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An Eulerian-Lagrangian approach is developed within the OpenFOAM frame-
work to investigate the effects of three well-known inter-phase drag force corre-
lations on the fluidization behavior in a bubbling fluidized bed reactor. The re-
sults show a strong dependency on the restitution coefficient and the friction 
coefficient and no occurrence of bubbling and slugging for the ideal-collision 
case. The mean pressure drops predicted by the three models agree quite well 
with each other.  
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Introduction 

Gas-solid fluidized bed reactors are widely used in many industrial operations. A 

good understanding of the hydrodynamic behavior of this system is important for the design 

and scale up of the new efficient reactors. Thus, in the last two decades research efforts have 

been devoted to the development of numerical models to study the hydrodynamics in flui-

dized bed reactors [1, 2]. All the modeling methods are broadly categorized into Eulerian-

Eulerian and Eulerian-Lagrangian approaches. The latter, called discrete element method 

(DEM), has come more and more into the focus of engineers and researchers [3-9]. The 

coupling between the phases comprises the effect of (a) volume displacement by the particles, 

and (b) fluid-solid interaction forces exerted on the particles [10-12]. There are various drag 

correlations available in the literature [13]. The Gidaspow correlation [14] is a combination of 

the Ergun equation [15] for dense granular regime and the Wen et al. equation [16] for dilute 

granular regime. Although some works have investigated the effects of different drag models 

within the Eulerian-Eulerian framework, few are reported for Eulerian-Lagrangian approach. 

Here we present an Eulerian-Lagrangian approach with a soft-sphere collision model for the 

simulation of a bubbling fluidized bed. The three drag correlations [13, 14, 17] are imple-

mented in our model.  
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Figure 1. Typical particle flow patterns at the fluidization stage 

Mathematical modeling 

A particle in a gas-solid system undergoes motions as described by Newton’s second 

law of motion. A soft-sphere model using a spring, slider and dashpot is adopted to formulate 
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the contact forces between two spherical particles. In this model, the particles are allowed to 

overlap slightly. The normal force tending to repulse the particles can be deduced from this 

spatial overlap and the normal relative velocity at the contact point. The spring stiffness can 

be calculated by Hertzian contact theory. Concerning the wall properties the same values as 

the particle could apply. The continuum gas phase are calculated from the continuity and vo-

lume-averaged Navier-Stokes equations which are coupled with particle phase through the po-

rosity and the inter-phase momentum exchange, and the momentum equation is given by: 
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    (Vi is the volume of particle i and kc is the 

number of particles in the computational cell with volume ΔVcell), and ρg, ug, τg and p are the 

density, velocity, viscous stress tensor and pressure of the gas phase, respectively. Sp is a 

source term that describes the momentum exchange of gas with solid particles 

p cell cell/i V  S fg,i  ( g, g p( )i i iV   f u v , ug – the instantaneous gas velocity at the par-

ticle position, εp = 1 – εg, and β – the inter-phase momentum transfer coefficient.  

Results and discussions 

After the start-up stage, a dynamically stable fluidization stage is reached in which a 

periodic generation of bubbles and slugs is observed as shown in fig. 1. The bubbling period 

is longest for Gidaspow model and almost same for Di Felice and EHKL models. The particle 

flow patterns predicted by the three models featured by a gas cavity at the jet region above 

which a bubble is formed and continuously grows and rises until converts to a slug. However, 

the bubble and slug patterns can differ significantly among the drag models and their intensity 

is strongest for Gidaspow model and weakest for EHKL model. It can be seen that the per-

formance characteristics obtainable from the different drag models differ, perhaps significant-

ly, depending on the particular application. 

As shown in fig. 2, although all the three models predict no bubble and slug forma-

tion for the ideal case, the height of the expanded bed is different and the Gidaspow model 

has the largest bed expansion. It is 

worth to mention that Hoomans et al. 

[8] who adopted a hard-sphere colli-

sion model in contrast to our soft-

sphere model also reported the same 

phenomenon for the ideal-collision 

case, which qualitatively verifies the 

capacity of our approach.  

Conclusions 

Qualitatively, formation of bubbles 

and slugs and the process of particle 

mixing are observed to occur for all 

the drag models, although the Gisad-

pow model is found to be most ener-
 

Figure 2. Snapshots of particle flow patterns at t = 15 s 
for ideal-collision case (e = 1, μ = 0) 
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getic and the Di Felice and EHKL models yield minor difference. The effects of restitution 

coefficient e, and friction coefficient μ on the fluidization behavior are also investigated. It is 

found that no bubbling and slugging occur at all for the ideal-collision case (e = 1, μ = 0).  
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