
Banadaki, H. D., et al.: Short-Term and Long-Term Thermal Prediction of a … 
THERMAL SCIENCE, Year 2015, Vol. 19, No. 2, pp. 703-721 703 

SHORT-TERM  AND  LONG-TERM  THERMAL  PREDICTION 
OF  A  WALKING  BEAM  FURNACE  USING  NEURO-FUZZY  TECHNIQUES 

by 

Hamed Dehghan BANADAKI 

a*, Hasan Abbasi NOZARI 

b, 
and Mahdi Aliyari SHOOREHDELI 

c 
a Department of Electrical Engineering, Ashkezar Branch, Islamic Azad University,  Yazd, Iran 

b Department of Electrical Engineering, Joybar Branch, Islamic Azad University, Joybar, Iran 
c Department of Mechatronics, Faculty of Electrical Engineering, K. N. Toosi University, Tehran, Iran 

Original scientific paper 
DOI: 10.2298/TSCI120410210B 

The walking beam furnace is one of the most prominent process plants often met 
in an alloy steel production factory and characterised by high non-linearity, 
strong coupling, time delay, large time-constant and time variation in its parame-
ter set and structure. From another viewpoint, the walking beam furnace is a dis-
tributed-parameter process in which the distribution of temperature is not uni-
form. Hence, this process plant has complicated non-linear dynamic equations 
that have not worked out yet. In this paper, we propose one-step non-linear pre-
dictive model for a real walking beam furnace using non-linear black-box sub-
system identification based on locally linear neuro-fuzzy model. Furthermore, a 
multi-step predictive model with a precise long prediction horizon (i. e., ninety 
seconds ahead), developed with application of the sequential one-step predictive 
models, is also presented for the first time. The locally linear model tree which is 
a progressive tree-based algorithm trains these models. Comparing the perfor-
mance of the one-step linear neuro-fuzzy model predictive models with their as-
sociated models obtained through least squares error solution proves that all op-
erating zones of the walking beam furnace are of non-linear sub-systems. The 
recorded data from Iran Alloy Steel factory is utilized for identification and eval-
uation of the proposed neuro-fuzzy predictive models of the walking beam fur-
nace process. 
Key words: non-linear prediction, walking beam furnace, locally linear 

neuro-fuzzy, locally linear model tree, least-squares error 

Introduction 

Literature review 

Walking beam furnace (WBF) is one of the most crucial components of a steel pro-
duction factory, which is a complex process with sequential activities demanding technical 
supports such as model-based fault diagnosis, predictive control, reconfiguration, mainte-
nance, repair, and other operations. Moreover, the WBF consists of several operating zones, 
which have profound effects on the production rate, strip quality, and the stability of opera-
tion. In order to develop energy-saving techniques for WBF process, initially, it is vital to cre-
ate a reliable model of it. Although due to high non-linearity, large time delay, large time-con-
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stant and various uncertain factors, the non-linear modelling of WBF based on prediction 
techniques has become a challenging problem, extracting an appropriate non-linear predictive 
model of the WBF process appears to be indispensable for non-linear model-based predictive 
control and condition monitoring/diagnosis trials purposes. 

Recently, a few attempts have been made to make use of data-driven techniques to 
identify an appropriate thermal predictive model of the WBF process. Dynamic modelling of 
the quality control of a real large-scale continuous annealing process based on generalized 
growing-and-pruning radial basis function (RBF) neural network was presented in [1]. In [2], a 
non-linear predictive model of a WBF was constructed based on thermal equations, which de-
scribe the behavior of furnace under the state of rolling line and fuel flux provided by control 
loop model. An adaptive feed forward neural network model for predicting the temperature of 
the slabs in the soaking zones of the WBF whilst the slabs were still in the furnace was pro-
posed in [3]. In [4], online sub-system modelling of a real continuous annealing process was in-
vestigated, and a novel dynamic generalized growing-and-pruning radial basis function network 
was established to generate the quality model of the process. Non-linear simulator model of a 
real furnace with a modular structure was proposed based on recurrent neuro-fuzzy models for 
the first time [5]. In [6], a multivariable system identification method to estimate the parameters 
of a linear predictive model for a walking beam re-heating furnace according to ARX-procedure 
was described. Particular dynamic network architecture namely internal feedback neuron net-
work (IFNN) is presented in [7], which is trained using a specially derived gradient-based train-
ing algorithm. For validating the dynamics capturing capability of this network, it was used to 
predict an ignition hood furnace used in steel industries. A MIMO radial basis function model 
of the WBF process whose structure is originally based on an improved sequential-learning al-
gorithm is presented in [8]. This algorithm employs an improved growing-and-pruning algo-
rithm based on the notion of the significance of hidden neurons in which an extended Kalman 
filter improves the learning accuracy. In [9], a dynamic multilayer perception model of a real 
WBF trained by PSO algorithm was proposed. Evolutionary algorithms such as genetic algo-
rithm have been employed to estimate the parameters of the mathematical model of walking 
hearth-type reheating furnace from measured temperature in each zone of reheating process and 
then the acquired model was used in optimal control of the fuel consumption [10]. An online 
just-in-time local modelling technique applicable to a large amount of database has been pro-
posed in [11]. This technique that makes the retrieval of neighboring data more efficient by us-
ing stepwise selection and quantization is applied to long period prediction of the variables of a 
dynamic industrial furnace with several deeply-intertwined physical phenomena. In [12], a cor-
rective neural network was proposed with a long-term learning method to improve the accuracy 
of rolling-force prediction in hot-rolling mill. The learning algorithm was devised so as the pro-
posed neural network could cope with the difficulties such as low thickness accuracy at the 
first-coil which exist over conventional short-term learning. Since in practice, the rolling infor-
mation of roughing mill cannot be fed back dynamically to reheating furnace in a hot rolling 
process. Thus, owing to such shortcoming, the energy consumption enlarges in this process. To 
tackle this problem, fuzzy neural network (FNN) is used to deal with the feedback of rolling in-
formation, and then real-time compensation of furnace temperature [13]. Neural networks are 
also applied as components of hybrid neuro/analytical process models of the technological pro-
cesses such as rolling mill process [14]. Such models are introduced to be the keys to fit the 
general physical models to the needs of the automation of a specific mill. 

Apart from the state-of-the-art, to our knowledge, no research has been devoted to 
cope with the construction of short-term and long-term piecewise linear neuro-fuzzy predic-
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tive models of a real WBF. In the present research, the short-term and long-term LLNF pre-
dictive models of a WBF process with innovative coupled and integrated configurations are 
presented for the first time. All the former intelligent approaches exploited for the temperature 
prediction of WBF process were merely based upon the artificial neural networks (ANN). 
However, the main shortcoming of ANN is that processes cannot be expressed in them be-
cause they are usually considered as black boxes. Neuro-fuzzy modelling can be regarded as a 
grey-box technique bridging neural networks and qualitative fuzzy models in which system is 
expressible in fuzzy rules with using fuzzy modelling. The most common neuro-fuzzy sys-
tems are based on two types of fuzzy models, Takagi-Sugeno (TS) and Mamdani, combined 
with ANN learning algorithms. However, the TS-type neuro-fuzzy model is preferable when 
the accuracy of the model represents the foremost concern [15]. The LLNF model exploited in 
the present study are also simply interpretable as TS-type neuro-fuzzy systems, which can 
yield accurate model of the WBF under consideration. 

Case study: walking beam furnace  

Iran Alloy Steel Company (IASCO) located at 30 km far from Yazd, the city in cen-
ter of Iran, was founded in 1999 and is one of the largest steel production factories in Middle 
East and Iran. The factory consists of several parts such as steel production units, thermal and 
complementary operations, heavy and light rolling [5]. In the present study, the temperature 
prediction of the WBF operating in light rolling unit of this factory is taken into account. The 
WBF is an essential part of a rod mill plant where a billet is heated to the required rolling 
temperature so that it can be milled to produce wire. The WBF are generally classified into 
two groups namely batch furnace and continuous one. In batch furnace, the charged steel sec-
tions remain in a fixed position on the hearth until it is heated to rolling temperature, whereas, 
in continuous furnace, which is also under investigation in the present study, the charged steel 
section moves through the furnace and is heated to rolling/forging temperature as it plods 
through the furnace. In most cases, the WBF have three zones including pre-heating, heating, 
and soaking. However, some new furnaces have more heating and soaking zones. 

The WBF process, which is functioning in rod mill plant of Iran Alloy Steel Com-
pany, is a kind of continuous furnace in which slabs are heated. In the furnace, all slabs are 
heated to reach a pre-defined discharging temperature and a balance of temperature distribu-
tion throughout the slabs. The distribution and movement of the slabs in the furnace are sub-
jected to the heating capacity of the furnace and state of rolling line such as rolling pacing. 
The maximum temperatures in such furnaces are limited to 1250 °C. Our WBF of interest en-
compasses five zones namely pre-heating, heating zone 1, heating zone 2, soaking zone, and 
one recuperative zone. The slabs move throughout the WBF from the pre-heating zone to 
soaking zone. A typical structure of the walking beam furnace is provided in fig. 1. 

Excluding the recuperative zone, which is a non-thermal area and the slabs, are heat-
ed by waste gas in it, the other zones are considered as control-area zones. The roles of pre-
heating zone and two other heating zones are to heat the slabs repeatedly. The main aim of 
soaking zone is to adjust the temperature gradient so that the interior temperature and exterior 
temperature of the slabs can reach a balance. All control-area zones are equipped with their 
own burners mounted on their roofs. Each burner set has a flow meter sensor to sense the flow 
of air and gas that goes to flow-control loop to set the flow and air rate of each burner set. For 
sensing the temperature of each zone there are two sets of thermocouples mounted on the 
right and left internal walls of each zone that their maximum value at each instant goes for 
temperature-control loop, fig. 1.  
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Figure 1. Schematic of an industrial walking beam furnace with the monitored sensors 

Moreover, there are pressure sensors in recuperative zone for sensing the furnace 
pressure. Technical description of the variables and tools used in fig. 1 is given in tab. 1. 
Table 1. Technical equipments and variables description of the walking beam furnace 

Methodology 

Data pre-processing for prediction purpose 

The procedure of data-driven system identification based on prediction technique 
can be briefed in four phases [16]: 
– collect uncorrupted input-output data from the nominal operating condition of the pro-

cess, 
– select appropriate model structure,  
– estimate the model parameters, and 
– model validation. 

One of the most important assumptions to get valid information from an input and 
an output is that the changes happened in the output are solely affected by the system input 
and not disturbance or noise, etc. [17]. Hence, data pre-processing is required in order to ex-
tract suitable data from the available data. Thus, one has to initially examine the original raw 
data, polish them to eliminate trends and outlying values and apply filtering to enhance im-
portant frequency ranges. In this and next sub-sections, the procedure of data pre-processing 
appropriate for extracting valid data will be discussed. To identify a predictive model of a 

 Pre heating Heating 1 Heating 2 Soaking Rec. 

Variable 
name TLZ1 TRZ1 FGZ1 TLZ2 TRZ2 FGZ2 TLZ3 TRZ3 FGZ3 TLZ4 TRZ4 FGZ4 PRZ0 

Unit [°C] [°C] [Nm3h–1] [°C] [°C] [Nm3h–1] [°C] [°C] [Nm3h–1] [°C] [°C] [Nm3h–1] [m bar] 

P&ID 
name 

TIC 
10603L 

TIC 
10603R 

FIC 
10600 

TIC 
10604L 

TIC 
10604R 

FIC 
10602 

TIC 
10605L 

TIC 
10605R 

FIC 
10604 

TIC 
10606L 

TIC 
10606R 

FIC 
10606 

PIC 
10600 

Sensors 
no. 4 4 8 4 4 12 4 4 8 4 4 8 2 

Burners 
no. 8 12 8 8 0 
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process plant, the collected data should be sufficiently reliable to represent various dynamics 
of the process. Owing to safety and limited access to real WBF operating in the factory, we 
could not inject various excitation signals with different frequencies into the process. Alt-
hough system identification theory puts stress on using influential signals such as pseudo-
random binary signal (PRBS) to stimulate all dynamics of the process, we have to exploit the 
available data from normal operating situations which leads to a passive prediction approach 
rather than an active one [17, 18]. 

The first step to prepare a predictive model is gathering data from different operat-
ing zones of WBF process. The data sets of the different zones are recorded in data access 
system (at the control room of the factory). These experimental data are collected for the du-
ration of 23 days (i. e., from 7th to 29th of July 2010) with a sampling interval of 5 seconds. It 
must be noted that the sampling rate was selected such that the measured data becomes persis-
tently excited. Furthermore, the 50% of data samples are used as training set, while, the re-
mainder of them are left aside as checking data (i. e., 20% as test set and 30% as validity set). 
After consultation with the process experts and operators of the factory, we made an effort to 
eliminate faulty-operational data points from recorded data samples and also, the inputs of the 
process which do not vary over time should not be considered in the predictive model, since 
they remain constant during prediction [19]. Additionally, due to uncontrolled effects such as 
noise and disturbance acting on the WBF process, one should try using some pre-processing 
techniques presented in identification references [17] such as filtering and normalization. 

Data filtering  

Filtering of the abrupt changes in data 
is very important in pre-processing phase of 
the process prediction. These kinds of ordi-
nary abrupt changes that often occur in 
practice may be due to the malfunction of 
the sensors or data acquisition cards. They 
may yield some numerical problems in 
measuring and recording variables as well 
[5]. Such changes in data-points may also 
happen because the sensor is turned off 
when it needs to be substituted or repaired. 
These sudden changes have a lot of energy 
in high frequency rang that degrades estima-
tion of the models parameters or validity 
rate [20]. Additionally, the WBF process 
suffers severely from strong disturbance and 
noise that may result in model-reality mis-
matches. To tackle these problems, the ac-
quired original signals are passed through a low band pass filter that can erase noise signal from 
the original one. It must be noted that a suitable filter should not change or affect the original 
signal shape whilst abolishing noise or disturbing signals. Figure 2(a) depicts the effects of the 
low pass filter on the original flow signal FGZ4(t). As seen, low band pass filter can perform 
promisingly in removing noise signal and shaving the abrupt peaks from the original signal and 
simultaneously retain the shape of the original signal. The transfer function of the designed filter 
with the cut-off frequency of 70 Hz is also given in eq. (1):  

 
Figure 2. Effects of data pre-processing on gas flow 
signal of zone 4; (a) low pass filter, (b) normalization 
(for color image see journal web-site) 
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Data normalization  

While some of the input signals feeding into predictive model have high magnitudes, 
their associated local connection weights in a neuron of the LLNF network (or ANN) may af-
fect the corresponding output more than other connection weights. Furthermore, since the inputs 
and outputs signals have different ranges, they may yield error in data quantization and badly 
prediction of the process under consideration [19]. In order to deal with these problems, the 
numeric signals should have the magnitudes close to each other. An appropriate way to ap-
proach this aim is normalization of the experimental data passed through the filter. It is note-
worthy that the notion of normalization should be taken into account as an essential part of data 
pre-processing and its inclusion to the pre-processing phase improves the accuracy of predictive 
model in practice. The original signal S can be mapped into normalized signal SN by eq. (2): 

 min
N

max min

S SS
S S

−
=

−
 (2) 

where Smax, and Smin are maximum and minimum values of the signal to be normalized, re-
spectively. Figure 2(b) represents the effects of the normalization on the filtered signal de-
rived from FGZ4 by using eq. (2). It is seen that the pre-filtered signal has been bounded be-
tween 0 and 1 after normalization. Thus, by applying eq. (2) to the remainder of the process 
signals, a set of uniform signals in terms of magnitude which are ranged between 0 and 1 will 
be obtained. Additional statistical details concerning the original collected database of the 
WBF process from the factory are also reported in tab. 2. 

Table 2. Statistical characteristics of the recorded database of WBF before pre-processing 

Non-linear modelling based on the prediction technique 

Non-linear dynamic process plants can be modelled by both prediction and simula-
tion techniques. Note that further description concerning the simulation technique suitable for 
data-driven process modelling is beyond the scope of this paper and a comprehensive intro-
duction about non-linear simulator models and also their particular characteristics can be 
found in [5, 18]. Predictive models may use static (memory-less) models within their architec-
tures (i. e. ANN). Since static models are not adequately capable of capturing the dynamics of 
non-linear process plants, extending memory to the static configuration of such networks 
seems to be necessary. The predictive structure differs from the recurrent or simulation one in 
terms of the way that dynamism has been introduced to the static model [18]. Note that due to 

 Inputs  Outputs 

Variable FGZ1 FGZ2 FGZ3 FGZ4 TZ1 TZ2 TZ3 TZ4 PRZ0 

Standard deviation 108.7 159.0 104.4 27.9 154.9 146.8 104.4 119.2 11.7 

Mean value 176.8 215.4 175.2 73.03 919.4 957.6 1125.8 1112.2 100.5 

Minimum value 0 0 55 0 270 312 615 559 63 

Maximum value 385 424 526 331 1020 1050 1200 1200 116 



Banadaki, H. D., et al.: Short-Term and Long-Term Thermal Prediction of a … 
THERMAL SCIENCE, Year 2015, Vol. 19, No. 2, pp. 703-721 709 

the extraordinary characteristics of the WBF process including non-uniform temperature dis-
tribution through the furnace and open inter-connections between operating zones, which may 
yield intrinsic temperature interactions, all the formulations of proposed prediction methodol-
ogy are merely concerned with the WBF throughout this paper. 

Proposed one-step predictive model  
of WBF using LLNF networks 

The general configuration of a one-step predictive model suitable for non-linear dy-
namic modelling of an individual operating zone of the WBF is depicted in fig. 3. For the 
sake of simplicity, the structure of the 
one-step LLNF predictive model of the 
soaking zone which will be employed to 
predict TZ4(k) is merely shown in fig. 3. 
The structures of the one-step predictive 
models of the other zones follow such 
configuration as well. Furthermore, it 
must be noted that the integration of the 
one-step predictive models of all zones 
forms the overall one-step predictive 
model of the WBF process.  

The proposed structure of the one-
step predictive model utilizes the banks of 
time delay line (TDL) filters in which fil-
ters are typically chosen as unit time-delays to add external dynamism (memory) to static LLNF 
model. That is, the TDL filters are used to generate the delayed inputs and outputs. As seen, the 
presented MISO predictive model has two different sets of input channels: previous real process 
inputs and the previous real process output which are injected into the static LLNF model and fi-
nally the one-step future output ˆ ( )ZiT k  will be predicted. It is worth stressing that due to the 
open connections of the zones, fig. 1; highly interactions may exist between the temperature be-
havior of the different zones. In other words, the variations of the temperatures in some zones, 
probably affect the temperature of the connected and even non-connected zones and these tem-
perature interactions should not be ignored in the temperature prediction of this process plant. 
Thus, fig. 3 also describes that how possible temperature interactions, which may exist among all 
zones of the WBF, are simply included in the one-step predictive model of a single zone by feed-
ing the actual outlet temperature signals of the other operating zones back to it. 

Proposed multi-step predictive model of WBF using LLNF networks 

A multi-step predictive model should be able to predict the behavior of system for 
long future horizons (i. e., h-steps ahead). The typical structure of a multi-step predictive model 
based on the sequential one-step predictive models with the horizon of h is presented in fig. 4. 

In order to obtain the predicted output values of any operating zone at each moment, 
the one-step LLNF predictive model presented in the previous section should be used h times. 
As it is unambiguously seen, the sequential identical LLNF models where the output of any of 
them (except the last one) provides one of the inputs for the next LLNF model are used to es-
tablish the overall multi-step predictive model. This multi-horizon neuro-fuzzy predictive 
model obtains the predicted output values of the system (i. e., ˆ ( )ZiT k l+ i = 1 ∼ 4, l = 1 ∼ h) 
using previous and current values of the process output and inputs. It must be also noted that 

 
Figure 3. Configuration of one-step LLNF predictive 
model for a single zone (soaking zone) 
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Figure 4. Configuration of h-step ahead predictive model based on LLNF network for a single zone 

for an h-step ahead predictive model, the last prediction step is fully based on model output 
values if h > nZi. Hence, for long prediction horizons, the difference between prediction and 
simulation techniques fades and the last one-step predictive model will be turned completely 
into the recurrent/simulator model [21]. 

As discussed in previous section, since inordinate temperature interactions exist 
among the temperature behavior of different operating zones of the WBF, and also due to 
non-uniform distribution of temperature within the furnace, the structure of the proposed mul-
ti-step predictive model of this process plant is highly temperature-coupled so as the devel-
oped model could accurately capture the dynamics of the non-linear WBF process specially 
for long future horizons. 

Modelling of the WBF based on linear prediction technique  

The procedure of MISO linear modelling of dynamic processes from input-output 
sequences is described in the section Non-linear modelling based on the prediction technique. 
According to the process identification theory, simplest solutions should be initially tried to 
build the model of a process when no prior knowledge concerning its intrinsic characteristics 
is available (such idea is also called as black-box process identification). It has been mathe-
matically proven that the least-squares error (LSE) method is the optimum modelling method 
for linear process plants [8, 22]. Thus, in a black-box identification approach, the LSE solu-
tion is firstly preferred to be tried over any non-linear ones. (i. e., if the LSE method does a 
descend job and cannot produce promising prediction results, then, non-linear methods are the 
dominant alternatives). A finite sequence of the input-output variables of the WBF, which 
were observed by a constant sampling interval, is considered. If dynamic linear relations exist 
among these variables, they can be described by eq. (3): 

 
0

4

1 1 1( )

4 0 5
1 1

ˆ ( ) ( ) ( )

( ) ( )

ZjZi

Z Zi

mtn

Zi l Zi lj Zi
l j l j i

m mf

l Z l Zi
l l

T k a T k l b T k l

b PR k l b FG k l

= = = ≠

= =

= − + − +

+ − + −

∑ ∑ ∑

∑ ∑
 

 (3) 
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which describes one-step MISO linear predictive model of the i-th zone whose parameters are 
al, blj ,and mZ0, mfZi, mtZi (i = 1, …, 4) are the numerator orders of the i-th zone’s model and n 
is the denominator order where usually has the same value as the numerators [21]. All param-
eters of the model can be estimated by least-squares method since the model error is linear in 
parameters [20, 21]. 

Locally linear neuro-fuzzy network as predictive model  

In the section Non-linear modelling based on the prediction technique, the general 
structures of one-step and multi-step predictive models were explained. In order to identify 
predictive models for WBF process, the LLNF network is utilized and LOLIMOT learning 
algorithm is employed to find the best structure and parameters of the network. The main rea-
sons of using LLNF models trained by LOLIMOT algorithm are, low computational com-
plexity, noise robustness due to regularization effect, high accuracy, and online adaptation 
[21].The configuration of the LLNF model suitable for one-step prediction is presented in fig. 
5. Each neuron realizes a local linear model (LLM) and an associated validity function that 
determines the validity area of the LLM. The LLNF model is simply interpretable as TS-type 
neuro-fuzzy model inasmuch as each neuron represents one rule, and the validity function 
represent the rule premise and the LLM represent the rule consequents. 

As it was discussed in the section Non-linear modelling based on the prediction 
technique, to create a one-step predictive model, fig. 5, the delayed inputs of the process as 
well as the past samples of the LLNF model output should be fed into the model as the inputs 
[23]. Hence, for dynamic LLNF network, the input vector of model is given as: 

 0 1 2 3 4[ ( ), ( ), ( ), ( ), ( ), ( ), ( )]Z Zi Zi Z Z
T

Z Zx PR k FG k TR k T k T k T k T k=  (4) 

where PRZ0(k), FGZi(k), and TRZi(k) contain the previous values of i-th zone generated by 
TDL such that: 

 0 0 0 0 0( ) [ ( 1), ( 2), , ( )]Z Z Z Z ZPR k PR k PR k PR k m= − − −  (5) 

 
( ) [ ( 1), ( 2), , ( )]Zi Zi Zi ZiZiFG k FG k FG k FG k mf= − − −  (6) 

 
( ) [ ( 1), ( 2), , ( )]Zi Zi Zi Zi ZiTR k T k T k T k mt= − − −  (7) 

and, TZi(k) contains the delayed samples of the walking bean furnace output: 

 

Figure 5. Typical structure 
of the one-step neuro-fuzzy 
predictive model; 
combination of the static 
LLNF network and TDL 
filters 
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 1( ) [ ( 1), ... ,, ( )]Zj Z Zj Zj
TT k T k T k jm i= − ≠−  (8) 

where mZ0, mfZi, and mtZi (i = 1,…,4) are the numerator orders of the i-th zone and nZi denote 
the denominator of i-th zone. Hence, the global output of the model is calculated as the 
weighted summation of the output of all LLM: 

 

0

0 0 0

0 0 0

4

1 0 2 0 0 0
1 1( )
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b T k b T k b
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 ) ( )
Zl

t Zl ZlT k mt− −

 

 1 2( 1) ( 2) ( ) ( )
Zij Zi j Zi jn Zi Zi ja T k a T k a T k n xζ j− − − − − − − +   (19) 

where 
0

( )Z Z Zi l
j m mf mtb + + and 

zijna represent the numerator and denominator coefficients, respec-
tively, which are estimated employing the weighted least-squares solution [21]. ζj is the offset 
and φj( x ) – the operating-point dependent weighting factor of the j-th LLM.  

The validity functions on x with which LLNF network interpolates between differ-
ent LLM are usually chosen as normalized Gaussians. Thus, they form a partition of unity as: 

 
2

( ) 1j
=

=∑
M

j
j

x  (10) 

Considering the axis-orthogonal Gaussians, the validity functions are given by: 

 

1

( )
( )

( )
M

j

j
j

j

x
x

x

µ
j

µ
=

=

∑
 (11) 
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where c and σ are the center co-ordinate and the dimensional individual standard deviation, 
respectively.  

The merit of local linear neuro-fuzzy modelling is that a complicated process model 
is divided into a number of smaller and thus simpler sub-problems, which are solved inde-
pendently by identifying simple linear models [21, 23, 24]. The vital factor for the success of 
such an approach is the division strategy for the original complex problem that this will be ac-
complished by an algorithm so-called LOLIMOT (locally linear model tree). LOLIMOT is an 
incremental tree-structure algorithm that partitions the input-space by axis-orthogonal splits 
[21]. This algorithm comprises of an outer loop in which the rule premise structure is deter-
mined and a nested inner loop in which the rule consequent parameters are optimized by local 
LSE estimation. The latter loop can be summarized as a five-step algorithm [21, 24]. 
(1) Start with an initial model of the process based on LSE estimation. 
(2) Find the worst performing LLM which has the maximum local cost function e. g., MSE. 
(3) The worst LLM found in step 2 is broken into two halves axis-orthogonally. Partitions in 

all dimensions are tried and for each partition, the following steps are performed: 
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 (3-a) construction of the multi-dimensional validity functions for both hyper-rectangles, 
 (3-b) locally estimation of the rule consequent parameters for both newly generated neu-

rons, 
 (3-c) calculation of the global cost functions for the current overall model of the process. 
(4) Find the best division; the best of the alternatives checked in Step 3, and increment the 

number of LLM: M → M+1. 
(5) Test for convergence. If the termination criterion is met then stop; otherwise, go to Step 2. 

Note that for the termination criterion in the fifth step of LOLIMOT algorithm various 
options exist including a maximal model complexity that is a maximal number of LLM, statisti-
cal validation tests, or information criteria [23]. 
It is also worth noting that the LOLIMOT algo-
rithm provides the best linear or non-linear 
model of a process with maximum generaliza-
tion capability and performs well in short-term 
and long-term prediction applications. 

Prediction procedure relies on the inputs 
containing enough information and dyna-
mism. In order to determine the proper inputs 
of the LLNF network, it is necessary to know 
that each input has its own particular duration 
of effect on the output. In this study, selection 
of dynamic orders of the one-step LLNF pre-
dictive models is carried out by a blend of tri-
al-and-error procedure during prediction and 
prior inkling about the WBF [5].  

The best numbers of dynamic used for 
prediction after several trials are listed in tab. 3. 

Results and discussions 

In the present section, experimental results of the linear and non-linear modelling of 
the WBF based on proposed linear and non-linear prediction methods are presented. Regard-
ing long-term prediction, a long horizon of ninety seconds is brought into account and the re-
sults are portrayed in the rest of this paper. In the case of local linear modelling, selection of 
rules/neurons number represents the great concern. Selecting large number of rules may yield 
over parameterization and model complexity problems. In our research, the number of neu-
rons for all the MISO models was determined based on the root mean squared error (RMSE) 
curve [18]. A typical RMSE curve for pre-heating zone is provided in fig. 6. In this regard, the 
optimal neuron/rule number was determined by increasing the neurons until more neurons did 
not diminish the RMSE for the test data remarkably. It is unambiguously seen that as the neu-
ron number enlarged from one to three, the RMSE values for both train and test data sets less-
ened slightly. 

But whilst the number of rules increased past 3, there were no significant improve-
ments in the RMSE for the test data. Hence, an LLNF network with four rules was selected 
based on this RMSE curve. The same procedure was also executed to select the optimal rules 
number of other LLNF sub-models. The number of rules/neurons obtained through the RMSE 
curves for all LLNF predictive sub-models are brought up in tab. 4. 

Table 3. The best number of LLNF orders  
for inputs and outputs of the WBF 

 Number of LLNF orders 

TGZ1 TGZ2 TGZ3 TGZ4 

V
ar

ia
bl

es
 

FGZ1 3 - - - 

FGZ2 - 2 - - 

FGZ3 - - 4 - 

FGZ4 - - - 2 

TGZ1 2 1 - - 

TGZ2 1 4 1 - 

TGZ3 - 1 3 1 

TGZ4 - - 1 3 

PRZ0 2 1 1 3 
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Figure 6. Training and test error variations vs. the 
rules number for temperature of heating zone 2 

Table 4. Rules number of different LLNF  
predictive models for different prediction horizons 

Prediction 
horizon [s] 

LLNF models 

Zone 1 Zone 2 Zone 3 Zone 4 

5 3 5 2 4 

10 6 10 4 8 

15 9 15 6 12 

20 12 20 8 16 

...
 

...
 

...
 

...
 

...
 

90 54 90 36 72 
 

To evaluate the accuracy of the predictive models, two criteria are defined namely 
PA1 and PA2: 
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where ||·||2 denotes Euclidean distance, Q is the number of the data samples that are consid-
ered for prediction, m – the mean value of the signal TZi, ˆ ,ZiT and TZi are the predicted and re-
al outputs associated to the i-th operating zone of the furnace, respectively. Note that the crite-
rion PA1 is also so-called as RMSE and the criterion PA2 indicates the percentage that the pre-
dicted output fits the real one. 

One-step prediction errors obtained based on normalized data and their associated 
histograms for temperature prediction of zone 1 to zone 4 are depicted in fig. 7. Taking into 
account the one-step prediction errors and their corresponding histograms, one can simply in-
fer that the pre-acquired neurons and dynamic numbers are adequate to enable each one-step 
neuro-fuzzy predictive model to forecast its related zone’s outlet temperature accurately. 
Moreover, on the basis of all histograms’ data, it is obvious that in all four one-step predictive 
models the most accumulations of errors occur around zero, that is, the prediction error which 
also portrays the prediction accuracy is roughly close to zero. It is noted that whether the pre-
diction error is close to zero or not is the most crucial factor that affects the trustworthy of any 
non-linear model-based fault diagnosis approach in which a one-step non-linear predictive 
model of the process is required to generate the indicator signals namely “residuals” that show 
the occurrence of any defect throughout the process [23]. 

Since the WBF process has four heating zones, four one-step neuro-fuzzy predictive 
models are developed in nominal operating conditions. Hence, the proposed entire one-step 
predictive model of the WBF comprises four temperature-coupled LLNF networks. That is, 
due to non-uniform distribution of temperature throughout the furnace as well as thermal in-
teractions between operating zones, the outlet temperatures of the other zones are also fed  
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Figure 7. One-step prediction errors based on normalized data and their associated histograms  
for all zones 

back to the one-step predictive model of an individual zone. Furthermore, it must be noted 
that for constructing the h-step LLNF predictive model of a single zone, h identical pre-
identified one-step predictive models of that zone are arranged in a sequential configuration, 
fig. 4. After creating the h-step MISO neuro-fuzzy predictive models of all operating zones 
based on their associated one-step predictive models, a full-scale MIMO neuro-fuzzy predic-
tive model of the WBF with the horizon of h is provided. 

Figure 8 represents the actual responses of the outlet temperatures of two selected 
zones (i. e., pre-heating zone and heating zone 1) and their associated responses of the one-
step linear and LLNF predictive models. With a glance, one can verify that LSE estimation 
does a descend job and has severe problems in the thermal modelling of this zone, whereas, 
the LLNF model is more accurate in the sense that its thermal response highly resembles to 
the response of its related operating zone. Such a case can be observed specially in the time 

 
Figure 8. Performance of the one-step LSE and LLNF based predictive models; (a) pre-heating zone,  
(b) heating zone 1 
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interval between 4500 seconds and 4700 seconds, with reference to fig. 8(a), where the real 
thermal response of the pre-heating zone was successfully tracked by the response of its asso-
ciated one-step LLNF predictive model, whereas the response of the linear model had some 
tracking problems at the same time interval and especially in intervals in which a set of fluc-
tuations are observed within the thermal response of the pre-heating zone, (e. g., 7000 s and 
9000 s). Taking into account the optimality of the least-squares solution for modelling of line-
ar process plants, all prediction results concerning the temperature prediction of all operating 
zones of the WBF prove that all zones belongs to the category of non-linear systems, tab. 5. 

Table 5. Prediction accuracy of for different linear and non-linear predictor models 

In reference to the explanation made in section Non-linear modelling based on the 
prediction technique, four MISO one-step linear predictor models, four MISO one-step non-
linear LLNF predictor models, and four MISO multi-step non-linear LLNF predictor models 
with the prediction horizon ranged from 5 seconds to 90 seconds have been generated to fore-
cast the temperature of different zones of the WBF. It must be noted that creating such ther-
mal predictive model of the WBF represents the great concern in steel production industries 
for a wide range of thermal purposes. Figure 9 shows the measured and the long-term predic-
tive outputs of LLNF model concerning the pre-heating zone. As illustrated in fig. 9, one-step 

 Pre-heating zone Heating zone 1 Heating zone 2 Soaking zone 

PA1 [°C] PA2 [%] PA1 [°C] PA2 [%] PA1 [°C] PA2 [%] PA1 [°C] PA2 [%] 

LSE 0.1207 43.88 0.0886 57.25 0.1642 11.62 0.0612 68.32 

Step 1 0.0037 98.24 0.0043 97.89 0.0037 97.99 0.0030 98.40 

Step 2 0.0249 88.37 0.0246 88.10 0.0231 87.52 0.0226 88.31 

Step 3 0.0352 83.61 0.0347 83.24 0.0327 82.36 0.0319 83.49 

Step 4 0.0987 54.12 0.0921 55.62 0.1009 45.72 0.0783 59.48 

Step 5 0.1008 53.14 0.0946 54.40 0.1029 44.56 0.0804 58.42 

Step 6 0.1029 52.16 0.0971 53.22 0.1050 43.53 0.0825 57.36 

Step 7 0.1046 51.39 0.0993 52.15 0.1062 42.85 0.0842 56.43 

Step 8 0.1063 50.60 0.1015 51.11 0.1075 42.16 0.0861 55.49 

Step 9 0.1081 49.76 0.1037 50.05 0.1090 40.39 0.0880 54.50 

Step 10 0.1100 48.89 0.1059 48.98 0.1107 40.44 0.0899 53.53 

Step 11 0.1119 48.01 0.1080 47.91 0.1125 39.48 0.0917 52.57 

Step 12 0.1137 47.17 0.1100 47.00 0.1145 38.42 0.0936 51.63 

Step 13 0.1155 46.32 0.1120 46.05 0.1164 37.39 0.0954 50.69 

Step 14 0.1172 45.55 0.1140 45.14 0.1183 36.41 0.0972 49.71 

Step 15 0.1190 44.75 0.1158 44.27 0.1200 35.46 0.0989 48.87 

Step 16 0.1209 43.84 0.1177 43.38 0.1219 34.47 0.1007 47.96 

Step 17 0.1229 42.93 0.1195 42.49 0.1238 33.46 0.1025 47.01 

Step 18 0.1250 41.98 0.1215 41.58 0.1255 32.54 0.1044 46.09 
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prediction of this output exhibits the best response compared to the longer-term predictions in 
the sense that an almost perfect fit is achieved over the whole operational domain. Then, as 
the prediction horizon increases during the long-term predictions of this zone, it is observed 
that the LLNF predictive model of this zone gives more inferior predictive responses contain-
ing unpromising values of predictions that could be due to the systematic errors generated in 
the short-term predictors in previous stages of prediction.  

 
Figure 9. Performances of the multi-step LLNF predictive models of pre-heating zone for different 
future horizons; (a) 15 seconds, (b) 30 seconds, (c) 45 seconds, (d) 60 seconds, (e) 75 seconds,  
and (f) 90 seconds prediction 

Moreover, for the sake of simplicity and due to lack of adequate space to add all pre-
diction portrayals concerning all zones in this paper, some prediction performances for the re-
mained zones i. e., heating zone 1, heating zone 2, and soaking zone are selected to show in fig. 
10. In this figure, sub-figures are chosen as pairs such that one can visibly observe the accuracy 
deteriorations of the predictive model over the longer-term predictions. For example, with refer-
ence to figs. 10(a) and (b) and as a result of prediction-horizon growing, the response of the 
predictive model for 10 seconds future instants (i. e., short-term) outperform the response of the 
predictive model for 50 seconds future instants (i. e., long-term) in the sense that it provides a 
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better fit against the measured response of the zone 2. More details regarding the prediction ac-
curacies of all operating zones over the whole prediction horizons are reported in tab. 5. 

 
Figure 10. Performances of the multi-step LLNF predictive models of different zones for the selected 
future horizon; (a) 10 seconds, (b) 50 seconds prediction for heating zone 1, (c) 20 seconds, (d) 65 
seconds prediction for heating zone 2, (e) 25 seconds, and (f) 80 seconds prediction for soaking zone 

In reference to tab. 5, it is obvious that the linear predictive models provided the worst 
modelling results in the sense that their prediction accuracy values obtained through both mod-
elling evaluation criteria are noticeably lesser than those ones produced by non-linear LLNF 
predictive models. In addition, by enlarging the prediction horizon from 5 second to ninety sec-
onds (i. e. a long prediction horizon), the associated prediction errors based on both prediction 
accuracy criteria have been deteriorated. The main reason behind this discernible phenomenon 
may be that for the long-term prediction of an output (i. e., where h is greater than 1), the previ-
ous values of the considered output is required, but since there is no recorded/measured data for 
these values, the predicted values at the previous steps are used for the prediction of this output 
instead of the real unavailable data. Here, it is also observed that an increase in prediction hori-
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zon especially from five to 20 enlarges the modeling error. It is also noted that the most accura-
cy deterioration occurred during the thermal prediction of zone 4, while, the least happened for 
the thermal prediction of zone 3. Moreover, it must be taken into consideration that the pro-
posed long-term predictive model is derived from a short-term (one-step ahead) predictor by 
simply iterating the predictor, thus, such long-term predictions are limited in their accuracy by 
observational and dynamic noise and by the sensitivity to initial conditions of the dynamical 
system [25]. These long-term repeated predictors are also limited by systematic errors in the 
short-term predictors which can be due to under or over fitting data. Hence, these systematic er-
rors generated in the short-term predictors are accumulated increasingly as the prediction hori-
zon enlarges (such situations can be observed in tab. 5). Note that the present research regards a 
feasibility study and from an engineering point of view, since the prediction accuracy declines 
dramatically by the increase of the prediction horizon from five to 20, it is not recommended to 
utilize the long-term predictive model to forecast the future horizons greater than 5. 

Conclusions 

In this paper, identification of non-linear short-term and long-term predictor models 
by locally linear neuro-fuzzy (LLNF) modelling technique for an actual MIMO process name-
ly walking beam furnace (WBF) is discussed and proposed for the first time. The specially 
configured long-term neuro-fuzzy predictive models with accuracy of ninety-second predic-
tion horizons for the outputs of all operating zones of WBF have been presented. Taking into 
account the experimental results, one-step neuro-fuzzy predictive models demonstrate the 
highest prediction accuracy compared to predictive models of farther horizons in the sense 
that they can effectively create a high-fidelity replica of their associated operating zones. Fur-
thermore, the comparative study made between LSE (optimum modelling method for linear 
systems) and LLNF prediction methods confirms that all operating zones of the WBF process 
belong to the class of non-linear systems. Throughout the paper, also, it is elaborated that a 
variety of technical remarks should be taken into consideration in intelligent prediction of a 
MIMO process by means of any intelligent tool based on experimental data, meanwhile, any 
negligence of these points during prediction procedure may result in constructing unreliable 
predictive models. Some of the main remarks in creating intelligent nominal predictive model 
of a MIMO process are as follows. 
• Faulty operational data points have to be ignored when a predictive model of a process 

under nominal operating conditions is going to be identified. In addition, the inputs of the 
process, which do not vary over time, should not be considered in the predictive model, 
since they remain constant during prediction. 

• Outliers (section Data filtering) usually contaminate measured data or states for a non-li-
near dynamic system (including all process plants). Identifying and removing outliers will 
make the data more trustworthy and reliable. Filtering is a suitable alternative that guar-
antees this matter. 

• The magnitudes of the different signals should be close to each other. Normalization of 
all the data is an appropriate technique, which fulfil such requirements (section Data 
normalization). 

• No matter which intelligent tool is used, even though only one of the outputs of a MIMO 
process plant is going to be predicted, the values of other outputs are also needed to be 
included in predictor model (outputs of the dynamic systems are usually coupled). 

After this work is accomplished, a database of typical WBF faults will be utilized in 
a model-based condition monitoring system whose requirements can be defined by the factory 
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of beneficiary, developing this way a prototype module for condition monitoring and fault di-
agnosis of the WBF.  
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Nomenclature 
c – centre co-ordinate 
FGZ1 – gas flow of zone 1, [NM3h–1] 
FGZ2 – gas flow of zone 2, [NM3h–1] 
FGZ3 – gas flow of zone 3, [NM3h–1] 
FGZ4 – gas flow of zone 4, [NM3h–1] 
h – prediction horizon 
k – data sample number 
m  – mean value 
mz0 – dynamic depth of pressure input 
mzi – dynamic depth of i-th input  
PA1 – first predictive accuracy function 
PA2 – second predictive accuracy function 
PRz0 – furnace pressure, [mbar] 
Q – number of data samples 
S – original signal 
Smin – minimum of original signal 
Smax – maximum of original signal 
SN – normalized signal 
Tf – transfer function of designed filter  
TLZ1 – left temperature of zone 1, [°C] 
TLZ2 – left temperature of zone 2, [°C] 
TLZ3 – left temperature of zone 3, [°C] 
TLZ4 – left temperature of zone 4, [°C] 
TRZ1 – right temperature of zone 1, [°C] 
TRZ2 – right temperature of zone 2, [°C] 
TRZ3 – right temperature of zone 3, [°C] 

TRZ4 – right temperature of zone 4, [°C] 
ẐiT  – i-th one-step future output 

u – input signal 
x  – validity function 
y – output signal 
Z – time delay in discrete domain 
z – time, [s] 

Greek symbols 

ζj – offset of least-squares solution 
φj – j-th operating-point 
σ – individual standard deviation 

Abbreviations 

ANN – artificial neural network 
LLM – local linear model 
LLNF – locall linear neuro-fuzzy  
LOLIMOT – local linear model tree  
LSE – least square error 
MIMO – multi input multi output 
MISO – multi input single output 
PRBS – pseudo-random binary signal 
RMSE – root mean squared error  
TDL – time delay line 
TS – Takagi-Sugeno 
WBF – walking beam furnace 
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