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The non-homogeneity is assumed due to variation of modulus of compression. It 
has seen that in the presence of temperature, a cylinder made of non-
homogeneous material k<0 (Non-homogeneity is less at internal surface than at 
outer surface) require high pressure to become fully plastic as is required for 
initial yielding and this pressure goes on increasing with the increases in 
temperature, showing that a cylinder made of non-homogeneous material k<0 is 
on the safer side of design. For homogeneous case, it has been observed that the 
circumferential stress has maximum value at the external surface of the cylinder 
made of incompressible material as compared to compressible material. For 
Homogeneous case, with effects of temperature reduces the stresses at the 
external surface of the cylinder in comparison to pressure effects only. Strain 
rates are found to be maximum at the internal surface of the cylinder made of 
compressible material and they decrease with the radius. With the introduction of 
temperature effect, the creep rates have higher values at the internal surface but 
lesser values at the external surface as compare to a cylinder subjected to 
pressure only. 
Key words:  elastic-plastic, creep, transition, temperature, non-homogeneous,    
                     stresses, strain.  

 

Introduction 
 A thick walled circular cylinder is widely used either as pressure vessels intended for 
storage in industrial gases or a media transportation of high pressurized fluids. The constantly 
increasing industrial demand for cylindrical and spherical components has concentrated the 
attention of designers and scientists on this particular area of activity. The progressive, world-
wide scarcity of materials, combined with their increasing cost, makes design to the elastic 
regime only obsolete. Thick walled cylinders of circular cross section are used commonly 
either as pressure vessels intended for storage in industrial gases or as media for 
transportation of high pressurized fluids. Thick walled cylinders under internal pressure have 
been analyzed by many authors [1-4] for isotropic homogeneous elastic-plastic states. Some 
degree of non-homogeneity is present in wide class of materials such as hot rolled copper, 
aluminum and magnesium alloys. Olszak and Urbanowaski [5] solved the problem of thick 
walled non-homogeneous cylinder subjected to internal and external pressures and showed 
that plastic flow may start from either surface depending on the character and intensity of the 
non homogeneity. However, they assumed the material to be elastically incompressible. 
Ghosh [6] worked on the problem involving the study of elastic- plastic stresses in a spherical 
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pressure vessel of non-homogeneous material. Mukhopadhyay [7] studied the effect of non- 
homogeneity on yield stress in a thick walled cylindrical tube under pressure by allowing the 
rigidity modulus  to obey some cosine law of its radial distance and obtained the critical 
pressure for yielding in terms of Bessel’s function. Creep of thick-walled cylinder under 
internal pressure has been discussed by many authors [10-14]. Rimrott [12] analysed the 
above problem by considering large strain. These authors made the following assumptions: 

I. The volume of the material is constant, 0r z  
  
    . 

II. The ratios of the principal shear strain rates to the principal shear stresses are equal, 

i.e. rr zzrr zz

rr rr zz zz

 
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III. The axial strain rate is zero, i.e., 0z

 . 

IV. There is a significant stress-versus-true strain rate relationship which coincides with 
the true stress-versus-creep rate relationship in simple tension, e.g. Norton’s Law. 

V. The creep deformation is infinitesimally small. 
Seth’s transition theory [8] does not require any ad hoc assumptions like yield and 

incompressibility condition, and thus poses and solves a more general problem from which 
cases pertaining to the above assumptions can be worked out. It utilizes the concept of 
generalized strain measure and asymptotic solution at critical points or turning points of the 
differential equations defining the deforming field and has been successfully applied to a 
large number of the problems in plasticity. Seth has defined the generalized principal strain 
measure as: 
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where ‘n’ is the measure and 
A

iie is the principal finite strain components. Taking the non-
homogeneity as the compressibility of material in the cylinder as: 

 0 /
k

c c r b
                                                         (1.2) 

where a r b  , 0c and k are real positive constants. 

Governing Equations 
We consider a thick-walled circular cylinder of internal radius a and external radius b 

respectively subjected to internal pressure p and steady state temperature   on the inner 
surface. The displacement components in cylindrical polar co-ordinate are given by [9]: 

             (1 )u r   ; 0v   dw z         (2.1) 

where   is function of 2 2r x y   only and d is a constant. The strain components for 

finite deformation are given by [9]: 
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where /d dr    and meaning of superscripts “A” is Almansi. Substituting eqs. (2.2) in  
eq. (1.1),  the generalized components of strain become: 
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 The  stress –strain relations for  thermo elastic isotropic material are given by [1]: 

1 2ij i j ij ijT I e       ,  , 1,2,3i j                                                                (2.4)                                      

where  ijT  are the stress components,   and   are Lame’s constants, kkeI 1  is the first 

strain invariant, ij  is the Kronecker’s delta,   23  ,   being the coefficient of 

thermal expansion, and    is the temperature. Further,   has to satisfy:    
2 0                                           (2.5) 

Substituting the strain components from eq. (2.3) in eq. (2.4), the stresses are obtained as:  
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where    1
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The temperature field satisfying equation (2.5) and 0    at r a and 0  at r b , 
where 0  is constant, is given by:  
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
                                                               (2.7) 

The equations of equilibrium are all satisfied except: 

            0rrrr T Td T

dr r
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Using equations (2.6) in eq. (2.8), one get a non -linear differential equation in   as: 
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Using equation (1.2) in eqn. (2.9), one gets:   
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(2.10)                                     

where c is the compressibility factor of the material in term of Lame’s constant, and  are given 

by  2 / 2c     , r P    and 
 ba /log

0
0


 .                                                                
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Transition points of  in equation (2.9) are , 1P    .The boundary conditions 
require that: 
            rrT p    at  r a       

      0rrT   at  r b                                                                                                      (2.11)     
where p is pressure applied internal surface.                                                             
 The resultant force transmitted by the wall in axial direction is equal to 2L a p , 

that is : 

           22
b

zz
a
rT dr a p  .                                                                                              (2.12)    

Solution through the Principal Stresses 
             For finding the plastic stress, the transition function is taken through the principal 
stress (see Seth [8, 9], Gupta [15, 16, 19 - 20], Pankaj Thakur [21 - 24]) at the transition point  

P . The transition function R is defined as: 
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(3.1)                        

Taking the logarithmic differentiation of equation (3.1) with respect to r and substituting 
the value of dP d  from eq. (2.9) and taking the asymptotic value P , one get:  
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Integrating eq. (3.2), one get  

   expR A f r                                                                                     (3.3)                         

where A is a constant of integration, which can be determine by boundary condition and 
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From equation (3.1) and eq. (3.3), we have 
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Using boundary condition (2.11) in equations (3.5), one get 
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 Substituting of eq. (3.6) in eq. (2.8) gives 
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where zze  and A are obtained by using eq. (3.8) and eq. (2.12) as: 
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 Equation (3.6)-(3.8) give the elastic-plastic transitional stresses for a non-homogeneous 
compressible cylinder under internal pressure ant temperature. Substituting equation (1.2) in 
equations (3.6)- (3.8),one get the transitional stresses as: 
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From eq. (3.09)-(3.10), one gets: 

       

 0
1 0 0 0 0. . exp 2 . . . . . 3 2 .k k k k

rr
c

T T A c r r k c r c r
k               

     (3.12)                                      

It can be seen from eq. (3.12) that rrT T  is maximum at r = a, therefore yielding in 

the cylinder will start at internal surface and in this case eq. (3.12) becomes: 
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where Y is initial yielding stresses and
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The necessary pressure and temperature required for initial yielding is given by  
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And pressure required for full plastic state is 
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where 1Y  yielding stresses for fully-plastic state and 2 0 1/ .Y  

 Now stresses for full plasticity is obtained by taking 0 0c  , we have: 
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Solution through the Principal Stress difference   
 It has been shown that the asymptotic solution through the principal stress difference 
[8, 9, 15, 16, 19-24] at the transition point 1P  , gives the creep stresses. Transition 
function R is defined as: 
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Taking the logarithmic differentiating of eq. (4.1) with respect to r and using eq. (2.10), 
one gets: 

             
 

    01
log 2 1 1

2[1 1 ]

n

n n

ncd
R nP c c P

dr r P




              
             (4.2) 

Taking asymptotic value of eq. (4.2) at P -1, one gets after integration: 
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where A is integration constant, determined by boundary condition and  00 3 2 n

n

c r
f

D

  
 .  
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Asymptotic value of   as P -1 is D/r; D being a constant. By substituting eq. (4.3) 
in eq. (2.8), one gets:  

            rrT A Fdr B                                                                                                (4.4) 

where 2 ( 1) 1 expn c nF r f    and B is a constant of integration, which can be determined by 

boundary condition. The constant A and B are obtained by using boundary condition given by 
eq. (2.11) in eq. (4.4) as:  

            
b

a

p
A

Fdr





  and  B A Fdr   at r = b .                                                                      

By substituting the values of A and B  into equation (4.4), one gets: 

         
b b

rr
r a

T p Fdr Fdr
 

    
 
                                                     (4.5)   

The value of T  and zzT  are obtained from eqs. (4.3) and (2.6) respectively as: 

            
rr b

a

prF
T T

Fdr
  



                                                           (4.6) 

         
 1

2zz rr zz
c

T T T Ee E
c         

                   (4.7) 

where 
3 2

2
2

c
E

c
    

.  

 The term ezz is obtained by using eq. (4.7) and eq. (2.12), as: 

            
 

 

 

2 22
2

0

2 2

log( / )
2 2

zz

a bca p
E a b a

c
e

b a


 
   
 
 


                                          (4.8) 

Equations (4.5)-(4.7) define thermal creep stresses for a thick-walled circular cylinder 
under internal pressure. By introducing non-dimensional components: R=r/b, R0=a/b, E1=E/p 

and , ,rr zz
r z

TT T

p p p


     , eqs. (4.5)-(4.8) in non-dimensional from become: 

           

1

1

1

1
0

R
r

R

F dr

F dr



 


                                                                         (4.9)            

           
2 ( 1)

1
1

1
0

expn c n

r

R

R f

F dr
 

  

 


                                                (4.10)                                      

         1 1
1

2z r zz
c

E e E
c           

                             (4.11)                                     

where  
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 
 

 

22
020

1 0 0 0

1 2
0

1
log(1/ )

2 2

1
zz

RcR
E R R

c
E e

R


 
   
 
 


                             (4.12) 

 and 2 ( 1) 1
1 1expn c nF r f    and 

   00
1

3 2
n

n

c bR
f

D

  
 . 

For incompressible material ( 0c  ), eqs. (4.9) to (4.12) become 

          
1 1

2 2
0

/r
R R

F dr F dr                              |                                        (4.13)            

           
2

2
1

2
0

expn

r

R

R f

F dr
 



 


                                                              (4.14)                                      

           
 

1 12
r

z zzE e E 
 


                                                   (4.15)                                      

where   

 

 

2
02

0 0 0

2
0

1
[ log(1 / ) ]

2
1

zz

R
R R

e
R




 



  and  2 1

2 2expnF r f  and 
 00

2

3
n

n

bR
f

D

 
     (4.16) 

Strain Rates: 
 When the creep sets in, the strains should be replaced by strain rates. The stress-strain 
relations can be written as : 

          
1

ij ij ije T T
E E

   
 
                                                                                    (4.24) 

where ije


 is the strain rate tensor with respect to flow parameter t and 11 22 33T T T T    and  
1 / 2c c    . By differentiating eq. (2.3) with respect to time t, one gets: 

            1ne  
 

  .                                                                                                      (4.25) 
For SWAINGER measure (n = 1), from equation (4.25) it follows: 

            
 
  .                                                                                                                 (4.26) 

The transition value of eq. (4.1) as 1P   gives 

            
 
   

1
13 2

2

n
nrr

n c
T T

c 
 

  
  

                                                                               (4.27) 

By substituting eqs. (4.25), (4.26) and (4.27) into equation (4.24), one gets: 

           
  

   
1

1

1
1 1

3 21

2

n
r

rr r z

n c
E

E E c
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 

     


   
          
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  

   
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1
1 1

3 21
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 

     


   
          

, 
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   
1

1

1
1 1

3 21

2

n
r

zz z r

n c
E
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
 
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
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.                             (4.28) 

where  0 0log / logR R  . From eqs. (4.28), one gets:  

           rr zzrr zz

rr rr zz zz

 

 

    
     

    
 

 
  

                                                                (4.29) 

For incompressible material ( 2/10  orc ) without thermal effects, the creep 
strain rates (4.28) using eqn. (4.23) becomes: 

   
11 11 11
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1 3
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2

nn
n nrr rn
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
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          

   
11 11 11

1

1 3
3 `

2

nn
n nrn

E   


    
          

, 

0zz

 .                                                                                                                               (4.30) 

These constitutive equations (4.30) are the same as obtained by Odquist [17], if one put 

  1

1 3
n

cE n 


  
 
and n = 1/N. It has been shown in eqs. (4.29) and (4.30) that the assump-

tion II and III, come out from the solution itself, not assumed [10-14, 17] prior to the solution. 

Results and Discussion 
Taking equation (3.13) into account curves have been drawn in the Figure 1 between 

pressure (P/Y) and radii ratio (b/a) for various values of temperature 1 0 Y   required for 
initial yielding at the internal surface for k = -1, -0.5, 0.0001, 0.5, 1.  For k = 0, it gives the 
case for cylinder made of homogeneous material. In the absence of thermal effect ( 1 0  ), it 
is seen from Fig. 1, that for k < 0, high pressure is required for initial yielding than the 
homogeneous cylinder whereas reverse is the case for k > 0.  

 

 
Fig. 1 Pressure required for initial yielding (at 
different temperature) at the internal surface of a 
non-homogeneous cylinder. 

Fig. 2 Pressure required for fully plastic state (at 
different temperature) for non-homogeneous 
cylinder under internal pressure. 

In the presence of thermal effects and k < 0, it can be seen from Fig.1 that the pressure 
required for initial yielding is less and it goes on decreasing with the increase in temperature. 
In the absence of thermal effects it can be seen form Fig. 1 that a high percentage decrease in 
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the pressure is needed for the non-homogeneous cylinder to become fully plastic as is needed 
for its initial yielding which is shown in Fig. 2, With the introduction of thermal effect, a 
significant increases in pressure is needed for non-homogeneous cylinder k < 0 to become 
fully plastic, whereas opposite is the case for k > 0, which can be seen in Fig. 2. It means that 
a cylinder made of non-homogeneous material for k < 0 subjected to combined pressure and 
temperature is on the safer side of design which is also shown in Fig. 3, since the tangential 
stress is maximum at the outer surface for non-homogeneous material for various combina-
tions of pressure and temperature. In the absence of temperature (

2 0  ), it can be seen from 
Fig. 3(a), that a cylinder made of non-homogeneous material (k > 0) is on the safer side of 
design is given by Gupta and Shukla [10]. 

 
Fig. 3 Plastic stress distribution (without temperature) in non-homogeneous cylinder under internal pressure 
    

 
Fig. 4 Creep stresses for a thick- walled circular subjected to internal pressure along the radius R = r/b 
under steady state temperature. 

 Curves have been drawn in Fig. 4 and 5 between stresses , ,r z    and radii ratio R = 
r/b for Methyl Methacrylate material [18] with and without steady state temperature. For n = 
1/7 (or N = 7), it can be seen that the circumferential stress is maximum at the external surface 
of a cylinder made of incompressible material as compared ti that of compressible material. 
For n = 1/3 (or N = 3) even though the circumferential stress has maximum value at the 
external surface, it has smaller values as compared to n = 1/7 or (N = 7). It has been seen the 
introduction of steady state temperature reduces the stresses at the outer surface. For n =1, it 
gives elastic stress distribution. 
 With the effect of temperature, the value of circumferential stress is much higher than 
without temperature. In Fig 6 curves have been drawn for creep strain rates along the radius 
for n = 1/3 (or N = 3) and E1=E/p=0.1. It has been observed that for a thick-walled cylinder 
made of compressible material E1<1 the creep rates have larger values at the internal surface 
as compared to 1 1.0E  (not shown here). These values further increase at the internal surface 
as n decrease (n = 1/7) or N increases (N = 7) and E1<1.0, see Fig. 7. 
 With the introduction of temperature effect the creep rates at the internal surface have 
much higher values for n = 1/7 as compared to n = 1/3. It means that a thick-walled cylinder 
made of compressible material subjected to both pressure and temperature have large creep 
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rates at the internal surface for measure n = 1/7 (or N = 7) and 1E <1.0 as compared to n = 1/3 
(or N = 3), 1 1.0E  and cylinder made of incompressible material.  
 

 
Fig. 5 Creep stresses for a thick- walled circular subjected to internal pressure along the radius R = r/b. 

Fig. 6 Strain rate distribution for a thick-walled circular 
subjected to internal pressure for n = 1/3 and E1=0.1 
 

Fig. 7 Strain rate distribution for a thick- walled 
circular subjected to internal pressure for n = 1/7 and 
E1=0.1. 

       Conclusion 
        It has seen that in the presence of temperature, a cylinder made of non-homogeneous 
material k<0 (Non-homogeneity is less at internal surface than at outer surface) require high 
pressure to become fully plastic as is required for initial yielding and this pressure goes on 
increasing with the increases in temperature, showing that a cylinder made of non-
homogeneous material k<0 is on the safer side of design.  
        For homogeneous case, it has been observed that the circumferential stress has maximum 
value at the external surface of the cylinder made of incompressible material as compared to 
compressible material. With effects of temperature reduces the stresses at the external surface 
of the cylinder in comparison to pressure effects only. Strain rates are found to be maximum 
at the internal surface of the cylinder made of compressible material and they decrease with 
the radius. With the introduction of temperature effect, the creep rates have higher values at 
the internal surface but lesser values at the external surface as compare to a cylinder subjected 
to pressure only. 
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Nomenclature 
a,b   - Internal and external radii, [m] 
c   - Compressibility factor, [-] 
u,v,w   -  Displacement components,[m] 
v   -  Poisson’s ratio, [-] 

ijij eT , - stress and strain rate tensor 

Greek letters 

r  - Radial stress component, [-] 

 - Circumferential stress,[-] 

z  -  Axial  stress component,[-]. 

  - Temperature, [K]. 
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