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This paper applies constructal design to study the geometry of a X-shaped cavity that
penetrates into a solid conducting wall. The objective is to minimize the maximal
dimensionless excess of temperature between the solid body and the cavity. There is
uniform heat generation on the solid body. The total volume and the cavity volume
are fixed, but the geometric lengths and thickness of the X-shaped cavity can vary.
The cavity surfaces are isothermal while the solid body has adiabatic conditions on
the outer surface. The emerged optimal configurations and performance are reported
graphically. When compared to the Y- and C- and H-, the X-shaped cavity performs
approximately 53% better than the Y-shaped cavity and 68% better than the
C-shaped cavity for the area fraction f= 0.05, while its performance is 22% inferior
to the performance of the H-shaped cavity for the area fraction f = 0.1. The results
indicate that the increase of the complexity of the cavity geometry can facilitate the
access of heat currents and improve the performance of the cavities.
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Introduction

Constructal theory is the view that the generation of flow configurations is a physics

phenomenon that can be based on a physics principle (the constructal law). The constructal law

states that for a finite-size flow system to persist in time (to live), its configuration must evolve

in such a way that it provides easier access to the currents that flow through it [1-4].

According to Bejan and Zane [1], everything that moves, whether animate or inani-

mate, is a flow system. All flow systems generate shape and structure in time in order to facili-

tate this movement across a landscape filled with resistance. In other words, the designs seen in

nature are not the result of chance. They arise naturally, spontaneously, because they enhance

access to flow in time.
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In this sense, constructal theory has been used to explain deterministically how config-

urations in nature has been naturally generated, from inanimate rivers to animate designs, such

as vascular tissues, locomotion, and social organization [1]. Chief examples of unifying design

are vascular tree-shaped flow architectures, which serve as basis for many rules of animal design

[5, 6] and river basin design [2, 7]. This same principle is also used to yields new designs for

electronics, fuel cells, and tree networks for transport of people, goods and information

(constructal design) [8]. The applicability of this law to the physics of engineered flow systems

has been widely discussed in recent literature [9-13].

Among the engineering problems, the field of heat transfer has demonstrated for many

years how the principle of generating flow geometry works. The oldest and most clear illustra-

tions are the optimization of solid wall features known as extended surfaces, or fins. More re-

cently, great attention has been devoted to the study of fins array due to its importance in the en-

hancement of heat transfer in many engineering applications [14-16] such as heat exchangers,

internal combustion engines and electric motors. On the other side, open cavities are the regions

formed between adjacent fins: if the optimization of the geometry of the individual fin is an im-

portant issue, then, certainly, the geometry of the interstices must also be important.

The present numerical study has the purpose to discover, by means of constructal de-

sign, the geometrical optimization of a X-shaped cavity that penetrates into a rectangular solid

body with uniform internal heat generation. The cavity surfaces are isothermal with a minimum

temperature. In this paper, the purpose is to minimize the global thermal resistance between the

solid body and the cavity. The ratio between the length of the branches and the length of the stem

(L1/L0), as well as, the ratio between the thicknesses of the branches are optimized for a fixed de-

gree of freedom H/L = 1.0 and for several values of the ratio between the volume of the cavities

and volume of the solid (f).

Mathematical model

Consider the conducting body shown in fig. 1. The

configuration is two-dimensional. There is a X-shaped

cavity cooling the body of thermal conductivity k. The

body generates heat uniformly at the volumetric rate ���q .

The outer surfaces of the solid are perfectly insulated. The

generated heat current ( ���q A) is removed by the isothermal

cavity at temperature T0.

The objective of the analysis is to determine the

optimal geometry (L1/L0, D1/D0) that emerges by mini-

mizing the global thermal resistance (Tmax – T0)/( ���q A/k).

According to constructal design, this optimization

can be subjected to two constraints, namely, the total area

constraint:

A = HL (1)

and the area occupied by the X-cavity:

A D L D D L
D

c � � � �4
4

1 1 1
2

0 0
0
2

(2)

Equations (1) and (2) can be expressed as the area fraction:
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Figure 1. X-shaped cavity
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Note that there is another geometric constraint given by:
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The analysis that delivers the dimensionless excess of temperature as a function of the

geometry consists of solving numerically the heat conduction equation along the conductivity

k-region:
¶

¶

¶

¶

2

2

2

2
1 0

q q
~ ~x y

� � � (5)

where the dimensionless variables are:
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The outer surfaces are insulated and their boundary conditions are:

¶

¶

q
~n

� 0 (8)

The boundary condition in the cavity surfaces is given by an isothermal temperature:

q0 0� (9)

The dimensionless form of eqs. (1), (3), and (4) are:
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The dimensionless maximal excess of temperature, qmax, is our objective function and is

defined as:

qmax
max�

�

���

T T

q
A

k

0 (13)

Numerical model

The function defined by eq. (13) can be determined numerically, by solving eq. (5) for

the temperature field in every assumed configuration (D0/L0, D1/L1), and calculating qmax to see

whether qmax can be minimized by varying the configuration. In this sense, eq. (5) was solved us-

ing a finite elements code, based on triangular elements, developed in MATLAB environment,

precisely the partial differential equations (PDE) toolbox [17]. The grid was non-uniform in both~x

and ~y , and varied from one geometry to the next. The appropriate mesh size was determined by
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successive refinements, increasing

the number of elements four times

from the current mesh size to the next

mesh size, until the criterion

| ( )max maxq qj j� �1 /qmax |j < 1·10–4 was sat-

isfied. Here qmax
j represents the max-

imum temperature calculated using

the current mesh size, and qmax
j �1 cor-

responds to the maximum tempera-

ture using the next mesh, where the number of elements was increased by four times. Table 1

gives an example of how grid independence was achieved. The following results were per-

formed by using a range between 20.000 and 50.000 triangular elements. The accuracy of the

numerical code has already been demonstrate in several works [18, 19] and will not be shown

here.

Optimal geometry

The numerical work consisted of determining the temperature field in a large number

of configurations of the type shown in fig.1. Figure 2 shows that there is an optimal ratio L1/L0

that minimizes the dimensionless maximal excess of temperature when the degrees of freedom

(H/L, D1/D0) and the area fraction f are fixed. The results of fig. 2 are summarized in fig. 3. This

figure indicates that the once optimized ratio (L1/L0)o increases approximately 10% as the area

fraction f increases from f = 0.05 to 0.3. This observation can also be seen in fig. 4. When the

area fraction f is small, the X-blades (L1) penetrate almost completely into the solid body to

make easier the optimal distribution of imperfections. Larger L1 blade decreases its D1 thickness

increasing the resulting L0 blade and decreasing the ratio L1/L0. As f increases there is no need of

the X-blades penetrating completely into the solid body. Therefore the optimal L1 decreases in-

creasing the D1 thickness and decreasing the L0 blade as well as increasing the ratio L1/L0. It is

also interesting to notice that the minimum maximal excess of temperature qmax min decreases ap-

proximately 24% as the area fraction f increases from f = 0.05 to 0.3. Figures 3 and 4 confirm
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Table 1. Numerical tests showing the achievement of grid
independence (f= 0.1, D1/D0 = 0.5, L1/L0 = 1.412)

Number of elements qmax
j

|( ) / |max max maxq q q
j j j� �1

440 0.033488

1760 0.033944 0.01363

7040 0.033936 0.000233

28160 0.033935 0.000048

Figure 2. The effect of the area fraction, f, and
the ratio between the lengths L1/L0 in the
maximal dimensionless excess of temperature

Figure 3. The behavior of the minimal
dimensionless excess of temperature, qmax min,
and the once optimized ratio between the
lengths, L1/L0, as function of the area fraction f



some features observed in former

works, e. g. that the cavity per-

forms better when it penetrates al-

most completely in the solid body.

The smaller the area fraction the

more the optimal cavity penetrates

in the solid body. Figure 4 also il-

lustrates that the hot spots are lo-

cate approximately in the same

position in all the studied configu-

rations. This result is in agreement

with the optimal distribution of

imperfections once the hot spots,

the maximal dimensionless excess of tempera-

ture, can be understood as imperfections in heat

transfer systems.

The simulations performed in figs. 2 and 3

are repeated using several values of the ratio

D1/D0. Figure 5 shows the behavior of the maxi-

mal dimensionless excess of temperature for

several values of the ratio D1/D0 as function of

the ratio L1/L0. This figure confirms that there is

a minimum maximal dimensionless excess of

temperature and this value decreases as the ratio

D1/D0 increases. The minimum maximal

dimensionless excess of temperature qmax min

and the optimal ratio between the lengths

(L1/L0)o calculated in fig. 5 are presented as

function of the ratio D1/D0 in fig. 6. The results

show that the effect of the ratio D1/D0 in qmax min

is not important: qmax min for the ratio D1/D0 = 3

is only approximately 2% smaller than for the

ratio D1/D0 = 0.05. However, there is a signifi-

cant effect of the ratio (D1/D0) in the optimal ra-

tio (L1/L0)o. The ratio (L1/L0)o when D1/D0 = 3 is

approximately 15% smaller than the ratio

(L1/L0)o for D1/D0 = 0.5. The best configurations

calculated in fig. 6 are shown in scale in fig. 7.

Here we can see how the best configurations

evolve when they are free to move. Again the

hot spots are optimally distributed for all the

calculated best shapes.

Figure 8 shows a comparison among the op-

timal shapes calculated for the C-, Y-, and

X-shaped cavities for the area fraction f = 0.05.

X-shaped cavity performs approximately 53%
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Figure 5. The effect of the ratio between the
thicknesses D1/D0 and the ratio between the
lengths L1/L0 in the maximal dimensionless
excess of temperature qmax

Figure 6. The behavior of the minimal
dimensionless excess of temperature qmax min and
the once optimized ratio between the lengths
(L1/L0)o as function of the ratio between the
thicknesses D1/D0

Figure 4. Best shapes calculated in fig. 3
(for color image see journal web site)



better than the Y-shaped cavity

and 68% better than the C-shaped

cavity. The results indicate that

the increase of the complexity of

the configuration can improve the

performance of the cavity. Figure

9 presents a comparison between

X- and H-shaped cavities when

the area fraction is f = 0.1. The re-

sults show that the H-shaped cav-

ity performs approximately 22%

better than the X-shaped cavity.

However, it is important to notice

that the H-shaped cavity was opti-

mized for larger degrees of free-

dom than the X-shaped cavity.

Looking at the optimized X-cavity

shown in fig. 9 we can observe

that we can still optimize it vary-

ing the angles of the X. We expect

that varying these angles the per-

formance of the X-shaped cavity

will improve significantly.

Conclusions

This paper studied numerically

a X-shaped cavity cooling a solid

body which generates heat uni-

formly at the volumetric rate q'''.

Constructal design is applied to

discover the best configurations

that facilitate the access of the heat

currents. Two degrees of freedom

were explored: the ratio between

the lengths of the cavity L1/L0 and

the ratio between the thicknesses

of the cavity D1/D0. The area frac-

tion f, the ratio between the area

of the cavity and the total area,

was also a studied parameter. The

results show that the performance of the cavity increases approximately 24% as the area fraction

increases from 0.05 to 0.3.

The degree of freedom L1/L0 has significant effect on the performance of the cavity,

e. g. the once optimized ratio (L1/L0)o increases approximately 10% as the area fraction f in-

creases from f = 0.05 to 0.3. However the degree of freedom D1/D0 has negligible effect in the
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Figure 7. The best shapes calculated in fig. 6
(for color image see journal web site)

Figure 8. Best shapes (f = 0.05): (a) X-shaped cavity,
(b) Y-shaped cavity, (c) C-shaped cavity
(for color image see journal web site)

Figure 9. Best shapes (f = 0.1): (a) X-shaped cavity,
(b) H-shaped cavity
(for color image see journal web site)



performance of the cavity, e. g. qmax min for the ratio D1/D0 = 3 is only approximately 2%

smaller than for the ratio D1/D0 = 0.05.

When compared to the Y- and C-, the X-shaped cavity performs approximately

53% better than the Y-shaped cavity and 68% better than the C-shaped cavity for the area

fraction f = 0.05. This indicates that complexity can help to improve the performance of the

cavities. In the other side, when compared to the H-shaped cavity the X-shaped cavity has an

inferior performance of approximately 22 % when the area fraction f = 0.1. However, the

H-shaped cavity was optimized using larger degrees of freedom (H2/L2, L1/L2, L0/L2, H1/H2,

H0/H2) than the X-shaped cavity (L1/L0, D1/D0). Therefore, the X-shaped cavity still pres-

ents several opportunities of optimization, e. g. the angles between the branches of the cav-

ity. This issue will be addressed in future work.
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