blood vis-
cosity variation in medium and high shear rate and the second one, recently proposed in [20] 
is a generalization and combination of some classical models used for blood.  

Numerical modeling 

In this work, blood is modeled as an incompressible and isothermal fluid. The flow 
through the artery is laminar, axisymmetric, and fully developed. The governing equations, 
corresponding to the conservation of mass and momentum, can be written: 
– continuity equation

0u u w
r r z
∂ ∂

+ + =
∂ ∂

(1) 
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– momentum equation 
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For an axisymmetric flow, the components of the deviatoric stress tensor may be ex-
pressed: 

 2 ( ) , 2 ( ) , ( ) , 2 ( )rr zz zr
u w u w u
r z z r rθθµ γ µ γ µ γ µ γ∂ ∂ ∂ ∂     = = = + =     ∂ ∂ ∂ ∂     

τ τ τ τ     

The shear rate γ , is obtained from the second invariant of the tensor such that: 

 
2 2 2 2
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γ
 ∂ ∂ ∂ ∂       = + + + +        ∂ ∂ ∂ ∂         

  (4) 

In eqs. (1)-(4), u and w are the radial and the axial velocity components in the r- and 
z- directions, respectively, p – the pressure, t – the time, τij – the stress tensor, r – the blood 
density, and ( )µ γ – the non-Newtonian dynamical viscosity. Characteristic parameters of the 
blood flow include also, Reynolds number, and Womersley number, a, which can be defined, 
respectively: 

 max 2πRe ,
N N

w D fDr ra
µ µ∞ ∞

= =  

Here the Reynolds number is defined in terms of the maximum centreline velocity 
wmax, the vessel diameter D, the density of the plasma and Newtonian limit viscosity of the 
flow under consideration. Also the Womersley number is function of the blood density, diam-
eter artery, Newtonian limit viscosity, and pulsatile flow frequency, f. 

The rheological properties of blood are modeled through the specification of a con-
stitutive relation for dynamical viscosity, ( ).µ γ  In this study, the only non-Newtonian effect 
that is taken into account is the shear-thinning behavior. The constitutive equation for the 
Cross law [21], based on the stress-strain rate relationship is given by:  

 0

( )

( )
1 ( ) p

τ µ γ γ
µ µ

µ γ µ
βγ

∞
∞

=
 − = + +

 





 (5) 

where γ  is the local shear rate, m∞ and m0 are the asymptotic apparent viscosities as γ  tends 
to ∞ and 0, respectively, and β and p are constant values. At an intermediate shear rate, the 
Cross model behaves like a Power-law model. However, unlike the Power-law, the Cross 
model produces Newtonian 0 ,µ µ∞  at both very low and high shear rates. 

For the GPL model, the constitutive equation, as a function of strain is given by the 
expression: 
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where λ is the consistency parameter and n is the Power-law exponent given by: 
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where µ∞ is the limiting Newtonian viscosity, a, b, c, d, ∆µ, ∆n, and ∞n are constant values. 
The GPL model is a developed form of the known Power-law, which is modified to 

account for various factors that would influence blood flow characteristic. It also encapsulates 
the behaviors of many of the other blood models. Specifically, it behaves Newtonian at high 
strain rates and has Casson and Carreau models as special cases. Parameters involved in the 
Cross and GPL models are computed using a non-linear least-squares fitting to experimental da-
ta of blood viscosity measured at certain shear rates. In the present work we use viscosity data 
obtained by Brooks et al. [22], for normal human blood at 25 °C, and for an hematocrit of 48%. 
The Vigne [23] algorithm is used here to fit our models to experimental data. More specially, 
for each viscosity model of the form ( , ),ipµ γ we computed the parameters p solution of the 
minimizing sum of squares errors between the measured data and model’s predictions: 

[ ]2
1

(p) (p, ) ( )
n

i mes i
i

e µ γ µ γ
=

= −∑  
 

where p is the set of admissible parameters. This 
algorithm involves choosing initial values for 
the parameters. Then, the parameters are refined 
iteratively. The fitting of the Cross and GPL 
models results in the parameters reported in tab. 
1. Whereas, fig. 1 shows the curve-fitting result
for Cross and GPL models, respectively, it rep-
resents the variation of the apparent viscosity 
with shear rate, and illustrates the comparison 
between theoretical (solid lies), and measure-
ments data (symbols).  

From this figure, both models give a good 
fit at high shear rate. However, the Cross model 
present quite different to experimental data re-
garding the low shear viscosity. The Pearson co-
efficient (R) which gives the correlation between 

experimental data and theoretical models, shows the highest value and therefore the best fit, 
for the GPL (0.99) compared to the Cross model (0.87).  

For the sake of simplicity, it is assumed that the geometry of the stenosis artery is 
axisymmetric. Although, the vascular wall is considered as a rigid tube. Geometry of the 

Figure 1. Apparent viscosity vs. shear rate for 
Cross and GPL models; measured and 
predicted values 
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Table 1. Cross and GPL models parameters 

artery in the presence of stenosis is constructed mathematically in cosine shaped model (fig. 
2) suggested by Young [24]: 

 0π( )( ) 2 1 1 cos
z zr z

D D L
δ −  = − +    

 (7) 

Here, L is the width of stenosis, δ the 
maximum width, and D is the vessel diameter, z0 
is the centre position of stenosis region, fig. 2. In 
this work, we used a degree of stenosis severity 
of 75% (D = 2.0, δ = 0.5, L = 2, z0 = 16). The 
boundary conditions required to solve the gov-
erning equations are:  
– The pulsatile flow was generated by means 

of axial velocity inlet profile imposed as 
function of the time. This physiological pro-
file contains some periods of reverse flow as 
well as a maximum inflow velocity of  
0.47 m/s with a heart rate of approximately 
60 beats per minute (fig. 3). 

– The radial velocity is set to zero at the inlet. 
– At the outlet of the artery, the fully devel-

oped flow condition is applied, we arbitrarily 
prescribed a zero pressure. 

– On all rigid walls, all velocity components 
were set to zero according to the no-slip con-
dition.  

– In the axis of symmetry, both the normal velocity and the first-order derivative of the axial 
velocity in the radial direction are set to be zero.  

Blood was meddled as a Newtonian fluid with a constant dynamic viscosity µ∞N of 
0.0035 Pa·s, and a density r of 1050 kg/m3. This corresponded of Re = 282, and Womersley 
number equal to 2.74. 

The governing equations are extremely non-linear and have to be solved numerical-
ly. In this study, the momentum and continuity equations are solved using a finite element 
code, originally developed by the authors and written in the FORTRAN programming lan-
guage [25, 26]. The penalty function approach is introduced to eliminate the pressure from the 
momentum equations, and treat the incompressibility. In this method the continuity equation 
is replaced by: 

 Parameters and values 

Cross 
µ∞, [mPa·s] µ0, [mPa·s] β, [s] p R 

5.24 103.1 1.15 1.25 0.87 

GPL 
µ∝, [mPa·s] n∝, [mPa·s] Δμ, [mPa·s] Δn, [mPa·s] a b c d R 

4.59 1.03 140 0.1 1.57 0.32 45 1.82 0.99 

 
Figure 2. Flow geometry of blood vessels 

 
Figure 3. Physiological waveform of inlet 
velocity 
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pp vλ= − ∇  (8) 

with penalty parameter λp which is assumed to be very large (106). So we first solve the ve-
locity from eqs. (2) and (3) and afterwards compute the pressure directly from eq. (8). The 
discretization of motion eqs. (2) and (3) follows the standard Galerkin formalism. Thus, after 
assembly, the final equations can be written for each element in a matrix form: 

[ ]{ } [ ]{v} [ ]{v} ( )[ ]{v} {f}M v N P Sr r λ µ γ+ − + =


  


 (9) 

where [M], [N], [P], and [S] are the mass, convective, penalty, and diffusion matrices, respec-
tively, { }v


 – the time derivative of velocity, {v} – the velocity vector, and {f}



– the force vector.
The non-linear terms in eq. (9), resulting from the advection in the inertial term and 

the non-Newtonian viscosity behaviour in the constitutive relationship, are solved at each 
time step over a cardiac pulsation using the Newton iterative technique. The time integration 
is performed by an implicit first-order time step scheme. The time step is chosen small 
enough that the stability conditions on the convective and diffusive terms are preserved. 

Numerical results and discussion 

In order to assess the accuracy of the finite element methods employed, computation 
for which the analytic solution is well known was performed in pulsatile flow. We test the Wom-
ersley solution for an unsteady inlet velocity at mid length of a straight tube where flow is fully 
developed. The Womersley velocity profile for the axial component of velocity is given by [27]:  

3/2
2 0

2 3/2
0

i

( , ) 1 e
( )

i t

rJAR Rw r t
i J i

w

a

µa a

 
 
 = −
 
  

(10) 

where J0 is the first order Bessel function, 
w – the angular frequency, A – the amplitude of 
pulsation, R – the radial distance, and a – the 
Womersley number. Figure 4 illustrates the 
numerically computed axial velocities against 
the analytical solution at five different times of 
the cardiac cycle. We found a good agreement 
of the numerical with the analytical results, and 
a maximum error of less than 0.06%. Further 
improvements can be made by adopting a much 
finer mesh. 

The computational domain extends from  
z = 0 mm to z = 46 mm, in order to have a suf-
ficient development length in the axial direc-
tion. Moreover, we run simulation comparisons 
of blood as a Newtonian fluid by assigning the viscosity μ∞N to the blood. Motion equations 
will be integrated in time for as many cycles as are needed to reach a periodic solution. Typi-
cally, five cycles were sufficient to satisfy this condition in our calculations. With these as-
sumptions, numerical results concerning the flow characteristics are presented for streamlines, 
flow velocities and wall shear stress.  

Figure 4. Theoretical and computed axial 
velocities at five different times
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A streamline is the locus of points that are everywhere tangent to the instantaneous 
velocity vector, i. e., the flow occurs along the directions of the streamlines. The velocity 
components are related to the stream function: 

 
1 1,w u
r r r z

ψ ψ∂ ∂
= − =

∂ ∂
 (11) 

For a given velocity field, an efficient approach to computing the stream function 
distribution is based on using the vorticity function defined: 

 
u w
r z

z ∂ ∂
= −
∂ ∂

  (12) 

By substituting (11) into (12), the following Poisson equation is obtained: 

 2ψ z∇ = −   (13) 

This equation can be easily solved by the finite element method as, using a constant 
boundary condition at the wall, evaluated by the mass flux entering the tube, and the arbitrary 
constant of the stream function at the centreline [25]. 

Figures 5(a) and (b) show the streamlines comparisons of Newtonian and non-New-
tonian GPL models blood at various time levels over one pulsatile cycle for stenosis severity 
of 75%. It is interesting to note that there is a permanent flow separation zone (vortex) formed 
into the artery, near the wall, for most of the cardiac cycle cases, for both Newtonian and non- 
-Newtonian cases, although, its size and location change during the pulse cycle. These vortex- 

 
Figure 5. Instantaneous streamlines during a cycle of pulsatile flow; (a) GPL case, (b) Newtonian case 
(for color image see journal web-site) 
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es are indicative of regions where the flow is reversed over a significant portion of each cycle. 
Thus, appearance of these separation regions are of pathological significance since, they increase 
the residence time of blood constituents that could cause the blood clot or thrombosis. During the 
systolic phase, as the velocity inlet accelerates, the vortex appears downstream of the stenosis 
throat. Furthermore, as time goes, the vortex becomes bigger. It continues to grow even after the 
flow decelerates at t = 0.4 second. During the diastolic phase as the velocity reaches its negative 
value at t = 0.5 second, the flow reverses direction, and the vortex develops upstream of the ste-
nosis. However, the size of these vortices and their associated separation and reattachment 
point’s locations differ for Newtonian and non-Newtonian models. The Newtonian model pro-
vides the largest vortex and the GPL model, fig. 5(a), gives the smallest size vortex and a less 
disturbed pattern flow than its counterpart. This is acceptable in light of the fact that the GPL 
model has the largest viscosity in all shear rate ranges and the Newtonian model has the least. 

To give an idea of the velocity profiles, using the three different models described 
previously, we have plotted in figs. 6(a)-(c), the axial flow velocity on the z-axis at three 
times levels of the pulse period; t = 0.1 second (systolic acceleration), t = 0.3 second (peak 
systolic), and t = 0.6 second (minimum diastolic phase), for various cross sections of artery. 
These figures clearly show similarities between the three models at the inflow and outflow 
(far from the constriction) of the artery, with a developed (parabolic) profile, in which the 
Newtonian velocity curve overlaps the Cross and GPL curves. While the difference in axial 
velocity profiles is pronounced at and around the stenosis, with some departures from the par-
abolic profile, (for t = 0.1 and 0.3 second), due to the greater shear force acting on the fluid in 
these regions. The velocity profile obtained for Newtonian case is relatively flat with uniform 
velocity in the artery centre and a very steep velocity gradient near the wall. A slightly flat-
tened velocity profile is observed for GPL and Cross models in the centre of artery due to the 
of the artery. At diastolic phase (t = 0.6 second) the flow change direction, and the differences 
between Newtonian and non-Newtonian cases are maintained for most section of artery, and 
are shear-thinning behaviour of the fluid viscosity. It implies that, the flow is quicker than the 

Figure 6. Axial flow velocity profiles on z-axis at: (a) t = 0.1 s, (b) t = 0.3 s, (c) t = 0.6 s 
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non-Newtonian ones and its patterns remain in a disturbed state over a long distance more 
pronounced distal to the stenosis. We can also observe that, the differences in velocity profiles 
are small between Cross and GPL models near the stenosis constriction, and insignificant far 
from stenosis. 

We represent in figs. 7(a)-(c), a comparison of the axial velocity profiles along the 
symmetric axis, for the three models of blood viscosity in the same flow condition as previ-
ous, and at the three times of the period cycle (t = 0.1 s, t = 0.3 s, t = 0.6 s). The maximum ve-
locity in a cycle occurs at the throat of stenosis. As the fluid moves further downstream, the 
velocity profile becomes stabilized, i. e. fully developed flow. Moreover, in fig. 7(c) that the 
axial velocities predicted by the three models, are negative along the symmetric axis, indicat-
ing a complete flow reversal at minimum diastolic time (t = 0.6 s). Predictions of axial veloci-
ty, for the Newtonian and non-Newtonian blood models differ in regions with high velocity; 
in stenotic segment and in its neighbourhood. From this plot we observe that during the accel-
eration phase at low inlet velocity (t = 0.1 s) a little practical difference occurred in velocity 
profile between the three models with the increase of inlet velocity, at t = 0.3 s. The peak val-
ue of velocity in Newtonian case is much smaller than in non-Newtonian case. Therefore the 
Newtonian model takes longer for the flow to recover from its disturbed states. This is pre-
dictable because of higher viscosity of (than Newtonian viscosity) the non-Newtonian case. 
Comparison between the two non-Newtonian models shows that treating blood as a GPL or 
Cross model, led to similar results, as it can be seen in figs. 7(a)-(c), at low inlet velocity  
(t = 0.1 and 0.6 second). While, at t = 0.3 s, fig. 7(b), when the inlet velocity is maximal, the 
difference between the two blood viscosity models appears more significant. 

 
Figure 7. Axial velocity profiles on symmetric axis at: (a) t = 0.1 s, (b) t = 0.3 s, (c) t = 0.6 s,  
for Newtonian, Cross, and GPL models 

The variation of the axial velocity profiles along the radial direction at different 
times through the cardiac cycle; 0.1 s, 0.3 s, and 0.6 s, are exhibited in figs. 8(a)-(c), respec-
tively. These figures compare and quantify the effects of shear-thinning models of the Cross 
and the GPL with Newtonian rheology blood at the site of maximum constriction. This result 
has already been described previously at different cross sections, to show the impact of vary-
ing viscosity on flow pattern along the artery. These figures once again, indicate that higher 
mean velocity is predicted by Newtonian model which exhibits a flat velocity profile, with 
large central region of uniform reduced velocity during the accelerating phase of systole  
(t = 0.1 s and t = 0.3 s). While, for the two non-Newtonian models, the velocity profile is par-
abolic for t = 0.1 s and t = 0.6 s, i. e. at low inlet velocity, and almost parabolic for t = 0.3 s. 
As it can be seen from fig. 8(b), at t = 0.3 s, when the inlet velocity has its maximum value, 
the Cross and GPL models show a considerable difference, whereas by decreasing inlet veloc-
ity (t = 0.1 s and t = 0.6 s) the difference is hardly recognizable. 
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Figure 8. Variation of axial velocity with radial distance at: (a) t = 0.1 s, (b) t = 0.3 s, (c) t = 0.6 s, 
for Newtonian, Cross, and GPL models 

Another hemodynamic interest is the effect of the blood flow behaviour on the wall 
shear stress as it is believed that wall shear stress is a significant factor in the onset of arterial 
diseases. Figures 9(a)-(c) show the variation of the shear stress along the wall of stenotic artery 
at three different times of cardiac cycles, for the different blood viscosity models. The maximum 
shear stress occurs in the stenotic segment of artery due to the high velocity jet and skewed axial 
velocity profile. This is followed by an abrupt decrease after the throat region. It becomes nega-
tive subsequently, improving a separation zone and a slowdown of the blood in this region. In 
areas of low shear stress, the luminal surface lipid concentration may be elevated, leading to a 
greater lipid infiltration, and the onset of atherosclerosis. During early flow acceleration, at 
t = 0.1 s, the wall shear stress curves appear slightly different for the Newtonian and non-New-
tonian models. In addition, the curves corresponding to Cross and GPL rheological models are 
very close, suggesting that the influence of shear thinning on wall shear stress becomes negligi-
ble at this time, fig. 9(a). As the flow accelerates at t = 0.3 s, fig. 9(b), differences between the 
three blood viscosity models become noticeable, particularly in the high and low-shear regions; 
in throat and downstream of stenosis. The Newtonian case gives the highest wall shear stress. In 
diastolic phase, at t = 0.6 s, the magnitude of the reverse flow is not particularly large and so the 
wall shear stress is uniformly lower the entire artery. An elevated shear stress appeared for the 
Newtonian blood viscosity. The Cross model deviates slightly from that of GPL in the vicinity of 
the stenosis throat. Whereas, further from this location, the three curves of wall shear stress are 
very close suggesting that the influence of the rheological blood behaviour becomes negligible. 

Figure 9. Variation of shear stress along the wall for various times at: t = 0.1 s, (b) t = 0.3 s, (c) t = 0.6 s, 
for Newtonian, Cross, and GPL models 

Conclusions 

The pulsatile flow of blood in stenosis artery is simulated by finite element method. 
Two constitutive laws (Cross and GPL), have been proposed to describe the non-Newtonian 
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shear-thinning blood viscosity. Both the constitutive models were found to be suitable for de-
scribing the non-Newtonian blood viscosity. However, the GPL model provides the best fit 
and interprets well the blood viscosity at low shear rate. From simulation of pulsatile blood 
flow through stenotic artery it would be concluded, that using a non-Newtonian model for 
blood viscosity is an adequate approximation for transient flow over the whole cardiac cycle. 
The GPL non-Newtonian model provides the less disturbed flow through the stenosis artery 
compared to both Cross and Newtonian models.  

Nomenclature 
D – artery diameter, [m] 
p – pressure, [Pa] 
r – radial co-ordinate, [m] 
t – time, [s] 
u – velocity in the r-direction, [m2s–1] 
z – axial co-ordinate, [m] 
w – velocity in the z-direction, [m2s–1] 

Greek symbols 

λp – penalty parameter, [–] 
δ – maximum stenosis thickness, [m] 
μ∞N – limiting Newtonian viscosity, [Pa·s] 
γ  – shear rate, [s–1] 
r – fluid density, [kgm–3] 
τ – shear stress, [Pa] 
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