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A direct forcing method for the simulation of particulate flows based on im-
mersed boundary-lattice Boltzmann method is used to study the flow of power-
law fluid through an infinite array of circular cylinders with cylinder separations 
of 20a (a is the cylinder radius) with laminar shedding behind cylinders. Time 
averaged drag coefficient, maximum of lift coefficient and Strouhal number are 
given out with the power-law index in the range of 0.4  n  1.8 and Re in the 
range of 50  Re  140.  
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Introduction 

As we all know, the cross-flow of fluids past cylinders of circular and non-circular 

cross-sections is a fundamental flow and has pragmatic significance [1-4]. Such study is most-

ly about the Newtonian fluid. For the flow of Newtonian fluids over a circular cylinder, it is 

known that when the Reynolds number is greater than a critical value at Re ≈ 45-50, the wake 

region grows and ultimately becomes asymmetric and periodic in time, thereby leading to the 

onset of laminar vortex shedding. The laminar vortex shedding will keep until the Reynolds 

number reaches another critical value at Re ≈ 150-200. It has been shown that the same phe-

nomenon happens for the flow of power-law fluids over a circular cylinder with different crit-

ical values of Reynolds number [5, 6].  

Among the study on the cross-flow of power-law fluids through circular cylinders 

with laminar shedding (50  Re  140), most is about cross-flow through an unconfined circu-

lar cylinders [5, 6], or about cross-flow through a bundle of circular cylinders [7, 8], or about 

cross-flow through one or several circular cylinders confined in two parallel planes [9]. 

Though there is few works on the cross-flow of Newtonian fluids through an infinite array of 

parallel circular cylinders [10], there is no works on the cross-flow of power-law fluids 

through an infinite array of parallel circular cylinders.  
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In this article, the cross-flow of power-law 

fluid through an infinite array of circular cy-

ers with cylinder separations set to be 20a (a is 

the cylinder radius) is studied in the range of la-

minar shedding, which is shown in fig. 1 (U and 

pa are velocity and atmospheric pressure far from 

cylinders). The power-law index is in the range 

of 0.4  n  1.8 and Reynolds number is in the 

range of 50  Re  140, which are almost the 

same as that of Patnana et al. [5], whose results is 

for unconfined circular cylinder. 

Method 

In recent years, the lattice Boltzmann equation method (LBM) has been rapidly de-

veloped for fluid dynamic problems, such as multiphase flow, particulate flow, etc. [11-17]. 

Recently, the immersed boundary-lattice Boltzmann method (IB-LBM) was presented by 

Feng et al. [18] to simulate the motion of rigid particle in fluids, where a regular Eulerian grid 

is used for the flow domain and a Lagrangian grid is used for the particle’s boundary. The 

force density is computed via a direct forcing scheme, and the flow field is then solved by the 

processes of the LBM. The detail of the direct forcing IM-LBM for incompressible fluid can 

be found in Feng et al. [18]. 

For power-law fluid, the apparent kinematical viscosity, ap is determined as: 
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where m is a parameter of power-law fluid, n – the power-law index, and   – the shear rate, 

which can be calculated from the strain tensor S:  
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Then the local apparent viscosity ap can be converted to a local apparent relaxation 

time ap.  

A important dimensionless number analogous to Reynolds number is Re = U
2–n

D
n
/m, 

where U and D are characteristic velocity and length scales, respectively.  

Study on flow of power-law fluid through an infinite array  

of widely-spaced circular cylinders  

Considering power-law fluid cross-flows an infinite array of circular cylinders with 

cylinder separations set to be 20a with laminar shedding, the cross-flow of every circular cy-

linder can be thought to be similar to each other. So it is modeled to be power-law fluid cross-

flowing a single circular cylinder in a zone with a width of 20a with flow parameters in upper 

and bottom boundary keeping identical to each other. The diameter of the circular cylinder D 

is chosen to be 41.2 lattices long, and the flow domain is chosen to be 30D × 10D. The cy-

linder is located at the point (5D, 5D). The velocity of fluid in the inlet is specified U in x di-

  

Figure 1. Flow configuration (real lines show 
the inlet and outlet; dashed lines show the 
mid-planes between two cylinders) 
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rection, the stress-free condition is applied to the outlet boundary. A disturbance is added to 

velocity in inlet for some time to accelerate the emergence of laminar vortex shedding. Five 

different n (i. e., 0.4, 0.6, 1.0, 1.4, and 1.8), and four different Re (i. e., 50, 100, 120, and 140), 

are considered. Drag coefficient, CD = 2Fx/(0U
2
D), lift coefficient, CL = 2Fy/(0U

2
D), and 

Strouhal number, St = fD/U, of the frequency of vortex shedding behind the circular cylinder 

are concerned. The time evolution of CD, CL, and St for Re = 50 is shown in fig. 2, where the 

time is normalized by the character time D/U. When Re = 50, it can be seen that for small n 

(n = 0.4, n = 0.6 and n = 1.0), CL is large; while for large n (n = 1.4 and 1.8), though Karman 

vortex appears with the disturbance of inlet velocity, CL is much smaller and the vortex shed-

ding is weak, while it seems that vortex will decay with time in these two cases. This is dif-

ferent from that of unbounded cylinder [5]. When Re = 100, Re = 120, and Re = 140, for all 

five n, CL is large and the vortex shedding is strong. 

The results of ,DC  CLmax and St to Re are shown in figs. 3, 4, and 5. When Reynolds 

number fixed to 50, ,DC increases with increasing value of n as shown in fig. 3. When Rey-

 

Figure 2. Drag coefficient, lift coefficient to time 
for Re = 50 

 

Figure 3. Time averaged drag coefficient to Re  
for different for power-law index 

 

Figure 4. Maximum of lift coefficient to Re  
for different for power-law index 

 

Figure 5. St of frequency of vortex shedding to Re 
for different power-law index 
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nolds number fixed to a value of 100, 120, and 140, ,DC increases with increasing n from  

n = 1.0 to n = 1.8, while it changes little when 0.4  n  1.0, as shown in fig. 3 which is dif-

ferent from the results of Patnana et al. for unbounded cylinder [5]. For a fixed value of Re, 

CLmax, and St decrease with increasing value of n, as shown in figs. 4 and 5. For a fixed n, 

with increasing Re, if 1.0  n, ,DC decreases, and if n  0.6, it increases, as shown in fig. 3. 

For a fixed n, CLmax and St increases with increasing Re as shown in figs. 4 and 5. 

Conclusions  

When Re = 50, the flow keeps steady for larger n, n = 1.4, and n = 1.8. When Re is 

fixed to 50, the time averaged drag coefficient increases with increasing power-law index (n). 

When Re is fixed to 100, 120, 140, the time averaged drag coefficient increases with increas-

ing n from n = 1.0 to n = 1.8, but it changes little when 0.4  n  1.0. And for a fixed Re, the 

maximum of lift coefficient and St number decreases with increasing n. For a fixed n, with in-

creasing Re, if 1.0  n, the time averaged drag coefficient decreases, and if n  0.6, it increas-

es. And for a fixed n, the maximum of lift coefficient and St increases with increasing Re. 
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