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Dimensionless experimental formulae based on a rational reciprocal function for
correlation of flashpoint data of binary mixtures of two flammable components
have been developed. The formulae are based on data obtained from flash-point ex-
periments. The proposed approach requires only two coefficients, molar fraction of
components and flashpoint temperatures of the pure flammable components to be
known in advance. Literature data were used for formulae verification and valida-
tion obtained results indicate that accuracy is comparable and to some extent better
than that of conventional flash point prediction models. Dimensional analysis and
scaling of data have been performed in order to define the correct construction of
the equation fitting flash-point data in dimensionless form using the independent
variables suggested by Catoire. Stefan number relevant flash-point of a single com-
pound or a blend has been defined.
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Introduction

Flashpoint of liquids

The flash points (FP) of flammable liquids are of uttermost importance for risk estima-

tion in fire scenarios as well as for storage, usage and transport of flammable substances. The FP

is defined as the “lowest temperature under ambient conditions (corrected to 101.3 kPa) at

which the vapors of a specimen ignite by application of an external ignition source [1] ). Even

though the FP are almost constant characteristics of materials, the published values vary due to

differences in both the method as well as the testing devices used (i. e. closed-cup or open-cup

methods) [2]. The more reliable closed cup FP predictions [3-7] use iterative calculations, for

instance, based on the Antoine equation [8], and the Le Chatelier’s rule helped by either Dal-

ton’s or Raoult’s laws for ideal solutions or their corrected versions when the solutions deviate

from the perfect ones [9].
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The FP data of chemicals are readily available in literature, but useful dimensionless

formulae correlating data obtained from experiments are highly needed. To be precise, this

statement addresses the main drawback of the existing relationships in dimensional forms lead-

ing to ambiguities, dimensional pre-factors and exponents, dimensional non-homogeneity and

last but not least those relationships are incorrectly constructed. This problem and the author’s

standpoint are especially developed in discussion.

Aim

The present work addresses correlations of experimental data obtained from either

open or closed cup tests. The goal of this report is to show: how the experimental data can be

correlated from a uniform point a view through non-dimensionalization, and how the proposed

reciprocal functions can be derived directly from the behavior of dimensionless plots of the ex-

perimental data.

Therefore, the work addresses a post processing step following the experimental deter-

mination of FP data. The tests were performed with literature data due to two main reasons:

– to avoid any doubts about the correctness of the experimental data used, and

– to demonstrate the approach through simple examples.

Dimensional analysis and scaling are used to demonstrate how the correct construc-

tion of data fitting equations should be developed. The example was performed on the basis of

the equation suggested by Catoire et al. [6, 10] that finally resulted in a decaying function

well-represented by the reciprocal one used in this work.

Experimental formulae for FP data the

currents status and problem formulation

Before explaining the guiding idea of the new approach the next section state the sci-

entific problem in FP data correlations which inspired the authors to undertake this research.

Numerous FP experimental data are published in scientific literature; while most of that data in-

corporate either experimental or systematic errors (see the scope of such equations and data in

ref. 6). Commonly, a 3rd order polynomial correlations for FP is used to fit particular sets of ex-

perimental data (tab. 1), where the independent variable is the mole fraction of the flammable

component, for aqueous solutions, for example. The polynomial expressions could be of differ-

ent orders, either quadratic or cubic or higher but general rule in choosing the order of polyno-

mial doesn’t exist. A cubic relationship with 4 coefficients, for instance, is inherently affected

by the uncertainty in the experiments and the regression [11].

The extant approach, briefly mentioned above, treats the data in dimensional form by

polynomial expressions without any rule in choosing the order of approximation. Commonly,

the rule “as much as higher order of the chosen polynomial expression provides better approxi-

mation” does not seems sound and generate enormous number of dimensional coefficients with-

out any physical meaning. To be precise in this judgment, consider the case of 3rd or 5th order

polynomial expressions of the flash point data for hypothetic flammable mixture, simply ex-

pressed as:

TFP(x) = A0 + A1x + A2x
2 + A3x

3 + A4x
4 + A5x

5 (1)

where x is the molar fraction and A1 to A5 are coefficients derived by regressions in eq. (1); A1 to

A5 are dimensional coefficients with dimensions such A2 [1/°C2] or A2 [1/°C5] which are com-
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pletely physically inconsistent. Moreover, the orders of magnitudes of each member on RHS of

eq. (1) are quite different. The dimensional form of the expressions does not allow estimating

the significance of the coefficients generated by such approximations. The literature is plenty of

similar empirically generated formulae (see the examples provided in this work) and unfortu-

nately no right approach in data correlation has been developed yet.

Table 1. FP approximations developed for binary mixtures

Mixture Reciprocal approximation

n-decane (1)-n-dodecane (2)
maxTFP(x=1) = 344.15 K(2)

Exp. data from [6]
Correlation (TFP in °C):

TFP = 16.841 x
1
2– 43.523x1 +

+ 72.049

RA1 y = (1.003 + 0.085x1)
–1, R2 = 0.961, c2 = 0.0002

RAM y = 0.999 (1 + 0.085x1)
–1, R2 = 0.9969, c2 = 0.00002

RAS y = (1 + 0.0865x1)
–1, R2 = 0.9609, c2 = 0.0003

FH function y = (1.0 + 0.0812x
1
0 542. )–1, R2 = 0.9698, c2 = 1.0118·10–4

n-octane (1)-n-heptane (2)
maxTFP(x=1) = 288.15 K(1)

Exp. data from [6]
Correlation (Tfp in °C):

TFP = 8.9394 x
1
2– 10.088x1 +

+ 4.0455
R2 = 0.9781, TFP in °C

RA1 y = (1.004 + 0.0716x2)
–1, R2 = 0.9864, c2 = 7.332·10–6

RAM y = 0.996 (1 + 0.0713x2)
–1, R2 = 0.9864, c2 = 7.332·10–6

RAS y = (1 + 0.0994x2)
–1, R2 = 0.9987, c2 = 7.886·10–7

FH function y = (1.0 + 0.078x
2
0 693. )–1, R2 = 0.995, c2 = 7.03·10–6

chlorobenzene (1)-aniline (2)
maxTFP(x=1) = 343.15 K(2)

Exp. data from [7]

RA1 y = (1.012 + 0.135x1)
–1, R2 = 0.9616, c2 = 5.856·10–5

RAM y = 0.987 (1 + 0.133x1)
–1, R2 = 0.9616, c2 = 5.271·10–4

RAS y = (1 + 0.154x1)
–1, R2 = 0.9361, c2 = 9.748·10–5

FH function y = (1.0 + 0.133x
1
0 469. )–1, R2 = 0.9698, c2 = 2.457·10–5

methyl acetate
(1)-methyl-acrylate (2)

maxTFP(x=1) = 271.05 K(2)

Exp. data from [12]

RA1 y = (0.999 + 0.0492x1)
–1, R2 = 0.989, c2 = 2.675·10–6

RAM y = 1.0 (1 + 0.049x1)
–1, R2 = 0.989, c2 = 2.675·10–6

RAS y = (1 + 0.049x1)
–1, R2 = 0.990, c2 = 2.407·10–6

FH function y = (1.0 + 0.046x
1
0 723. )–1, R2 = 0.9698, c2 = 2.457·10–5

ethanol (1)- 1-butanol (2)
maxTFP(x=1) = 308.15 K(2)

Exp. data from [12]

RA1 y = (1.003 + 0.078x1)
–1, R2 = 0.9791, c2 = 1.230·10–5

RAM y = 1.0 (1 + 0.078x1)
–1, R2 = 0.9791, c2 = 1.230·10–5

RAS y = (1 + 0.841x1)
–1, R2 = 0.975, c2 = 1.470·10–5

FH function y = (1.0 + 0.078x
1
0 748. )–1, R2 = 0.9788, c2 = 9.841·10–6

cyclohexylamine (1)-
cyclohexanol (2)

maxTFP(x=1) = 341.15 K(2)

Exp. data from [13]

RA1 y = (1.009 + 0.136x1)
–1, R2 = 0.9652, c2 = 5.390·10–5

RAM y = 0.990 (1 + 0.134x1)
–1, R2 = 0.9652, c2 = 5.390·10–5

RAS y = (1 + 0.149x1)
–1, R2 = 0.9538, c2 = 7.172·10–5

FH function y = (1.0 + 0.133x
1
0 575. )–1, R2 = 0.9788, c2 = 9.834·10–6
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Method

Initial steps

The present work addresses some major issues in data correlations allowing creating

common rules among them:

– All the data are presented in Kelvin [K] rather than in Celsius [°C] thus avoiding problems

with those mixtures having flashpoint below 0 °C. The outcome of this is that all data are

positive.

– All the data are preliminary normalized by maximum of FP of components from mixture the

main outcome of this approach is that all data are presented in the dimesionless square [1, 1],

which indicates that the scaled dependent variable (the mixture FP) varies in the range [0, 1].

The same stands for the independent parameter (the mole fraction). The non-

-dimensionalization of the FP data and dimensionless formulae have never been applied

before even though this is the common rule in data treatment widely applied in mechanics,

fluid flow, mass transfer, etc.

The dimensionless forms allow estimating the order of magnitudes of the coefficients

in formulae and the rational order of magnitude of approximation. This approach does not limit

the choice of the function used to correlate the data. This is explicitly demonstrated in the pres-

ent work by simultaneous use of different versions of the reciprocal function and polynomial ex-

pressions.

The formulae should be useful, allowing good approximations by using minimum nu-

merical data (coefficients) to be known preliminarily which is very important in creation of

practical documents such as handbooks and datasheets of particular mixtures, sub-program in

large computer codes, etc.

Correlation method by examples

The main function used to correlate the data in the present work is the reciprocal func-

tion y = 1/ (a + bx1 + c1x2). The choice is natural since after non-dimensionalization of the exper-

imental data through the step described in preceding subsection, all plots (see the figures with

experimental data) become decaying and closed by the dimensionless square [1, 1]. Moreover,

the reciprocal function has just a few unknown coefficients that have to determine using the con-

ventional regression methods. Exactly, that property offers the advantage as opposed to conven-

tional polynomial approximation approach (where the coefficients and more importantly order

of the polynomial has to be estimated by trial and error procedures). In the following text, we

will explain the approach on the example of one flammable component and will continue apply-

ing it to two flammable components. Additionally, in the section Alternatives to the reciprocal

function different reciprocal functions will be tested to correlation of the dimensionless data.

One flammable component

The method was conceived with data about FP of water-alcohol mixtures [14] using

the relationship based on following reciprocal function:

y
a bx

y
T

T
�

�
�

�

1
, FP

FP (x 1)

(2)
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where y is the scaled (dimensionless) FP temperature of given flammable mixture and x – the

molar fraction of the alcohol. In eq. (1), a and b are coefficient that have to determined via fit-

ting to experimental data.

The approach requires an initial normalization of the experimental mixture FP data by

TFP of the pure flammable component as it described in point 1 (see the subsection Initial steps).

Moreover, we have a + b � 1 because if x � 1, we have y � 1. The main advantage of the initial

normalization and the use of the reciprocal function are:

– The data correlated are normalized and all of them prior the regression analysis have order of

magnitude of unity, i. e. y � O��� as it was formulated above.

– The right-hand side of eq. (1) varies within the range [0, 1]. Therefore, both sides of eq. (1)

have equal order of magnitudes of order of unity O(1) which is the primary requirement in

data correlation and scaling. Unfortunately, the exiting literature, as already mentioned,

provides correlations in dimensional form, where this basic requirement for data correlation

is not satisfied (see further the discussion section for general comments).

Two flammable components: correlations by reciprocal functions

Additionally, the proposed approach can be used for approximation of FP data of bi-

nary non-aqueous mixtures of two flammable components. In that case the scaled

(dimensionless) FP temperature of mixture is:

y
a bx c x

�
� �

1

1 1 2

(3)

The molar fractions x1 and x2 of the two components satisfy the condition (x1 + x2 = 1).

In eq. (3) a, b, and c, are coefficient that have to determined via fitting to experimental data. Ad-

ditionally, in eq. (3) the right-hand side is dimensionless, i. e. y = TFP(mixture)/maxTFP(x=1) where

maxTFP(x=1) = max( , )( ) ( )T TFP x FP x1 21 1� � is the higher FP exhibited of each the components at x = 1.

Then, the general rules for correct data correlations are:

In eq. (3), x1 is the molar fraction of the component with the lower TFP(x=1) (high-vola-

tile component), while x2 is that of the component with the higher one (low-volatile component).

With this concept, eq. (3) can be simplified as:

y
a bx c x a c b c x m nx

�
� � 	



� � 	



�

1

1

1 1

1 1 1 1( ) ( ) ( )
(4a, b, c)

or vice versa

y
a bx c x a b x cx p qx

�
� � 	



� 	 �



�

1

1

1

1

1

1 1 2 2 2( ) ( )
(5a, b, c)

The concept can be simply exemplified by mixture of n-decane (1)/n-dodecane (2) dis-

cussed further in this work (tab. 2) and exhibiting and TFP(x1 = 1, x2 = 0) = 319.15 K and TFP(x1 =

= 0, x2 = 1) = 344.15 K. Then, maxTFP(x=1) = 344.15 corresponding to x1 = 0, x2 = 1 and the corre-

lation (3) reads y = TFP(mixture)/T xFP( )1 1� = f(x1), i. e. expressed by eq. (4c). In contrast, the example

with n-octnane (1)-n-heptane (2) (see tab. 1) shows that TFP(x1 = 1, x2 = 0) = 288.15 K(n-octane),

while TFP(x1 = 0, x2 = 1) = 269.15 K(n-heptane) then following the rule we get maxTFP(x=1) =

= 288.15 K and the correlations is y = TFP(mixture)/max ( )T xTFP �1 = f(x2).
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Alternatives to the reciprocal function

The data normalization of the initial data does not restrict the methodology to the recip-
rocal function only, even though the dominating examples in this work stress the attention on it.
Following the dominating case in the literature and the rules drawn above it is possible to create
correlations as polynomials of different orders, namely, as an example:

y
T

T
f x p p x p x p x� � � � � �

�

FP mixture

FP xi

( )

( )max
( )

1

1 0 1 1 2 1
2

3 1
3 (6)

In this case all the coefficients pi are dimensionless that enables to estimate the order of
magnitude of each of them, as well as to estimate the reasonable order of the approximating
polynomials.

The target of the proposed approach

In order to demonstrate the merits of the proposed approach, only the FP data for bi-
nary mixtures showing normal behavior were used (i. e. the mixture FP is neither higher nor
lower than those exhibited by the pure components) were used. Additionally, some examples of
mixtures exhibiting strong concave behavior due to partial immiscibility of components were
tested. Mixtures with extrema (maxima or minima) in the FP [13-16] are beyond the scope of
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Table 2. Mixture flash points of n-decane(1)-n-dodecane(2)

Experimental data
Thermodynamic-

-based model
predictions

Approximations (present work)
D = (Tpredicted – Texperimental)

x1

TFP

[K]
(exp)

TFP

[K]
(Ideal)

DIE

[K]

TFP

[K]
appr.
(RA1)

DRA1

[K]

TFP

[K]
appr.

(RAM)

DRAM

[K]

TFP

[K]
appr.
(RAS)

DRAS

[K]

1.0 319.15 319.15 0 316.31 2.84 316.87 2.28 316.75 2.4

0.9 319.65 320.55 0.9 318.81 0.84 319.37 0.28 319.29 0.36

0.8 320.95 322.05 1.1 321.33 –0.38 321.92 –0.97 321.88 –0.93

0.7 322.65 323.75 1.1 323.91 –1.26 324.5 –1.85 324.50 –1.85

0.6 324.15 325.65 1.5 326.52 –2.37 327.12 –2.97 327.17 –3.02

0.5 326.65 327.75 1.1 329.17 –2.52 329.79 –3.14 329.88 –3.23

0.4 331.65 330.15 –1.5 331.87 –0.22 332.5 –0.85 332.64 –0.99

0.3 334.35 332.85 –1.5 334.61 –0.26 335.26 –0.91 335.44 –1.09

0.2 338.15 336.05 –2.1 337.40 0.75 338.06 0.09 338.30 –0.15

0.1 341.15 339.75 –1.4 340.24 0.91 340.91 0.24 341.20 –0.05

0.0 344.15 344.15 0 343.12 1.03 343.81 0.34 344.15 0

Exp. data from [6]; I – idedal (Raoult's law) [8]



the present work even though the general approach in data scaling through initial non-
-dimensialization is also valid, but such mixtures form a special group requiring more refined
approach in the choice of the correlating functions. Therefore, the correlations developed in this
work by reciprocal functions are limited to binary mixtures with concave behaviour of the curve
fitting FP experimental data.

Versions of the reciprocal function

The reciprocal function (see eqs. (2), 4(c), and 5(c)) has two versions which will be
also explored, namely:

– modified reciprocal approximation (RAM)

y
a

b x
M

M

M

�
�1

(7)

– simplified reciprocal (RAs)

y
b x

S

S

�
�

1

1
(8)

– Farazdaghi-Harris function

y
a bx

�
�
1

c
(9)

The Farazdaghi-Harris (FH) function [17])

is commonly classified among the power-law

function but looking at the similarity with the

reciprocal function we will explore its suitabil-

ity to correlate FP data.

Numerical experiments

Reciprocal function approximations

The numerical experiments were per-

formed with a set of binary mixtures exhibiting

both ideal and no-ideal behaviour. Moreover,

parallel to the reciprocal formulae, polynomial

approximation up to the 5th order were per-

formed. The equations developed by all numer-

ical tests are summarized in tab.1. In addition,

tab. 2-5 provide data about the accuracy of data

fitting compared to both experimental data and

predictions by thermodynamic models. The

mixtures presented in these tables are practi-

cally ideal because the components are of one

and the same homological series. An addition,

graphical presentation are shown in fig.1. Even

though the plots provide a visual information of

the behavior of the approximation function the

exact information about the errors can be taken

from the tabulated data.
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Figure 1. Graphical tests of binary mixture FP
correlation by reciprocal functions (for color
image see journal web site)
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Table 4. Mixture FP of methylacetate (1)-methyl acrylate(2)

Experimental data
Thermodynamic-

-based model
predictions

Approximations (present work)
D = (Tpredicted – Texperimental)

x1

TFP

[K]
(exp)

TFP

[K]
(Ideal)

DIE

[K]

TFP

[K]
appr.
(RA1)

DRA1

[K]

TFP

[K]
appr.

(RAM)

DRAM

[K]

TFP

[K]
appr.
(RAS)

DRAS

[K]

1.0 258.75 258.75 0.0 258.59 0.16 258.34 0.41 258.34 0.41

0.9 259.65 259.65 0.0 259.81 –0.16 259.56 0.09 259.56 0.09

0.8 261.25 260.60 0.65 261.04 0.21 260.78 0.47 260.78 0.47

0.7 261.55 261.62 –0.07 262.28 –0.73 262.03 –0.48 262.03 –0.48

0.6 262.65 262.70 –0.05 263.53 –0.88 263.28 –0.63 263.28 –0.63

0.5 264.35 263.85 0.50 264.80 –0.45 264.54 –0.19 264.54 –0.19

0.4 265.35 265.08 0.27 266.08 –0.73 265.82 –0.47 265.82 –0.47

0.3 267.55 266.40 1.15 267.37 0.18 267.12 0.43 267.12 0.43

0.2 268.25 267.83 0.42 268.67 –0.42 268.41 –0.16 268.41 –0.16

0.1 270.25 269.37 0.88 269.99 0.26 269.72 0.53 269.72 0.53

0.0 271.05 271.05 0.0 271.32 –0.27 271.05 0 271.05 0

Exp. data from [16]; I – idedal (Raoult's law) [8]

Table 3. Mixture FP of chlorobenzene (1)-aniline(2)

Experimental data
Thermodynamic-

-based model
predictions

Approximations (present work)
D = (Tpredicted – Texperimental)

x1

TFP

[K]
(exp)

TFP

[K]
(Ideal)

DIE

[K]

TFP

[K]
appr.
(RA1)

DRA1

[K]

TFP

[K]
appr.

(RAM)

DRAM

[K]

TFP

[K]
appr.
(RAS)

DRAS

[K]

1.0 301.15 301.15 0.0 299.17 1.98 298.93 2.22 297.36 3.79

0.9 304.95 302.95 –2.0 302.73 2.22 302.48 2.47 301.38 3.57

0.8 305.65 304.95 –0.7 306.38 –0.73 306.12 –0.47 305.51 0.14

0.7 308.15 307.15 –1.0 310.12 –1.97 309.84 –1.69 309.76 –1.61

0.6 310.75 309.75 –1.0 313.95 –3.2 313.66 –2.91 314.12 –3.37

0.5 315.85 312.75 –3.1 317.88 –2.03 317.57 –1.72 318.62 –2.77

0.4 321.85 316.35 –5.5 321.90 –0.05 321.58 –0.27 323.24 –1.39

0.3 328.15 320.75 –7.4 326.03 2.12 325.69 2.46 328.00 0.15

0.2 327.95 325.15 1.6 330.27 –2.32 329.91 –1.96 332.9 –4.95

0.1 331.65 333.35 1.7 334.62 –2.97 334.24 –2.59 337.95 –6.3

0.0 343.15 343.15 0.0 339.08 4.07 338.69 4.46 343.15 0

Exp. data from [7]; I – idedal (Raoult's law) [8]



The FH function: Performance in the

convex curves approximation

The best performance of the FH approximation in the previous example can be suc-

cessfully extended to mixture exhibiting partial immiscibility at low molar concentrations re-

sulting in convex FP data plots, fig. 2. The attempt to use polynomial approximations, fig. 2(b)
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Table 5. Mixture FP of ethanol(1)-1-butanol(2)

Experimental data
Thermodynamic-

-based model
predictions

Approximations (present work)
D = (Tpredicted – Texperimental)

x1

TFP

[K]
(exp)

TFP

[K]
(Ideal)

DIE

[K]

TFP

[K]
appr.
(RA1)

DRA1

[K]

TFP

[K]
appr.

(RAM)

DRAM

[K]

TFP

[K]
appr.
(RAS)

DRAS

[K]

1.0 286.15 286.15 0.0 285.06 1.09 285.85 0.3 284.24 1.91

0.9 287.55 287.00 0.55 287.13 0.42 287.94 –0.39 286.47 1.08

0.8 288.75 287.95 0.8 289.23 –0.48 290.05 –1.3 288.72 0.03

0.7 290.45 289.02 1.43 291.37 –0.92 292.20 –1.75 291.02 –0.57

0.6 292.65 290.24 2.41 293.53 –0.88 294.37 –1.72 293.35 –0.7

0.5 294.65 291.66 2.99 295.73 –1.08 296.58 –1.93 295.71 –1.06

0.4 296.15 293.36 2.79 297.96 –1.81 298.83 –2.68 298.12 –1.97

0.3 299.05 295.43 3.62 300.22 –1.17 301.10 –2.05 300.57 –1.52

0.2 302.15 298.12 4.03 302.52 –0.37 303.42 –1.27 303.05 –0.9

0.1 306.05 301.87 4.18 304.86 1.19 305.76 0.29 305.58 0.47

0.0 308.15 308.15 0.0 307.23 0.92 308.15 0 308.15 0

Exp. data from [16]; I – idedal (Raoult's law) [8]

Figure 2. Examples of convex plots successfully approximated by the FH function (a) and polynomials (b)
(for color image see journal web site)



reveals the same accuracy with polynomial of 4th and 5th orders. These data are summarized in

tab. 6 where the FH approximation exhibits the best accuracy among the other versions of the re-

ciprocal function. Moreover, the convex plot indicates two approximation by straight lines at

low (x1 < 0.1) and high (x1 > 0.2) molar fractions. This relays to problems in approximation of

flashpoint data of mixtures, which is beyond the scope of the present work.

Polynomial approximations

The suggested and tested reciprocal function, both simplified ones and FH, demon-

strate adequate approximation with acceptable errors and minimized number of coefficients,

and parameters required. In contrasts, the polynomial approximations either in dimensional

forms (see tab. 1) or dimensionless one (see eq. 6) can attain the same level of accuracy at 4th or

5th order of approximation (tab. 6). To be precise, the dimensionless polynomial correlations

provide y � 1 at x � 0; the accuracy increases with increase in the order of the polynomial ex-

pression?, i. e. for example of about –4.4% for the parabola and about –0.1% in the case of the

5th approximation. The same order of accuracy can be attained by the reciprocal function: about

–0.2% for RAM and about –0.1% for FH approximation. In this context, some comments on the

polynomial approximations are briefly outlined in the next discussion section.

Discussion

Why we wrote this article?

The ideas suggested in this article demonstrate how to construct the dimensionless

correlation of FP temperature of binary mixtures of two flammable components. The stand-

points expressed by the authors were discussed at large with many colleagues and the manu-

script was reviewed about nine times; in all case the comments of the referee were in quite dif-

ferent directions but never on the fact that something new appears in data correlations of FP

data. We especially stress the attention on the number of reviews through which the text passed

since two major obstacles in explaining the idea were met, namely:

– Why the data should be made dimensionless before scaling (data correlation)?

– Why we have to suggest a new correlation based on experimental data when the equation of

Catoire et al.[6, 10] (see below) fits the data quite well?
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Table 6. Examples of polynomial dimensionless approximations of FP data compared
to dimensionless approximations by reciprocal function conceived in the present work

Ethanol (a)-aniline (2), maxTFP(x=1) = 343.15 K(2), Exp. data from [7]

Polynomial approximations (x = x1) Reciprocal approximations

Parabola
y = 0.956 – 0.358x + 0.254x2

RA1
y = (1.003 + 0.085x1)

–1;
R2 = 0.961; c� = 0.0002

Cubic
y = 0.981 – 0.776x + 1.332x2 – 0.712x3

RAM
y = 0.992 (1 + 0.135x1)

–1

R2 = 0.513; c� = 0.0011

4th order
y = 0.994 – 1.206x + 3.255x2 – 4.237x3 + 1.762x4

RAS
y = (1 + 0.308x2)

–1, R2 = 0.197,
c2 = 0.0027

5th order
y = 0.999 – 1.594x + 6.719x2 – 13.237x3 + 12.066x4 – 4.121x5

FH
function

y = (0.999 + 0.196x
1
0 156. )–1,

R2 = 0.9698; c� �������� 10–�



The answer to the first question is straightforward. The data undergoing scaling should

be of equal order of magnitude [18, 19]. Making the temperature dimensionless we get y =

= TFP/TFP(x=1) which is order of magnitude of 1, that is 0 < y � 1. At the same time the molar frac-

tion, the independent variable,is dimensionless and vary from 0 to 1, therefore it satisfy the basic

condition to be the same order of magnitude as the dependent variable y = TFP/TFP(x=1). Hence,

the data ready to be scaled are correctly designed. Further, the coefficients in the established

correlations are dimensionless that makes them homogeneous. The dimensional homogeneity of

any equation is mandatory. This point will be explained by using the equation of Catoire et al.

[10], see eq. 10(a), which in fact is inhomogeneous.

The answer of the second questions will be demonstrated by an analysis of the equation

developed by Catoire [6, 10], for both pure compound and mixtures, namely:

T T H nFP b vap�1477 0 79686 0 0 168845 0 05948. ( ). . – .D (10a)

Equation (10a) relates the FP temperature TFP to the normal boiling point Tb, the stan-

dard enthalpy of vaporization DH vap
0 at 298.15 K in kJ/mol and the total number of carbon atoms

n in the molecule (the mixture). When the standard enthalpy of vaporization DH vap
0 is difficult to

be determined, a simplified equation was developed:

T T nFP b
� 03544 1 14711 0 07677. . – . (10b)

In fact, the correlation of the TFP to the normal boiling point Tb is an old idea and used in

many empirical correlations referred by [6, 10].

First of all, we focus the attention on the dimensional homogeneity of these relation-

ships. The LSD of eq. (10a) is in Kelvin while the product T H
b vap
0 79686 0 0 168845. .( )D require the co-

efficient 1.477 to has a dimension [molkJ–1] that from any point of view make eq. (10a) improp-

erly designed as relationship. In the sense of equation homogeneity the simplified version eq.

(10b) satisfies the basic condition and the coefficient 0.3544 is dimensionless. Moreover, both

expressions are misbalanced as order of magnitudes because for most of case considered by

Catoire et al. [6, 17] the value of TFP is around 100 °C that in Kelvin mean and order of magni-

tude O(103). The RHS of (10a) is a product of Tb � O����� and DH Ovap
0 ~ ( )105 that implies that

(10a) is disbalanced because it correlates quantities of different order of magnitudes and the ba-

sic rule of data scaling is violated. When the suggested construct of eq. (10a) is subjected to esti-

mation of the coefficient and the powers through fitting to either experimental or calculated val-

ues of Tb and DH vap
0 , the procedure to minimize the quadratic error of approximation leads to the

values estimated by Catoire et al. [6, 10]. This equations is assumed by many authors as a gener-

alized relationship since it was established by fitting data of moreover 600 compounds, but the

main drawback is the with scattering of predicted data around the experimental ones. Besides, it

is not a generalized relations because it is simple regression using data from either experiments

or thermodynamic calculations; the coefficient and the exponents are established by data fitting,

the same as approach as that used in the present work.

The simplified version of eq. (10b) satisfies the aforementioned conditions of dimen-

sional homogeneity and balanced ordered of magnitude, but the principle drawback is the omit-

ted enthalpy of vaporization DH vap
0 . The omission of DH vap

0 means neglecting a very important

physical phenomenon is determination of the FP temperature, as it will be discussed next.
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The construct of the dimensionless relationship: how it should be done

Now, we will demonstrate how the correlation about the FP data should be constructed.

For this reason we will use only the variables used in eq. (10a), i. e.T T H nFP b vap~ ( , , )D 0 . There-

fore, we use the same basis as Catoire et al. [6, 10] but a different strategy in data analysis and in-

terpretation of the functional relationship will be developed, that finally leads to the reciprocal

functions used in the examples demonstrated in this article.

In the physical situation of FP determination there is an amount of liquid with open sur-

face subjected to vaporization. The amount of vapors above the interface depends on the abso-

lute temperature T and pressure P. The main variable is the mixture composition (expressed

through the molar fraction of either the low-volatile component or vice versa) because it deter-

mines the partial pressure of vapors, the boiling point and the enthalpy of vaporization. This is

well-known fact, exactly exemplified by Catoire et al. [6, 10] in case when Tb and DH vap
0 are de-

termined by thermodynamic relationships.

Since, the liquid should be heated towards conditions enabling vaporization and pro-

duction a minimum vapor concentration enough to produce a flash by energy supplied by an ex-

ternal source, the sensible heat is Cp(Tb – T0) while latent heat is represented by the enthalpy of

vaporization DH vap
0 . The ratio of these heats defines the dimensionless Stefan number (Ste) [20,

21] in case of a liquid surface undergoing combustion, namely:

Ste
p b

vap

�
	C T T

H

( )0

0D
(11)

Both the nominator and the denominator of the Ste depend on the mixture composition,

i. e. on the molar fractions (represented by x1 or x2). Hence, at normal pressure conditions, the

Ste is a function of the molar concentrations of the component only. In the case considered here,

it is more convenient to use the inverse definition of the Ste related to the FP calculations,

namely:

Ste FP

vap

b

�
DH

C T Tp

0

0( – )
(12)

Since the denominator SteFP of includes a reference temperature some problems would

emerge to define a common value of T0 for all compounds and mixtures. Because of that, ne-

glecting T0, without loss of homogeneity the Ste related to the flashpoint SteFP can be expressed

as:

Ste
FP
b vap

b

vap

b

� �
D

D

H

C T

H

p

p
0

0

C

T
(13a,b)

The second form of Ste
FP
b , eq. (13b), shows that the normal boiling point Tb is a charac-

teristic temperature scale for a given compound or mixture when the FP temperature is consid-

ered. The subscript b indicates that the normal boiling temperature is used as temperature scale.

Therefore, following the rules of data scaling we have a construct showing how the correlation

should be done, namely:
T

T
f xFP

b
FP
bSte

�

�
��

�

�
�� 
~ ( ) ( )j (14)

The LHS of eq. (14) is order of magnitude TFP/Tb ~ (1). The order of magnitude of

Ste
FP
b is also Ste

FP
b ~ ( )O 1 because both Cp and DH vap

0 have almost equal order of magnitudes.
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However, in both sides of eq. (14) there are terms depending on Tb (it is a function of the molar

fractions) that should be avoided. If the FP temperatures of the pure compounds forming a given

mixture are known, then without loss of generality the relation (14) can be expressed as a func-

tion of the molar concentration of the high-volatility component, namely:

y
T

T
f xh�

�

�
�
�

�

�
�
� 


�

FP(mixture)

FP(x 1)
FP
bSte

max
( ) ( )j (15)

The temperature scale maxTFP(x=1) in eq. (15) is the FP temperature of the pure compo-

nent with the low volatility (subscript L that is x = 1 implies xL = 1 and xh = 0. From this con-

struct, the relationship y f xh� 
~ ( ) ( )Ste
FP
b j is a decaying function in the square y [1, 0] and

xh [0, 1]. Therefore, all rules and conditions of proper data scaling are satisfied. In this context,

the decaying behaviour of the chosen reciprocal function is physically reasonable. Otherwise, if

the correlation is performed as y = j(xL) using the molar fraction of low-volatility component,

the function y = TFP(mixture)/T xFP L( )�1 is growing, that violates the rules of scaling since y � � and

the upper limit is not defined. This, in fact, was done in the examples provided by Catoire et al.

[6, 10] .

Moreover, if the number of carbon atoms in the molecule (or in the mixture) have to be

taken into account, following the idea of Catoire et al. [6, 10], since n is dimensionless, the gen-

eral construct becomes:

y
T

T
f n x�

�

�
�
�

�

�
�
� 


�

FP(mixture)

FP(x
FP
bSte

max
~ ( , ) (

)1

1j h ) (16)

Because n = n(xL, xh) the decaying function y ~ j1(xh) is natural if the correlation is

made as it is demonstrated by Catoire et al. [10] . We have to mention that the inclusion of the to-

tal number of the carbon atoms in the set of dimensionless variables by Catoire et al. [10] is a

voluntary step not related to thermodynamic analysis used in the development of the scaling re-

lationship. It comes from another idea in flashpoint temperature data correlations [12] regarding

the chemical structures of the compounds (mixtures) (see comments in ref. 10, section 5).

The rules of scaling require the depended dimensionless variable to be a function of a

product of powers of the independent variables [18, 19], namely:

y M nm m� ( )Ste
FP
b 1 2 (17)

The pre-factor M and powers m1 and m2 in eq. (17) have to determined by fitting either

experimental data or predicted values of Tb, Cp, and DH vap
0 defining Ste

FP
b . Therefore, looking

again at eq. (10b) we may say that it is incorrect irrespective to its dimensional homogeneity, be-

cause the physical process of vaporization represented by DH vap
0 is neglected.

Let us now consider the order of magnitudes of Ste
FP
b . With a simplifying assumption

that the heat capacity does Cp not vary significantly with variation in the composition (in case of

mixtures) we get that the ratio (DH vap
0 /Tb) does not vary in a broad range. To exemplify this

standpoint, we refer to the data provided by Catoire et al. in [6] about n-octane/n-heptane

blend (tab. 1 in the original work). These data show that the normal boiling point varies from

100.25 �
	 �C xn octane( ).0 1 to 100.25 �

	 �C xn octane( ).0 8 with respective values of D DH Hvap
0

vap
0 kJ/: .3687

/ mol(xn octane	 �0 1. ) and DH vap
0 kJ� 39 47. /mol

n octane( . )x 	 �0 8 .Under these circumstances, the value of

(DH vap
0 /Tb) varies from 0.367 kJ/molK xn octane( . )	 �0 1 to 0.333 kJ/molK xn octane( . )	 �0 1 . Therefore, we

may suggest that Ste const
FP
b � for a given blend. Then, the main contribution to TFP through

variation in the mixture content comes through the total number of carbon atoms which is a

function of the molar fraction as it demonstrated; and used for calculations by Catoire et al.
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[6, 10]. Hence, the only term resulting to a sensible effect on TFP is that accounting the total num-

ber of the carbon atoms. The scaling estimates show that TFP ~ 1/nm2 , that is a hyperbolic decay-

ing function. It is worth noting to mention that Catoire et al. [6, 10] especially used the term 1/

n m2 to get reliable expression (see in ref. 12, section 8.1, the comments about equation 4a),

which was impossible when only DH vap
0 and Tb were taken into account.

In the correlation (10a) where TFP is correlated to a product of powers ( ) ( )T Hb
d

vap
0 d1 2D

there is an overestimation of the contribution of the molar fraction, since both Tb ~Tb(x) and

D DH Hvap
0

vap
0� ( )x . Treatment of data in this way yields an almost parabolic relationship

T TFP TFP
~ ( )x 2 as it is demonstrated by [6, 12] for blends non-exhibiting maxima. In the specific

case of n-octane / n-heptane blend used as example here, the plot (fig. 1 in ref. 10) is parabolic at

low n-octane molar fractions (< 0.4) and approaches a linear behaviour beyond this limit. For

n-decane/n-dodecane mixtures (fig. 2 in ref. 6) the decaying behaviour of the relationship

T TFP TFP
~ (x) is clearly demonstrated because the plot is done with the molar fraction of the

high-volatility component (n-decane), i. e., x = xh, exhibiting the lower TFP as a pure compound.

This plot confirms the analysis done in this work.

The analysis done in this section shows that the relationship T T xFP TFP
~ ( ) , with inde-

pendent variable represented by the molar fraction of the high-volatile component, should be a

decaying function. The choice of the decaying function should be a power-law as it suggested by

the scaling analysis, polynomial or by the reciprocal function conceived in this work. The recip-

rocal function and the non-dimensional polynomials developed in this work has an advantage

since at xh ® 0 we have that yh ® 0 is physically adequate.

Fitting experimental or predicted data with such scaling relationship the accuracy of

the developed equations strongly depends on the scattering of the initial data points. As the

number of compounds (or blends) providing data for scaling increases the scattering of the data

point around the estimated relationship increases, too. This is well demonstrated by Catoire et

al. [10] where linear relationships were estimated for clouds of data points leading to large dis-

crepancies between experimental and predicted values of TFP. In accordance with these authors

the mean absolute deviation is about 2.9 °C while the maximum absolute error was established

about 7-10 °C. In this context, it is a matter of argument what to be used for data scaling: large

number of data fitted by a single equation and with large errors or limited data (to close groups

of compounds or blends) fitted with acceptable accuracy.

The analysis done in the discussion section demonstrates that the scaling under circum-

stances imposed by the set of independent variable suggested by [17], i. e. Tb, DH vap
0 , and n is de-

caying if the proper non-dimensialization is performed and the scaling is to the molar fraction of

the high-volatile component xh, as it was done with all numerical examples employing

dimensionless reciprocal function or polynomials. The scaling analysis developed is only the

initial step towards unified data treatment and relationships and for correlating or prediction of

flash point temperatures.

Some comments on the polynomial approximations

Some problems emerging in application of polynomial expressions would be briefly

outlined, because they a commonly used in FP data correlation and, probably some readers

could see conflict with the ideas developed in this work.

– The polynomial expressions contain too many coefficients and undefined order of

approximation assuring the desired accuracy of approximation. The latter yields in

doubtfully results and hinder the physical analysis. Moreover, the published so far literature

Hristova, M., et al.: Straightforward Dimensionless Experimental Formulae for Flash ...
982 THERMAL SCIENCE: Year 2012, Vol. 16, No. 4, pp. 969-985



data [5, 6, 10, 12-14, 16, 17] are in dimensional forms and the coefficients have different

dimensions depending of the order of the terms if dimensional data are correlated, which is

highly unacceptable, physical irrelevant and does not permit a comparative analyzes.

– The polynomial approximations do not refer to the physical meaning of the data at issue

when they are performed in dimensional form. As it was already mentioned, when x1 � 0,

the predicted result should approach the FP temperature for x2 � 1. Simple tests with

polynomial approximations, summarized from the literature (see tab. 1 for example) are not

encouraging due to the aforementioned reasons.

– The data normalization and the development of dimensionless polynomial expressions avoid

most of the drawbacks of the polynomial expressions but the problem of the desired order of

approximation still remains and is a matter of choice without well-defined criteria. The

reciprocal function in its various versions provide more reliable answer to the problem by

limiting the number of the coefficients and slightly changing the type of the function; which

in fact does not affect too much the accuracy of the approximation.

Conclusions

The approach conceived in this work includes two basic steps:

� Initial normalization of the FP data provided by either thermodynamic simulations or

physical tests. This step refers to an initial presentation of all data about TFP(mixture) are in

Kelvin as a general rule, which allows the general approach to be applied even in cases when

the TFP(mixture) < 0 °C. Next, the normalization of the data, y T� FP(mixture) /max TFP(x 1)� satisfies

the basic rule in data approximation, i. e. all data should be or order of unity O(1).

� Analysis of the suitable approximation relationship stressing the attention of the features of

the basic reciprocal function (and modifications) in comparison with polynomials (both

dimensional and dimensionless versions) of different orders. The numerical experiments

performed with published data indicate the simplicity of the reciprocal function with

accuracy comparable to that assured by 4th and 5th order polynomial approximations.

� The final choice of the approximate function is a matter of argument since such a discussion

never has been opened in the literature where the dominating expressions are dimensional

polynomials. The users can employ either reciprocal functions or polynomial but the initial

normalization of the data is mandatory since it allows the developed formulae to be

compared easily. Besides, the unified expressions allow extracting more information and

cross-related relations than that provided by dimensional correlations. In this context, the

present article suggests an algorithm in data treatment with rules allowing more readable

presentation of flash point data of binary mixtures. The rules imposed by the initial data

normalization are not restricted to the examples used in this work but are widely applicable

to other flashpoint data exhibiting deviations from the ideal solution behavior.

� This work, beyond the initial normalization step in data treatment, suggests for the first time

the use of the reciprocal function and its versions for correlation of FP data of flammable

mixtures, with a reasonable accuracy attainable by 4th and 5th orders polynomials as

commonly used approximations.

� The scale analysis and the correct construct of dimensionless relationship resulting in a

decaying function fitting experimental data was performed with the same independent

variables as those used by Catoire et al. [6, 10]. This analysis reveals a misconstruction of

this equation (see eq. 10a) and defines a dimesionless Stefan number relevant the flashpoints

of blends. In this context, it is worthy to mention that despite the misconstruction of eq. (10a)
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its use in a regression analysis resulted in the established pre-factor and exponents.

However, this is a result of data approximation due to data fitting, but not a result of

prediction procedures.
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x – mol fraction of a given component of the

– mixture, [–]
x1 – mol fraction of the of the water, [–]
x2 – mol fraction of the flammable

– component, [–]
y – dimensionless FP defined by eq. 2 and eq.

– 3, (= TFP/TFP(x=1.0)), [–]

Greek symbols

D – error in data correlation,
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DRA1 – error of the basic reciprocal function
– (eq. 3), [K]
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– error of the modified reciprocal function
– (eq.7), [K]

DRA S
– error of the simplified reciprocal functin
– (eq. 7), [K]

DIE – error of the method based on the Roult's'
– law (ideal solutions), [°C]

c – the Pearson's Chi-square, [–]

Subscripts

FP – flash point
i – ideal (Rault's law)
R – reciprocal
RA1 – basic reciprocal function
RAM – modified reciprocal function
RAS – simplified reciprocal function
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