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This article considers the influence of heat transfer on the non-linear Jeffery- 
-Hamel flow problem in a nanofluid. Analysis is performed for three types of na-
noparticles namely copper Cu, alumina Al2O3, and titania TiO2 by considering 
water as a base fluid. The resulting non-linear mathematical problems are solved 
for both analytic and numerical solutions. Analytic solution is developed by using 
differential transformation method whereas the numerical solution is presented 
by Runge-Kutta scheme. A comparative study between the analytical and numeri-
cal solutions is made. Dimensionless velocity and temperature, skin friction coef-
ficient and Nusselt number are addressed for the involved pertinent parameters. 
It is observed that the influence of solid volume fraction of nanoparticles on the 
heat transfer and fluid flow parameters is more pronounced when compared with 
three types of nanoparticles. It is also found that skin friction coefficient and 
Nusselt number for Al2O3 nanofluid is highest in comparison to the other two na-
noparticles.  
Key words: nanofluid, differential transformation method, numerical solution, 

Jeffery-Hamel flow 

Introduction 

The well known Jeffery-Hamel problem deals with the flow of an incompressible 
fluid between non-parallel walls. This fundamental problem in viscous fluid is extensively in-
vestigated by the various researchers. A survey of early information on this problem can be 
found in [1, 2]. Apart from using numerical methods in [3, 4], the Jeffery-Hamel flow prob-
lem is solved by other techniques such as perturbation method [5], the variation iteration 
technique, the homotopy perturbation method [6], the Adomain decomposition method [7, 8], 
the homotopy analysis method [9, 10], and the spectral-homotopy analysis method [11]. 

At present, there is an increasing interest of the researchers in the analysis of 
nanofluids. The word nanofluid was introduced by Choi [12]. In fact a nanofluid is a dilute 
suspension of solid nanoparticles with the average size below 100 nm in a base fluid, such as: 
water, oil, and ethylene glycol. Nanofluids exhibit thermal properties superior to those of the 
base fluids of the conventional particle-fluid suspensions [13]. The nanoparticles can be made 
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of metal, metal oxide, carbide, nitride, and even immiscible nanoscale liquid droplets [14]. 
Some advantages of nanofluids which make them useful are: a tiny size, along with a large 
specific surface area, high effective thermal conductivity, and high stability and less clogging 
and abrasion. The materials with sizes of nanometers possess unique physical and chemical 
properties [13]. They can flow smoothly through microchannels without clogging them be-
cause it is small enough to behave similar to liquid molecules [14]. This fact has attracted 
many researchers such as Abu-Nada [15], Tiwari and Das [16], Maïga et al. [17], Polidari et 
al. [18], Oztop and Abu-Nada [19]. Other than the quoted studies, the literature regarding 
flows of nanofluids in different configurations is growing rapidly. For example Nield and 
Kuznetsov [20] provided numerical solution for the effects of Brownian motion 
thermophoresis in boundary layer flow of viscous nanofluids over a surface embedded in a 
saturated porous medium. Darcy model is employed. The problem of natural convection flow 
of nanofluid past a vertical semi-infinite plate is also explored by Kuznetsov and Nield [21]. 
Nield and Kuznetsov [23] also carried out the numerical investigation for the double-diffusive 
natural convection boundary layer flow of nanofluid past a vertical plate. Effects of Brownian 
motion and thermophoresis are taken into account. Analysis of ref. [20] for double-diffusive 
treatment is presented in study [22]. Laminar forced convection flow of nanofluid in an annu-
lus has been numerically studied by Izadi et al. [24]. Single phase approach is employed in 
the mathematical modeling. Cheng and Minkowcyz [25] considered the free convection flow 
about a vertical plate embedded in a porous space. Khan and Aziz [26] analyzed the natural 
convection flow of nanofluid over a plate with a constant heat flux. The Brownian motion and 
thermophoresis effects are considered and numerical results are presented. Mahmoodi [27] 
numerically analyzed the free convection flow of nanofluid in a square cavity with an inside 
heater. Hassani et al. [28] carried out the homotpoy analysis method for the problem of 
boundary layer flow of nanofluid over a linear stretching surface. In this attempt, both the 
Brownian motion and thermophoresis effects are presented. 

Undoubtedly the viscous dissipation yields an appreciable rise in fluid temperature. 
This is because of the conversion of kinetic motion of fluid to thermal energy and characteris-
tics of source term in the fluid flow. Especially such situation is prominent for fluid flow with 
heat transfer in microchannels where length-to-diameter ration is very large. Judy et al. [29] 
after conducting experimental study by Tso and Mahulikar [30] concluded that viscous dissi-
pation has a pivotal role in increasing the fluid temperature along the microchannel length for 
decreasing diameter and increasing fluid velocity. Morini [31] provided a study just to point 
out the features of viscous dissipation in microchannel flows. It has been declared here that 
viscous dissipation is important for liquid flows when the hydraulic diameter is less than 
100imm. Das et al. [32] explored that the orders of magnitude of nanoparticles are smaller 
than those of microchannels and thus nanofluids are important for such approximations. Koo 
and Kleinstreuer [33] numerically discussed the features of viscous dissipation in conduction-
-convection heat transfer of nanofluid flow. Hady et al. [34] considered the viscous dissipa-
tion and thermal radiation effects in the flow of viscous nanofluid bounded by a nonlinear 
stretching surface. The flow of viscous nanofluids over a permeable moving plate in presence 
of thermal radiation and viscous dissipation is examined by Motsumi and Makinde [35]. Hung 
[36] provided analytic study for forced convection flow of nanofluids with viscous dissipa-
tion. Kuznetsov et al. [37] studied the forced convection flow of viscous fluid in a circular 
duct filled by a saturated porous medium. The walls are at constant temperature. Analysis has 
been carried out through Brinkman model and longitudinal conduction and viscous dissipa-
tion effects. In another attempt, the effects of axial conduction and viscous dissipation are ex-
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amined foe forced convection flow in a channel by Nield et al. [38]. Here the channel walls 
have constant temperature and Brinkman model is used. Nield et al. [39] also investigated the 
forced convection flow in a channel filled by saturated porous medium when walls hold either 
at uniform temperature or at uniform heat flux. Here attention is paid to the effects of viscous 
dissipation and flow work. 

In present research, the DTM is applied to find the analytical solutions of non-linear 
differential problems governing Jeffery-Hamel flow with respect to the heat transfer and vis-
cous dissipation in nanofluids. To our knowledge, the effect of nanoparticles on the character-
istics of fluid flow and heat transfer in the Jeffery-Hamel problem is not addressed yet. Hence 
in this study, the effects of three different types of nanoparticles, namely copper Cu, alumina 
Al2O3, and titania TiO2 with water as the base fluid are investigated. The dimensionless veloc-
ity and temperature, skin friction coefficient and Nusselt number are given proper attention. 
Numerical and analytical solutions are given and compared.  

The concept of differential transformation method was first introduced by Zho [40] 
in 1986 and it was used for the solutions of linear and nonlinear initial value problems in elec-
tric circuit analysis. The main advantage of this method is that it can be applied directly for 
linear and non-linear differential equation without requiring linearization, discretization, or 
perturbation. Previously this method is used by various researchers such as Rashidi and Erfani 
[41] employed the DTM for the solutions of Burger's equation and heat conduction problem 
in fin with temperature dependent thermal conductivity. Ganji et al. [42] used the differential 
transformation method to determine fin efficiency of convective straight fins with temperature 
dependent thermal conductivity. Hsiang and Ling [43, 44] presented the new algorithm for the 
calculations of one and 2-D differential transform of non-linear functions. Jang [45] solved 
linear and non-linear initial value problems by the projected differential transform method. 
Rashidi and Erfani [46] used the DTM-Pade for the investigation of MHD stagnation-point 
flow in porous media with heat transfer. It is noted that when there is an infinite boundary in 
the problem, the DTM gives the inaccurate results. In this case, by using Pade approximation, 
the problem can be solved. Complementary information about this method is shown in [47]. 

Fundamentals of differential transformation method 

Consider an analytic function y(t) briefly describes DTM for the convenience of 
readers. Let us in a domain D with t = ti showing any point in it. At center ti, the Taylor series 
expansion yields [48, 49]: 
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in which y(t) shows the original function and Y(j) is the transformed function. The differential 
spectrum of Y(j) is confined within the interval t ∈ [0, H], (where H is a constant). The differ-
ential inverse transform of Y(j) is given by: 
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Some of the original functions and transformed functions are shown in tab. 1. In fact 
the concept of differential transformation is Taylor series expansion. For assigned solution the 
high accuracy may be calculated through more number of series in eq. (4). 

Table 1. The fundamental operations of differential  
transform method 

Original function Transformed function 

 
Figure 1. Geometry of the problem 
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Problem statement 

We consider the flow from a source/sink at the intersection between two solid walls 
that meet at an angle 2α in a water-base nanofluid containing different types of nanoparticles 
namely Cu, Al2O3, and TiO2 (fig. 1). We choose plane polar coordinates (r, θ) such that the 
velocity V[u(r, θ), 0]. The equations of continuity, motion, and energy considering viscous 
dissipation for the problem under consideration give: 
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with the subjected boundary conditions i.e: 
–  at the channel centerline: ∂u(r, θ)/∂θ = 0, ∂T/∂θ = 0, u(r, θ) = U 
–  at the plates, making the body of the channel: u(r, θ) = 0, T = Tw. 

Here µnf denotes the viscosity of the nanofluid and ρnf is the density of the nanofluid. 
These are expressed by the following definitions: 

 f
nf nf f s2.5 (1 )

(1 )
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where ϕ depicts the solid volume fraction of the nanofluid, ρf  – the density of the base fluid, 
ρs – the density of the solid particle, and µf – the viscosity of the base fluid. It is worth men-
tioning that the viscosity of the nanofluid can be approximated as viscosity of a base fluid µf 
containing dilute suspension of fine spherical particles and its expression has been given by 
Brinkman [51]. Further αnf and knf are the thermal diffusivity and thermal conductivity of 
nanofluid, respectively. The value of αnf is [19]:  
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where kf and ks are the thermal conductivities of fluid and solid particles, respectively, and  
(ρCp)nf is the heat capacity of the nanofluid.  

Equation (5) yields: 

 ( ) ( , )f ru rθ θ=  (11) 
Introducing: 

 max
max w

( )( ) , , , ( )f Tf f rU
f T
θ θη η ξ η

α
= = = =  (12) 

and eliminating p between eqs. (6) and (7), we arrive at: 
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with the following boundary conditions: 

 (0) 1, (0) 0, (1) 0f f f′= = =  (15) 

 (1) 1, (0) 0ξ ξ ′= =  (16) 

where the Reynolds number Re, the Eckert number Ec and Prandtl number Pr are expressed 
as: 
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Expressions of skin friction coefficient (cf) and shear stress (τw) are: 
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Substitution of eq. (12) into eqs. (18) and (19) gives: 

 f 2.5
1 (1)

Re(1 )
c f

ϕ
′=

−
   (20) 

The local Nusselt number Nu and heat transfer rate are: 
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This expressions in view of eq. (12) yield: 
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Solution by differential transformation method 

From eqs. (13) and (14) we can write: 
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where F(k) and Θ(k) are transformed functions of f(η) and ξ(η), respectively. Now the trans-
formed boundary conditions are given by: 
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Letting F(2) = δ and Θ(0) = β and invoking eqs. (23) and (24), the other values of 
F(k) and θ(k) when ϕ = 0 are computed. These are: 
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Since the above process is continuous, hence putting eqs. (27) and (28) in the main 
equation based on DTM with H = 1, the resulting expressions are: 
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(30) 

In order to determine δ and β we substitute eq. (26) into eqs. (29) and (30): 

 2 2 31 1(1) 1 (Re 2 ) (Re 4Re 4 3Re ) 06 90f δ αδ α αδ α α α δ= + − + + + + − + =…    (31) 
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(32) 

From this four equations, we have the desired expressions of f(η) and ξ(η).  
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Results and discussion 
The non-linear differential problems consisting of eqs. (13) and (14) along with the 

boundary conditions eqs. (15) and (16) have been solved analytically and numerically by em-
ploying DTM and fourth-order Runge-Kutta method, respectively. We carry out the analysis 
for three different types of nanoparticles namely Cu, Al2O3, and TiO2 with water as the base 
fluid. The thermophysical properties of different nanoparticles are shown in tab. 2. The com-
parison between present and other reported results [11, 52] for Re = 50, α = 5°and ϕ = 0 is 
shown in tab. 3. It is evident from tab. 3 that the DTM results are in an excellent agreement 
with OHAM and SHAM results. Effect of solid volume fraction on the dimensionless velocity 
for Cu, Al2O3, and TiO2 of nanoparticles (when Re = 50 and α = 5°) is displayed in figs. 2-4, 
respectively. Figure 2 displays that in divergent channel, f(η) decreases when the solid vol-
ume fraction increases for Cu nanoparticles. It is worth mentioning to point out that the veloc-
ity increases when the solid volume fraction increases for Al2O3 and TiO2 nanoparticles (see 
figs. 3 and 4). It is concluded that the impact of solid volume fraction in Cu-water nanofluid is 
more evident than the other nanoparticles. Further, it is noticed form figs. 2-4 that there is 
well agreement between the DTM and numerical results.  

Table 2. The physical properties of nanofluids and base fluid [19] 

Physical properties Water (base fluid) Cu Al2O3 TiO2 

ρ [kgm–3]  977.1 8933 3970 4250 

Cp [Jkg–1K–1] 4179 385 765 686.2 

k [Wm–1K–1] 0.613 400 40 8.9538 

 

Table 3. Comparison of DTM, OHAM, SHAM and numerical solutions for Newtonian fluid  
(ϕ = 0), Re = 50 and α = 5° 

η DTM OHAM [52] SHAM [11] Numerical 

0 1 1 1 1 

0.1 0.982431 0.98251808 0.982431 0.982431 

0.2 0.931226 0.93156588 0.931226 0.931226 

0.3 0.850611 0.8513815 0.850611 0.850611 

0.4 0.746791 0.74826039 0.746791 0.746792 

0.5 0.626948 0.62953865 0.626848 0.6268488 

0.6 0.498234 0.50242894 0.498234 0.498234 

0.7 0.366966 0.37293383 0.366966 0.366966 

0.8 0.238124 0.24508197 0.238124 0.238124 

0.9 0.115152 0.1207156 0.115152 0.115152 

1 –0.00000021 0.000000001 0 0 
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    Figure 5 shows the changes in the consid-
ered nanoparticles on the dimensionless ve-
locity when Re = 80, α = 3°, and ϕ = 0.2. It 
is found that the dimensionless velocities for 
Al2O3 and TiO2 nanoparticles are almost 
same. It is noticed that values of velocities 
for Al2O3 and TiO2 nanoparticles are larger 
than Cu nanoparticle velocity. The effect of 
solid volume fraction on the dimensionless 
temperature profile for water-Cu nanoparti-
cle (when Re = 50, α = 5°, and Ec = 0.5) is 
depicted in fig. 6. It is observed that the tem-
perature increases when the solid volume 
fraction increases. In all results of this paper, 
Pr = 6.2 is considered for solution. Figure 7  

  
Figure 2. Variation of f(η) with different values 
of solid volume fraction for water-Cu nanofluid 
when Re = 50 and α = 5 

Figure 3. Variation of f(η)  with different values 
of solid volume fraction for water-Al2O3 
nanofluid when Re = 50 and α = 5 

Figure 4. Variation of f(η) with different values of 
solid volume fraction for water-TiO2 nanofluid 
when Re = 50 and α = 5 

 

  
Figure 5. Variation of f(η) for three types of 
nanoparticles when Re = 80, α = 3, and ϕ = 0.2 

Figure 6. Variation of ξ(η) with different values 
of solid volume fraction for water-Cu nanofluid 
when Re = 50, Ec = 0.5, and α = 5 
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provide the dimensionless temperature profile for different nanoparticles when other parame-
ters kept fixed at Re = 50, α = 7, Ec = 0.5, and ϕ = 0.2. It is clear from fig. 7 that Cu nanopar-
ticle has a higher temperature than the other nanoparticles. Figure 8 depicts the velocity pro-
files for water-Al2O3 nanofluid when the angleα is equal to –5, –3, 3, and 5, and other param-
eters kept fixed at ϕ = 0.2 and Re = 50. This figure illustrates that in divergent channel, the 
dimensionless velocity is decreasing function of α. However the dimensionless velocity in-
creases when α is increased in convergent channel. The effect of angle α on the dimension-
less temperature for water-Al2O3 nanofluid when ϕ = 0.2 and Re = 50 is shown in fig. 9. This 
figure describes that the temperature is increasing function of α in divergent channel. Figure 
10 explains the dimensionless velocity for water-TiO2 nanofluid when the Reynolds number 
Re varies and the other parameters kept fixed at 3α = − and 0.1ϕ = . It is revealed that in di-
vergent channel, f(η) is increasing function of Reynolds number (see fig. 10).  
 

Figure 7. Variation of  ξ(η) for three types of 
nanoparticles when Re = 50, α = 7, Ec = 0.5,  
and ϕ = 0.2 

Figure 8. The effect of angle α on f(η) for  
water-Al2O3 nanofluid when ϕ = 0.2,  
and Re = 50 

 
Figure 9. The effect of angle α on ξ(η) for  
water-Al2O3 nanofluid when ϕ = 0.2, Ec = 0.5,  
and Re = 50 

 
Figure 10. The effect of Reynolds number on 
f(η) for water-TiO2 nanofluid when  
α = –3 and ϕ = 0.1 
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The impact of Reynolds number Re on the dimensionless temperature ξ(η) consider-
ing water-TiO2 nanofluid when remaining parameters kept fixed at α = 3, ϕ = 0.2, and Ec = 
=i0.5 is displayed in fig. 11. As shown, an increase in the temperature is found with increased 
the value of Re. Figure 12 shows the temperature distribution for water-Cu nanoparticles 
when the Eckert number is allowed to varies and the other parameters fixed at α = –3, Re = 
=i30, and ϕ = 0.2. It can be clearly seen that the temperature increases when the value of Ec 
becomes larger.  

Table 4. Numerical values of the skin friction coefficient for different values of Re and solid volume 
fraction for three types of nanoparticle and α = 5° 

Re ϕ = 0 
ϕ = 0.1 ϕ = 0.2 

Cu Al2O3 TiO2 Cu Al2O3 TiO2 

10 –0.181931 –0.228015 –0.236812 –0.236316 –0.302882 –0.321325 –0.319488 

30 –0.0488096 –0.0547215 –0.0635752 –0.0630751 –0.070249 –0.0879484 –0.0869483 

50 –0.0221866 –0.020245 –0.028929 –0.0284339 –0.0241233 –0.0414192 –0.0404258 

 
Table 5. Numerical values of the Nusselt number (αNu) for different values of Re and solid volume 
fraction for three types of nanoparticles when α = 5° and Ec = 0.4 

Re 
0.1ϕ =  0.2ϕ =

Cu Al2O3 TiO2 Cu Al2O3 TiO2 

10 4.11857 4.1796 4.17611 5.50722 5.6292 5.62211 

30 3.77626 3.89544 3.88779 5.03454 5.27055 5.25443 

50 3.655 3.71269 3.7062 4.91475 5.0224 5.00677 

 
Figure 11. The effect of Reynolds number Re on 
ϕ(η) for water-TiO2 nanofluid when α = 3,  
Ec = 0.5 and ϕ = 0.2 

 
Figure 12. The effect of Eckert number Ec on 
ξ(η) for water-Cu nanofluid when a = –3,  
ϕ = 0.2, and Re = 30 
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The variation of skin friction coefficient and Nusselt number with Reynolds number 
in three types of nanoparticles for different solid volume fraction is given in tabs. 4 and 5, as 
well as figs. 13 and 14, respectively. As expected that in divergent channel, the skin friction 
coefficient cf and Nusselt number decrease when the Reynolds number Re increases for three 
considered nanoparticles and viscous fluid (ϕ = 0). It is observed that the values of skin fric-
tion coefficient fc and Nusselt number for Al2O3 nanoparticles are larger than the other nano-
particles. Moreover, an increase in the skin friction coefficient and Nusselt number is ob-
served when solid volume fraction increases. For water-Al2O3 nanofluid and ϕ = 1, the skin 
friction coefficient and Nusselt number for different values of the Reynolds number and angle 
α is presented in tab. 6. This table shows that in divergent channel cf and Nusselt number de-
crease when angle α increases in the divergent channel whereas there are increase in cf and 
Nusselt number in convergent channel when the Reynolds number Re and angle α increase. 
On the other hand, the skin friction coefficient and Nusselt number are increasing function of 
the solid volume fraction of nanoparticles in both divergent and convergent channels. 

 

Table 6. Numerical values of the skin friction coefficient and Nusselt number for different values of Re 
and α in divergent and convergent channel for water-Al2O3 nanofluid with ϕ = 0.1 and Ec = 0.6 

Re α cfRe αNu α cfRe αNu 

10 

3 

–1.89307 6.32394

–3 

–2.10252 6.64549 

20 –1.78733 6.17642 –2.20602 6.81748 

30 –1.6811 6.03935 –2.30856 6.99567 

40 –1.75452 5.91359 –2.41008 7.17914 

30 

2 –1.78838 6.16255 –2 –2.207 6.80261 

4 –1.57301 5.93255 –4 –2.40874 7.20064 

6 –1.35507 5.77202 –6 –2.60481 7.64386 

 
 

 
Figure 13. The variation of skin friction 
coefficient with Reynolds number in three types 
of nanoparticles for different solid volume 
fraction 

Figure 14. The variation of Nusselt number with 
Reynolds number in three types of nanoparticles 
for different solid volume fraction 
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The effects of nanoparticles on criti-
cal Reynolds number are also studied. 
As mentioned in many related textbooks 
and papers, in divergent channel, as 
Reynolds number increases, reverse 
flows in divergent channels emerge. 
Table 7 shows how nanoparticles affect 
on critical Reynolds number in the di-
vergent channel for α = 5. It is clearly 
noticed that critical Reynolds number in 
divergent channel decreases for nano-
fluids. As shown in tab. 7, for Cu nano-
particles, separation occurs between Re = 
=i50 and Re = 60 when α = 5. While 
without considering nanoparticles (ϕ = 0), 
separation and backflow are observed 
around Re = 80. Further, Cu nanoparticle 
has lower critical Reynolds number ra-
ther than that of other nanoparticles. 
The effect of nanoparticles on the di-
mensionless velocity for water-TiO2 
nanofluid when ϕ = 0.1 and α = 5 is 
shown in fig. 15. It is observed that in 
divergent channel backflow is started 
after Re = 80.  

Conclusions 

Analysis has been carried out for the 
influences of nanofluid and heat transfer 
effects on the flow quantities in conver-
gent/divergent channel. Series solution 
for velocity and temperature are con-
structed by DTM. The present results of Newtonian fluid are compared with the other previ-
ous results [11, 52]. Numerical solution is also computed. A good agreement is noted between 
the results by different techniques. It is observed that the effects of material parameters of flu-
id on skin friction coefficient and Nusselt number are opposite for the convergent and diver-
gent channels. Influences of Re and angle α on f(η), ξ(η), skin friction coefficient and Nusselt 
number in divergent and convergent channels are quite opposite. The effects of solid volume 
fraction on the skin friction coefficient and Nusselt number in convergent and divergent chan-
nels are similar. Interestingly, the water-Al2O3 nanofluid has higher values of skin friction co-
efficient cf and Nusselt number when compared with the other two nanofluids.  
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Table 7. The effects of nanoparticles on critical  
Reynolds numbers in the divergent channel when  
α = 5 

Re 
f’(1)

ϕ = 0 ϕ = 0.1,
Cu

ϕ = 01, 
TiO2 

ϕ = 0.1, 
Al2O3 

50 –1.21026 –0.655705 –1.19394 –1.20157 

60 –0.994799 0.249569 –0.96132 –0.97875 

80 0.041216 0.5345 0.155357 0.13987 

100 0.241266 0.89764 0.38545 0.36874 
 

 
Figure 15. The effect of Reynolds number Re on f(η) 
for water-TiO2 nanofluid when: ϕ = 0.1 and α = 5 in a 
divergent channel 
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Nomenclature 
cf –  skin friction coefficient, (= τw/fU2), [–]
cp –  specific heat at constant pressure, [JKg-1K–1] 
Ec –  Eckert number (µcp/k0), [–] 
F –  transformed function, [–] 
G –  transformed function [-] 
k –  thermal conductivity, [Wm–1K–1] 
Nu –  Nusselt number (= rqw|θ=α/k0Tw), [–] 
p –  pressure, [Nm–2] 
Pr –  Prandtl number (= U2/cpTw), [–] 
Re –  Reynolds number (= rUα/ν), [–] 
r –  radial co-ordinate [m] 
T –  temperature [K] 
u –  radial velocity [ms–1] 
V –  flow velocity vector [ms–1] 
y –  analytic function, [–] 
Y – transformed function, [–] 

Greek symbols

α –  angle between two unparallel walls, [deg] 
η –  similarity variable (= θ/α), [–] 
Θ –  transformed function, [–] 
θ –  angular co-ordinate, [deg] 
µ –  dynamic viscosity of fluid, [kgm–1s–1] 
ξ –  dimensionless parameter, [–] 
ρ –  fluid density, [kgm3] 
τ –  shear stress, [Nm–2] 

Subscripts 

nf –  nanofluid 
r –  radiation 
w –  wall 
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