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This paper analyzes the 2-D viscous fluid flow between two parallel plates, where 
the lower plate is heated and the upper one is cooled. The temperature difference 
between the plates is gradually increased during a certain time period, and after-
wards it is temporarily constant. The temperature distribution on the lower plate is 
not constant in x-direction, and there is longitudinal sinusoidal temperature varia-
tion imposed on the mean temperature. We investigate the wave number and ampli-
tude influence of this variation on the stability of Rayleigh-Benard convective cells, 
by direct numerical simulation of 2-D Navier-Stokes and energy equation. 
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Introduction 

We study the Rayleigh-Benard stability problem for a fluid bound by bottom and top 

wall which are heated and cooled, respectively, and subject to the spatial temperature modula-

tion at the lower horizontal wall. This modulation causes the convection rolls to set up imme-

diately, although the value of Rayleigh number is beneath the critical one, we have so called 

forced Rayleigh-Benard convection (FRBC). The reason for this convection is the tempera-

ture gradient in vertical direction, which causes instable density stratification and subsequent 

the fluid motion. Rayleigh solved the problem of stability of the conducting state when a fluid 

in a gravitational field is bound from above and below with spatially constant but unequal 

wall temperatures. He obtained the critical value of a dimensionless parameter at which the 

flow starts. This parameter is called the Rayleigh number and it is the ratio between the driv-

ing buoyancy and the damping viscosity forces. Another parameter, that measures the relative 

strength of the non-linearity in the momentum equations v. s. that of heat equation, is the 

Prandtl number. They are defined in the following way: 
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Here Ra is Rayleigh and Pr is Prandtl number, g is the gravitational acceleration,  

 – the thermal expansion coefficient, T1 – the temperature of lower plate, T2 – the tempera-

ture of upper plate, d = 2H – the distance between the plates,  – the kinematic viscosity, and 
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 – the thermal diffusivity. In the above definition of the Rayleigh number, the fluid proper-

ties are calculated at mean temperature Tm = (T1 + T2)/2, because this is the best reference 

temperature. In our calculation T1 is a temporal and x-direction variable function, and so is the 

Ra number, which is a non-dimensional parameter for the measure of the ratio of buoyancy 

and viscous diffusive forces. 

The value of the critical Rayleigh number according to linear stability theory is  

Rac = 1708 at wavenumber qc = 3.117. Beyond this value the fluid starts to move and forms the 

counter-rotating 2-D rolls, the cross-section of which is almost square. The cellular flow becomes 

considerably more complicated as Ra increases. The 2-D rolls break up in 3-D cells, which appear 

hexagonal in shape when viewed from above. With larger Ra numbers, the cells multiply, becom-

ing oscillatory and finally turbulent. The flow becomes turbulent at Ra = 10
4
 and Pr = 1, for water 

Pr = 7 we have Ra = 10
5
, and for higher Pr numbers we have Ra = 10

6
-10

7
. 

Most of the above is valid for small temperature differences between the plates 

when the so-called Oberbeck-Boussinesq approximation is valid. In this approximation, all 

fluid properties are considered constant except density, which is assumed to be a linear func-

tion of temperature: 

 2 2[1 ( )]T T      (2) 

where 2 is the fluid density at the upper plate, and T – the fluid temperature between the 

walls. One of the first papers that analyzed the Rayleigh-Benard flow with variable viscosity 

is that of Tipelkirch [1]. Probably the first work where the Rayleigh-Benard flow was treated 

through assuming all fluid properties as a function of temperature was that of Paolucci [2]. 

Thereafter, many works have appeared treating Rayleigh-Benard flow with temperature de-

pendant viscosity [3-7]. Their working fluid was air with dynamic viscosity and thermal con-

ductivity following the Sutherland law. Then it was followed by the work of Frohlich et al. 
[8] and Severin et al. [9], which is the work on Rayleigh-Benard convection considering all 

fluid properties variable. Severin et al. [9] calculated the critical Reynolds number by using 

the method of asymptotic expansions and their results were valid only for small heat transfer 

rates. It is also of interest the most recent work of Nourollahi et al. [10], which is the work on 

entropy generation and Nusselt number in Rayleigh-Benard flow for six different values of 

the orientation angle, as well as the work of Gupta et al. [11] that analyses the very complex 

problem of the thermal instability of compressible electrically conducting Walters (model B') 

fluid layer permeated with suspended fluid particles. 

In the present work we consider the fluid flow for the Rayleigh number below the 

critical value against the wavenumber q = qm = 3.7 close to critical one (qc = 3.117). The nu-

merical simulation of 2-D Navier-Stokes equation in vorticity-streamfunction form is carried 

out for temperature-dependent thermophysical properties. In this cases we have the spatial 

temperature modulation at the lower wall, where m is the amplitude and qm is the wave-

number of temperature modulation around some average value at the lower plate. 

The mathematical model 

At Rayleigh-Benard convection we can use three different approaches: Oberbeck-  

-Boussinesq approximation, low Mach number approximation, and compressible Navier- 

-Stokes equations. The non-dimensional Oberbeck-Boussinesq equation system in the vortici-

ty-streamfunction form reads: 
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 (v ) Pr PrRa
t x

 
    
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   (3) 

 0    (4) 

 (v )
t


  




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The boundary conditions are the following 

 0, 0, 0,   at  1,y y         (6) 

 1, 0, 0,   at  1,y y          (7) 

   , R 0 2 , 1 1 .D x y x y         (8) 

Here  is the dimensionless vorticity of the fluid,   the dimensionless 

streamfunction,   the dimensionless temperature, and v  – the dimensionless velocity vector, 

which are functions of dimensionless co-ordinates x, y, and dimensionless time t. The non-

dimensional temperature  is defined as: 

 2

1 2

T T

T T






 (9) 

We have two boundary conditions for streamfunction and none for the vorticity. The 

problem is solved by the influence matrix method [12, 13], so that the first two eqs. (3) and 

(4) can be solved simultaneously, and the numerical method is described in detail [14]. We 

describe here only the numerical method used for energy equation. 

Solution procedure 

The above set of equations should be solved simultaneously in time, so we describe 

the procedure only for the energy equation. For the solution of the described problem we use 

the Fourier-Chebyshev pseudospectral method, with the Fourier-Galerkin method for approx-

imation in homogeneous x-direction and Chebyshev collocation method for non-homogenous 

y-direction. The eq. (5) in a developed form is: 

 
2 2

2 2
u v S

t x y x y

        
    
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 (10) 

Here S is the source term, which in our case is zero. Fourier approximation in 

streamwise direction can be expressed by trigonometric polynomials in the exponential form: 

        ˆ ˆ, , , e ,        , , , e
K K

k x k x
k k

k K k K

x y t y t S x y t s y t 
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  i i  (11) 

        ˆ ˆ, , , e ,          , , , e
K K

k x k x
k k

k K k K

v x y t v y t u x y t u y t
 

  i i 

 
(12) 
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Here 1, 2,
ˆ ˆˆ ˆ( , ), ( , ), ( , ),  and ( , )k ks t y u t y B t y B t y designate Fourier coefficients in the ex-

ponential form of trigonometric polynomials in (11)-(14) and i is the imaginary unit. After 

substitution (11), (12), (13), and (14) in (10) and differentiation we have: 
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If we apply the Galerkin method and the orthogonality condition then our system of 

equations is reduced to: 

 
           

2
2

1, 2, 2

ˆ ˆ
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l k N N

 
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 
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 (16) 

For approximation in y-direction we use the Chebyshev-collocation method in the 

following way: 

              22
1, 2, ,

0

ˆ
ˆ ˆ ˆ, , , , , , ,

yN

k
j k j k j k j k l k jj l

l

y t B y t B y t k y t d y t s y t
t 


    





   

 /2,..., /2,      cos ,    1,..., 1x x j y

y

j
k N N y j N

N


      (17) 

where dj,l
(2)

 are elements of Chebyshev differentiation matrix [15]. The boundary points j = 0 

and j = Ny are not included in the above system of equations. If we designate: 

 1, 2,( , ) ( , ) ( , )k j k j k jB y t B y t B y t   (18) 

for discretization in time, the second order finite difference method in the generalized form 

yields: 
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 

 



 



   




      
 

    
 

       

   



  0 1n t, t n t; n , ,...,N  

 (19) 

We use the semi-implicit Adams-Bashworth/backward differentiation method where 

we have: 

 1 2 1 2 1 22     0     2      1     0             1, , , , , i. e. ,                 (20) 

The values 
1n

k
ˆ  have to be calculated for each wave number k = 0,…,Nx/2, and each 

collocation point   cos   0 1j y yy j N , j , ,...,N   . The generalized form of the set of eqs. 

(19) can be solved for 1 = 0, 2 = 2 in the following way: 

 

             

 
           

2 22 1 2

0 0

1 1 1

1 2
1 1

2 2

1
1 2

2

π
/2 /2     cos    1 1         

y yN N
n n
k j k jj ,l j ,l

l l

n n n n n
k j k j k j k j k j

x x j y n

y

ˆ ˆk d y k d y
t t

ˆ ˆ ˆy s y s y B y B y
t

j
k N ,...,N , y , j ,...,N , t n t;

N



 

  

    
         

       


      
 

      

 
 

     


  

0 1 tn , ,...,N

 (21) 

If we introduce the following matrices: 

 
 

1 11 1 2

0 0
I             D

xx

y y

i ,...,Ni ,...,N

i, j i , jj ,...,N j ,...,N
, d

  

 

      
 (22) 

and scalars 

  2 2
1 0 1

1 1
        1           

2 2
k , k ,

t t t

  
    

  
      

  
 (23) 

then we obtain the above system of eq. (21) in the form: 

 

1 1 1 1
1 0 1I D I (1 )D I I (1 )I 2

/2 /2             0 1

n n n n n n n
k k k k k k k

x x n t

ˆ ˆ ˆ ˆ ˆs s B B ,

k N ,...,N , t n t; n , ,...,N

   
               

   

         
 (24) 

where 

 0 0 0[ ( ) ( )] [ ( ) ( )] [ ( ) ( )]
y y y

n n n T n n n T n n n T
k k k N k k k N k k k N

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆy ,..., y , s s y ,...,s y , B B y ,...,B y      (25) 
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If we introduce the notation: 

  1 0 4 1B I D , B I 1 D , B I                 (26) 

we finally obtain this matrix equation: 

 
 1 1 1 1B B B I 1 I 2

0 /2 0 1

n n n n n n n
k k k k k k k

x n t

ˆ ˆ ˆ ˆ ˆs s B B ,

k ,...,N , t n t, n , ,...,N

       
      

   
 (27) 

This system of equations should be supplemented by boundary conditions. The hori-

zontal walls are assumed to be isothermal with temperatures hot = 1 and cold = 0 (at classical 

RBC, in our FRBC case hot =  1 sin cos sinm m m mq x q x t     at the bottom and top 

walls, respectively: 

    2 2 1 2
cold hot

1 2 1 2

1 0;      1 1
T T T T

y y
T T T T

 
 

      
 

 (28) 

The generalized Robin boundary conditions have the form 

 

 

       0 0 ( )       ( )N Ny ,t y ,t g t , y ,t y ,t g t
y y

 
          

 
   

 
 (29) 

Here , and , ,       are constants and can have the value 1 or 0, depending on 

the type of boundary conditions (Robin, Dirichlet or Neumann boundary condition). Time va-

riables  and g , g  are prescribed boundary conditions for temperature and/or heat flux on up-

per and lower plate. After the implementation of Chebyshev collocation method we have: 

            1 1

0 0

0 0

( )      ( )
j N j N

j N N. j j. j

j j

y ,t d y ,t g t , y ,t d y ,t g t       
 

     

 

      (30) 

In these equation N is the number of collocation point in y-direction. Boundary con-

ditions on the upper and lower plate can be represented in this way: 

        , ,
ˆ ˆ,1, , ,     , 1, , e

K K
k x k x

k k

k K k K

g x t g y t e g x t g y t   

 

   i i  (31) 

If we multiply by e ilx
and implement the orthogonality condition we get: 

 

       

       

1

0 0

0

1

0

N

k k j ,k. j

j

N

k N N. j k j ,k

j

ˆ ˆ ˆy ,t d y ,t g t

ˆ ˆ ˆy ,t d y ,t g t

   

   

  



  



 

 





 (32) 

In our case we have: 

 
       

       

 

 

1
11 1 1 1 0

0 0 0 1 0 2 0
1 1 1 1

0 1 2 2

n
n

k
, , , ,N ,k

,k
N , N , N , N ,

k N

ˆ y
ˆd d d d g
ĝd d d d ˆ y


    

     




     


    

      
             

 (33) 
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11 1 1 1
10 0 0 1 0 2 0

11 1 1 1

0 1 2 2

D    

n
n, , , ,N ,k

,k
N , N , N , N ,

ˆd d d d g
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(34) 

The system of eqs. (27) and (34) can be solved by direct methods: 

 
 1 1 1 1 1

1 1

B I 1 I 2 B B

D ; 0 /2 0 1

n n n n n n n n
k k k k k k k k

n n
k k x n t

ˆˆ ˆ ˆˆ ˆs s B B h ,

ˆ ĝ k ,...,N , t n t; n , ,...,N

    



    


 

       

    
 (35) 

If we introduce the following notation: 

 
1

1
1

B
A ,       

D

n
n k

k n
k

ĥ
f̂

ĝ






         
 (36) 

the system is reduced to: 

 
1 1A ,    0 /2     0 1n n

k k x t
ˆˆ f k ,...,N , n , ,...,N      (37) 

This system of eq. (37) should be solved in the given time step prior to the solution 

of momentum equation in the vorticity-streamfunction form (3) and definition of vorticity in 

terms of streamfunction (4). The calculated values of 
1n 

 obtained as a solution of (37) 

should be used in eq. (3). The system of eqs. (3), (4), and (37) is solved for each time step  

n = 0, 1, …, Nt for all wave numbers k = 0, 1,…, Nx2. 

Initial and boundary conditions and simulation results 

We consider the initial condition for our simulation for the case of forced Rayleigh- 

-Benard convection with temperature modulation on the lower wall: 

      0 0     0 0     0 0x, y,t , x, y, , x, y, ,       

     for  R 0 2 1 1x,y D x,y x , y           (38) 

The temperature at the lower plate is raised gradually according to the following 

law: 

 
   

   
m m m m

m m m m

1 1 sin δ cos sin          0 π 2

1 1 sin cos             π 2

x, y ,t q x q x t, t

x, y ,t q x q x , t

   

   

      

     
 (39) 

The temperature at the lower wall is not constant in x-direction, it depends on mod-

ulation wavenumber qm, amplitude m and frequency . Rayleigh number Ra measures the 
average temperature gradient, while the additional spatial modulation is characterized by 

small amplitude m and wavenumber qm. In the absence of forcing (m = 0), convection rolls 

with wavenumber qc, bifurcate only for Ra above the critical Rayleigh number Rac. 

In contrast, for m  0, convection is unavoidable for any finite Ra; in the simplest 

case in the form of “forced rolls” with the wave vector qm. The main goal of the present work 
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is to provide a direct numerical simulation of rolls and their stability in presence of forcing 

with small amplitude m = O(0.01) and in the ratio qmqc = 1.2. The stability of the forced rolls 

strongly depends on ratio qmqc. It is very important to emphasize that our Ra number vary 

temporally and spatially, since temperature at the lower wall is described by eq. (39), and 

temperature difference T1  T2 in eq. (1) varies with time t and x-co-ordinate. Our idea is to 

show the evolution of streamfunction, vorticity, velocity in the transition period  

0  t  , for frequency  = 1. The values we have chosen are subcritical values Ra = 1000,  

qm = 3.7 according to linear stability analysis, for Pr = 7, t = 300, m = 0.01, number of Fourier 

modes K = 96, number of nodes Nx = 192, number of Chebyshev collocation points Ny = 192. 

The results of direct numerical simulation 

It is well known that in a large layer of heated fluid, convection occurs as a steady 

pattern of 2-D rolls. The 2-D convection rolls and stability properties were investigated in de-

tail in [16] and [17]. For heated layer corresponding to Ra  Rac the stable roll patterns occur 

only within a band of wavenumber centered approximately about the critical wavenumber qc. 

In this section we present the results of the numerical simulation obtained by our  

2-D pseudo-spectral code for Navier-Stokes equation in streamfunction-vorticity formulation 

and energy equation, with the initial and boundary conditions described above. The vorticity 

distribution for six instants of non-dimensional time t = 6, 3, 2, 23, 56, and  is shown 

in fig. 1. Since we have chosen qm = 3.7, such number of the pair of rolls can be seen at t = 6 

at the lower wall. The maximal and minimal values of vorticity at the lower wall are slightly 

lower than 2 and above 2. In the next instant of time t = 3 we can see the increase in the vor-

ticity intensity, where it attains the values in the range from 19 to 20, and the distribution re-

mains almost unperturbed. In the next instant of time t = 2 we can see slight vorticity distribu-

tion deformation, and the jump in the range of the values from 50 to 50. This is the instant of 

time when the temperature at the lower wall has attained its final value, but with its modulation 

in x-direction. At t = 23 the convective terms in energy equation start to transport vorticity in 

upwards direction and extreme values of vorticity increase further 90    90 although the 

temperature at the lower wall is temporarily constant now, but with modulation in x-direction. 

At t = 56 we can see that the vorticity rolls are pushed upwards and that the concentration of 

vorticity appears at the upper wall, whereby the range of vorticity is now 105    120. Final-

ly at t = , the vorticity circulation is established, forced by buoyancy effect, and the positive 

and negative vortexes at the upper wall are much more noticeable than before, although there is 

no temperature modulation on upper plate, that is the source of . 

The results of the numerical simulation for streamfunction are given in fig. 2. We 

can see that the range of values is increased not only for the time period when the temperature 

at the lower wall is increased (t  2), but also when the temperature attains its constant value 

(2 < t). The spatial distribution of the instantaneous streamlines is unaltered in time period 

0  t  2, but afterwards 2  t   convective terms attain values that significantly change 

the intensity and distribution. 

The instantaneous streamlines are shown with constant colors intensity in fig. 2, where 
we can see more than three (qm = 3.7) pair of positive and negative streamfunction areas in the 

vicinity of bottom wall with equal size and spatial distribution in x-direction for time period  

(t  2), but as time elapses we can notice their intensity increase, which can be seen on the 

color bars on right hand side. In the period of time t > /2, we can see that their intensity still in-

crease but their spatial distribution is not even and their size is not equal.  
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 Vorticity  (x, y, t) t = 0.523599 Vorticity  (x, y, t) t = 1.0472 

  

 Vorticity  (x, y, t) t = 1.5708 Vorticity  (x, y, t) t = 2.0944 

  

 Vorticity  (x, y, t) t = 2.61799 Vorticity  (x, y, t) t = 3.14159 

 
Figure 1. Non-dimensional vorticity evolution in forced Rayleigh-Benard convection 

At t =  we see the different streamfunction distribution in the middle of the channel, 

the area of extreme values of streamfunction lift up from the lower wall, so we have now two 

positive and one negative streamlines area instead of seven we had at t  6, what is the conse-

quence of non-linear instability. 

The results of numerical simulation for velocity in x-direction are given in fig. 3. The 

u-velocity keeps its form in time period 0  t  2, but afterwards 2  t   buoyancy effect 

becomes significant, and convective terms attain values that significantly change the intensity 

and distribution of u-velocity. In time period 2  t   distribution pattern changes and be-

comes partly disordered. The range of values increases although the temperature at the lower 

wall reaches its constant value at instant of time t = 2 and afterward remains constant. The 
fluid heating through the lower wall and fluid cooling through the upper wall is not in balance 

so the increase in kinetic and thermal energy in the fluid flow is remarkable. The range of 

values in t = 23 is 5  u  5, in t = 56 is 6.5  u  8.25, and in t =  is 11  u  10.5, 

and the position of the extreme values is pushed from the lower wall toward the middle of the 

channel. 
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 Streamfunction  (x, y, t) t = 0.523599 Streamfunction  (x, y, t) t = 1.0472 

 
 Streamfunction  (x, y, t) t = 1.5708 Streamfunction  (x, y, t) t = 2.0944 

 
 Streamfunction  (x, y, t) t = 2.61799 Streamfunction  (x, y, t) t = 3.14159 

 

Figure 2. Non-dimensional streamfunction evolution in forced Rayleigh-Benard convection 

The lower wall with its temperature modulation is the source of momentum in the 

initial stages and later the extreme values are shifted in the middle of the channel. The values 

near the lower wall are increased until t = 23, and in the next period remain approximatly 

the same as in the previous instant of time. In this period of time the lower wall serves as the 

source of momentum in x-direction and feeds the momentum in the middle of the channel. 

The v-velocity evolution for the time period 0  t   is shown in the fig. 4. We can 

see that the values of v-velocity increase until t  56, and later its value fluctuate about the 

mean value. In fig. 4 we can see the upflow and downflow for t  2 at the center of the 

channel are disturbed. In this case both buoyancy and shear have a destabilizing effect on the 

flow pattern, and travelling rolls are possible flow structures at t  2. 

The disturbance in spatial distribution can be seen at t  56 and t  . We can see 

that the convection is unavoidable for this Rayleigh number Ra = 1000, for m  0.01 (forced 
RBC flow) for each instant of time in the form of forced rolls with the wavenumber qm  3.7 

as can be seen in fig. 4. Only for qm in the vicinity of the critical wave number qc the forced 

rolls remain stable up to fairly large Ra  Rac. In our case this roll has lost its stability at 

t  2, in spite of the fact that our qm = 3.7 is in the vicinity of the critical wavenumber, and 

the Rayleigh number Ra  1000 is significantly below the critical value Rac  1708.  
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 Velocity u (x, y, t) t = 0.523599 Velocity u (x, y, t) t = 1.0472 

 

 Velocity u (x, y, t) t = 1.5708 Velocity u (x, y, t) t = 2.0944 

 

 Velocity u (x, y, t) t = 2.61799 Velocity u (x, y, t) t = 3.14159 

 

Figure 3. Non-dimensional u-velocity evolution in forced Rayleigh-Benard convection 

In our simulation the instability is reached at lower values of Ra at the value of wa-

venumber which is close to the critical one. We have Ra  Rac but the periodic roll solution 

exist, since we have m  0. For m  0 the periodic roll solution can exist only if Ra  Rac. 

Exploring the stability regime of rolls is a demanding task, and even more difficult is the pat-

tern selection, i. e. to understate which is spontaneously chosen by system dynamics. 

The compression of the rolls in the interior, which accompanies the enhanced rolls 

curvature, causes the wavenumber in the cell center to exceed the instability boundary and 

leads to the formation of the dislocation pairs. These defects then travel toward the wall by 

climbing in direction normal to the roll axes. The result of this process is the reduction of qm 
to the values less than qc and thus the re-stabilization of the pattern. However the domain 

walls emit new rolls, which gradually re-compress the ones in the center and thus lead to per-

sistent time dependence. 

Above the onset of time dependence, the simulation has shown that the process can 

be chaotic or periodic apparently depending sensitively on Pr, qm, and m. 
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 Velocity v (x, y, t) t = 0.523599 Velocity v (x, y, t) t = 1.0472 

 

 Velocity v (x, y, t) t = 1.5708 Velocity v (x, y, t) t = 2.0944 

 

 Velocity v (x, y, t) t = 2.61799 Velocity v (x, y, t) t = 3.14159 

 

Figure 4. Non-dimensional v-velocity evolution in forced Rayleigh-Benard convection 

Conclusions 

In this paper, we have investigated the FRBC, where, in addition to applied tempera-

ture gradient, a sinusoidal temperature modulation with amplitude m and wavenumber qm is 

applied at the lower plate. While in unforced RBC the heat conduction state becomes unstable 

at the critical Rayleigh number Rac against convection rolls with wavenumber qc, forced roll 

solutions with wavenumber qm exist at any given Ra. 

Various destabilization mechanism acting on forced rolls depend sensitively on the 
ratio qmqc, and here the results of simulation when this ratio is 1.2 are shown. First we plan to 

address additional spatial forcing at the upper plate. This opens up new possibilities, in partic-

ular when the system is exposed to the presence of non-equal forcing wavenumbers imposed 

at the two confining plates. Of particular interest is the case of RBC in an inclined fluid layer 

in the presence of spatial temperatur modulation.  
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Nomenclature 

1,
ˆ ( , )kB t y  – Fourier coefficient for the  

  convective term ( ),u x  [–] 

2,
ˆ ( , )kB t y  – Fourier coefficient for the  

  convective term ( ),v y  [–] 
d – distance between plates, [m] 
g – gravitational acceleration, [ms–2] 
H – half height between plates, [m] 
qm – dimensionless temperature  
  modulation wavenumber, [–] 
qc – critical Rayleigh wavenumber, [–] 
Pr – Prandtl number, [–] 
Ra – Rayleigh number, [–] 
Rac – critical Rayleigh number, [–] 
S(x, y, t) – dimensionless heat source/sink, [–] 
ˆ ( , )

k

s t y  – Fourier coefficient for the  
  heat source or heat sink, [–] 
T1(x, –1, t) –  temperature of the lower wall, [K] 
T2(y  1) – temperature of the upper wall, [K] 
T(x, y, t) – temperature of the fluid, [K] 
t – non-dimensional time, [–] 
u(x, y, t) –  dimensionless longitudinal  
  velocity component, [–] 
ˆ ( , )

k

u t y  – Fourier coefficient for u-velocity, [–] 
v( , , )x y t  – dimensionless fluid velocity vector 
  having components (u, v), [–] 

v (x, y, t) – dimensionless transversal velocity  
  component, [–] 

ˆ ( , )
k

v t y  – Fourier coefficient for v-velocity, [–] 

Greek symbols 

 (T) –  thermal diffusivity, [m2s1] 
 (T) – thermal expansion coefficient, [K1] 
m – non-dimensional temperature  
  modulation amplitude, [–] 
i,j – Kronecker delta, if i  j it is one,  
  otherwise i  j it is zero, [–] 
 (T) –  kinematic viscosity, [m2s1] 
 (x, y, t) –  dimensionless fluid termperature, [–] 
 (T) – fluid density, [kgm3] 
 – non-dimensional frequency [–] 
(x, y, t) –  dimensionless vorticity, [–] 
(x, y, t) –  dimensionless stream function, [–] 

Subscripts  

k – Fourier coefficient wavenumber 
m – temperatrue modulation 
c – critical value  
0 – Chebyshev collocation point on the lower wall 
N – Chebyshev collocation point on the upper wall 
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