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The fast multipole method is universally adopted for solving the convection equa-
tion in the vortex method. In this paper, a reverse-quadtree adaptive grid tech-
nique is proposed in order to improve the quadtree adaptive grid technique in the 
fast multipole method. Taking flow past a cylinder as an example, the results in-
dicate the reverse-quadtree scheme can save more calculation time than the 
quadtree scheme when the particle population is large enough. 
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Introduction 

As a Lagrange method for simulating Navier-Stokes equations directly, vortex me-

thod has been extensively adopted in wind engineering and aerodynamic [1], and even in 

simulations of 3-D turbulence without any turbulence model. In 1973, Chorin [2] first pro-

posed the discrete vortex method (DVM) in which Navier-Stokes equations can be solved 

by dividing into a convection equation and a diffusion equation, and then these equations 

can be solved respectively by using an N-body method and a random walk method. Degond 

et al. [3] developed DVM in dealing with the viscous term subsequently. Although gradual-

ly accepted by scholars in computational fluid, the low resolution is a bottle neck of DVM. 

Afterwards, with the improvements by Shiels [4] and Huang [5], core-spreading vortex me-

thod reached greater precision and the vortex method increasingly developed to be a mature 

method in computational fluid [6]. When solving the convection equation, we are actually 

dealing with an N-body problem with the computational amount of O(N
2
) magnitude. With 

the evolution of a flow filed, the calculation amount will certainly get a harsh increment, so 

a fast algorithm is essential for the vortex method application. Chen [7] introduced the bi-

nary encoding technology which reduced the computational amount and improved the effi-

ciency of Van Dommelen’s scheme. However, the quadtree division scheme needs enorm-

ous arrays for storing cell codes, subordination between parent cells and child cells, and 

codes of childless cells. Based on Chen’s scheme, we designed a reverse quadtree adaptive 

grid division scheme which builds arrays as little as possible, and present some specific 

analyses on computing efficiency. 
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Improvement of fast multipole method 

Governing equations 

The 2-D impressible flow is governed by the vorticity transport equation: 
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where ux and uy are components of the flow velocity V,


 ν is the kinematic viscosity coeffi-

cient, and V 


 is the vorticity. As ψ is the flow function, the velocity can be expressed 

as ux = ∂ψ/∂y and uy = –∂ψ/∂y, and the continuity equation is: 

 2     (2) 

Take Gauss distribution as the normalizing function and the vorticity field can be 

represented by N Lagrangian, scalar-valued particles, and the vorticity at any point can be 

written as: 
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where Γj, σj, and x j


 denotes circulation, size and the center of the j-th vortex elements, re-

spectively. 

In fast multipole method (FMM), the calculation domain is first divided into cells of 

several levels with a reverse quadtree adaptive grid technique, then all cells in each level are 

encoded and relevant Laurent coefficients are calculated. If two particles’ distance is short we 

must calculate the velocity with Biot-Savart law (point-to-point), otherwise we may get the 

velocity by using the Laurent series (box-to-point). 

Reverse-quadtree adaptive grid  

A reverse quadtree adaptive grids division scheme (fig. 1) is designed. 

(1) Find a minimum square domain which can completely overlap the whole particles, and 

denote this domain as a cell of the 0-th level. 

(2) Select a control number Nctrl, if the particle population in the cell of the zeroth level is 

larger than Nctrl, the cell of the zeroth level is divided into 4 cells of the 1
st
 level equally. 

If the particle population in any cell of the 1
st
 level is still larger than Nctrl, then divide 

every cell of the 1st level into 4 cells of the 2
nd

 level equally, and repeat this division step 

till the particle population in each cell of the k-th level is no more than Nctrl. 

 

Figure 1. Reverse-quadtree technique for the adaptive grids division 
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(3) If 4 cells of the (k + 1)-th level are divided from a cell of the k-th level, then the cell of the 

k-th level is denoted as the parent of the four cells of the (k + 1)-th level. 

(4) Suppose that the flow field is divided into 4
L
 cells of the L-th finest totally. Each cell of 

the L-th level has a x code and a y code (x, y  0 ~ 2
L
 – 1) and (x, y) is the 2-D designa-

tion of that cell of the L-th level.  

(5) Transfer the 2-D code x, y into binary digits, then we can produce a new binary digit by 

interlacing the digits and transform the new digit to a decimal one (remarked as F), then F 

is the 1-D designation of the cell of the L-th level based on the reverse-quadtree technolo-

gy and (F, k) denotes a cell of the k-th level with the start code F. 

(6) Check the total particle population in (4
L–L+1

k, L), (4
L–L+1

k + 4
L–L

, L), (4
L–L+1

k + 2·4
L–L

, L), 

(4
L–L+1

k + 3·4
L–L

, L), (k = 0, 1, 2, …, 4
L–1

), if the population is smaller than Nctrl, then re-

mark the cell (4
L–L+1

k, L – 1) as a childless cell. 

(7) Check the total particle population in (4
L–(L–i)+1

k, L – i), (4
L–(L–i)+1

k + 4
L–(L–i)

, L – i),  

(4
L–(L–i)+1

k + 2·4
L–(L–i)

, L – i), (4
L–(L–i)+1

k + 3·4
L–(L–i)

, L – i), (k = 0, 1, 2, …, 4
(L–i)–1

), if the 

population is smaller than Nctrl, then remark the cell (4
L–(L–i)+1

k, L – i – 1) as a childless 

cell. 

(8) Let i = i + 1, and repeat step (7) till the total particle population in every 4 adjacent child-

less cells is larger than Nctrl. 

Dividing the flow field from leaves to the branches, then the root is the key point of 

this reverse-quadtree scheme, which only records the childless cells. 

Laurent coefficients of each cell 

The Laurent coefficients Ck of each cell should be obtained before using the box-to- 

-point formula. The more particles are in a cell, the heavier the computational amount on Ck 

is. The Laurent coefficient Ck of a cell can be di-

rectly obtained from calculations on the Laurent 

series of its child cells (C'k,1, C'k,2, C'k,3, C'k,4) (fig. 

2), and the velocity at Zn can be expressed as: 
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Numerical examples 

Take the flow past a cylinder for examples. Suppose that there is a cylinder in an in-

finite domain with the radius R = 0.5, the kinematic viscosity of the flow is  = 1.82·10
–3

 and 

the free stream velocity is V


 = 1.0 + 0i (Re = 550). The control size of the discrete particles 

is σmax = (4vdt)
–1/2

, and the initial size of the particles is σ = (2vdt)
–1/2

, the time step dt = 0.01; 

when calculating Laurent series, the number of terms in expansion is set as P = 13, the par-

ticle control number in each grid is Nctrl = 50, and the maximum grid level is 11. The diffusion 

 

Figure 2. Laurent series of parent cells 
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equation is solved by using the core-spreading 

vortex method [1], and the convection equation is 

solved by using the reverse-quadtree adaptive 

grid technique. 

As shown in fig. 3, when the particle popula-

tion is smaller, the advantage of reverse-quadtree 

scheme is not very significant. However, when 

the particle population is large enough, the re-

verse-quadtree scheme saves more calculation 

time than the quadtree scheme. 

Conclusions 

A reverse-quadtree adaptive grid technique is 

designed, which can improve the quadtree adaptive grid technique. The reverse-quadtree 

scheme should save more calculation time than the quadtree scheme when the particle popula-

tion is large enough.  

Nomenclature 

Ck – Laurent coefficient, [–] 
Γj – circulation of the j-th vortex element, [m2s–1] 
σj – size of the j-th vortex element, [m] 
ux – x-direction component of velocity, [ms–1] 

uy – y-direction component of velocity, [ms–1] 
ω – vorticity, [1s–1] 
V


 – flow velocity, [ms–1] 
x j


 – center position of the j-th vortex element, [–] 
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Figure 3. The relationship between 
calculation time and particles population 
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