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The lattice Boltzmann method is applied to computationally investigate the laminar
flow and heat transfer of an incompressible fluid with constant material properties
in a 2-D channel with a built-in bluff body. In this study, a triangular prism is taken
as the bluff body. Not only the momentum transport, but also the energy transport is
modeled by the lattice Boltzmann method. A uniform lattice structure with a single
time relaxation rule is used. For obtaining a higher flexibility on the computational
grid, interpolation methods are applied, where the information is transferred from
the lattice structure to the computational grid by Lagrange interpolation. The flow
is investigated for different Reynolds numbers, while keeping the Prandtl number at
the constant value of 0.7. The results show how the presence of a triangular prism
effects the flow and heat transfer patterns for the steady-state and unsteady-peri-
odic flow regimes. As an assessment of the accuracy of the developed lattice
Boltzmann code, the results are compared with those obtained by a commercial
computational fluid dynamics code. It is observed that the present lattice
Boltzmann code delivers results that are of similar accuracy to the well-established
computational fluid dynamics code, with much smaller computational time for the
prediction of the unsteady phenomena.
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Introduction

Flow around bluff bodies in ducts and channels has been investigated intensively by

many researchers, both experimentally [1-3] and numerically [4-6], since this flow is of impor-

tance for different applications including electronic cooling and heat exchange systems. Within

this context, a triangular prism as a bluff body is a basic configuration. Abbasi et al. [7] analysed

the incompressible laminar flow and heat transfer in a 2-D channel with a built-in triangular

prism computationally. They showed that the use a triangular prism could enhance the heat

transfer to the channel walls. Chattopadhyay [8] investigated a similar configuration numeri-

cally for incompressible turbulent flows, by applying a steady-state Reynolds averaged

Navier-Stokes equations (RANS) analysis based on a two-equation turbulence model. The pre-
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vious computational work [4-8] was principally based on the discretization of the Navier-Stokes

equations. Also, Ellahi [9] is explained basics, concepts and methods of steady and unsteady

flow for Newtonian and non-Newtonian fluids. Additionally, effects of the Reynolds and

Prandtl numbers on incompressible fluids and heat transfer can be found in [9]. The novelty of

the present investigation is the application of the lattice Boltzmann method (LBM) [10, 11] to

analyze the problem. The presently developed 2-D LBM code for incompressible flows, which

was recently applied [12] to several benchmark isothermal, steady-state flow problems is ex-

tended, in the present work, to include the transport of thermal energy. This code is now used to

analyze the laminar fluid flow and heat transfer in a plane channel, with a built-in triangular

prism, which also exhibits an unsteady-periodic nature due to the vortex shedding behind the

prism, depending on the Reynolds number. Results are compared with those obtained by a com-

mercial computational fluid dynamics (CFD) code Fluent [13]. In these comparisons, both accu-

racy, and computational costs of LBM against conventional CFD procedures are assessed. Re-

cently, a similar problem, namely, the forced convection in a plane-channel with built-in square

obstacles was investigated by LBM by Moussaoui et al. [14]. However, in that work, the flow

was modeled by LBM, whereas the energy equation was discretized by the finite difference

method. In difference to the previous work [10], the temperature distribution is also computed

by LBM, in the present analysis.

In comparison to the previous work of the present authors [12], for obtaining a higher

flexibility on the computational grid, the present LBM code has been further developed to incor-

porate interpolation methods [15-20], where the information is transferred from the lattice struc-

ture to the computational grid by Lagrange interpolation.

Problem definition

The investigated geometry is similar to the one, which was computationally investi-

gated by Abbasi et al. [7] using a control volume based finite element method. The geometry is

shown in fig. 1.

In fig. 1, the half of the solution domain is shown, which is enclosed by a symmetry

boundary at the channel mid-height, running through the middle of the triangular prism (TP).

Although the time-averaged flow needs to be symmetric around this plane, the time dependent

flow is not, of course, for higher Reynolds numbers, where the flow becomes unsteady, and ex-

hibits vortex shedding behind the prism. A steady-state solution can, however, still be enforced,

by using an artificial symmetry plane as shown in fig. 1. In the present computations, irrespec-

tive of the Reynolds number, a steady-state solution is also obtained by using this symmetry

plane, for comparison purposes (as such simplification are sometimes being done, for some

flows, for practical purposes, assuming that the steady-state solution obtained this way would

resemble the time-averaged solution). For the main, unsteady computations, the domain is twice

as large as the one shown, mirrored around the symmetry plane (fig. 1) and, thus, exhibiting no

symmetry plane through the middle of the

channel, of course.

For the momentum equations, a para-

bolic, fully developed channel flow velocity

profile is imposed as boundary condition at

the inlet, and a constant static pressure is

prescribed at the outlet. No-slip boundary

conditions apply at the walls. For the energy

equation a constant temperature is pre-
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Figure 1. Half of the domain, boundary types



scribed at the inlet boundary. Adiabatic prism walls are as-

sumed, while zero-gradient boundary conditions is applied

at the outlet. Channel walls, are prescribed to be isother-

mal.

LBM formulation

Mostly used LBM formulations are based on the single

relaxation time approximation of Bhatnagar-Gross-Krook

(BGK) [21]. In the present work, a version due to He and Luo

[22] is adopted, which is especially suitable for unsteady, in-

compressible flows. The 2-D 9-velocity lattice model

(D2Q9) is used, which is displayed in fig. 2.

According to the present modeling, using two dif-

ferent distribution functions, one for the density (momen-

tum) and one for the temperature, the discretized lattice Boltzmann evolution equations for mo-

mentum and energy transport, which are usually solved in two consecutive steps, i. e. in a

“collision” and a following “streaming” step, are:
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Figure 2. D2Q9 lattice model
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The macroscopic fields are obtained from:
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The time step size dt is chosen in such a way to result in a lattice speed c (5) of unity,

resulting in a lattice sound speed sc (4) of magnitude 1/(3)1/2.

Implementation of boundary conditions are not shown here in detail, for brevity, but

can be found, e. g. in Succi [11] and Sukop and Daniel [23]. At walls, the so-called

“bounce-back” boundary condition is applied for the momentum equations, where the physical

boundaries of the solution domain are defined to be aligned with the lattice grid lines (“on-grid”

formulation). For coding the model, sample FORTRAN codes provided in Mohammad [10] are

used as a basis.

Interpolation supplemented LBM (ISLBM)

In the traditional LBM, a uniform, squarish lattice structure is used in the whole solu-

tion domain. The usual CFD practice is, however, to use a variable mesh density, for optimally

distributing the nodes between the high and low gradient flow regions. The uniform lattice

structure does not allow this, and, thus, leads to an excessively fine overall resolution, and, thus,

to a large increase in the operation count and memory requirement. In this context, another prob-

lem, which stems from the stability limitations of the standard LBM, is that the lattice spacing

needs to be finer with increasing Reynolds number, leading to excessively fine lattice structures

for high Reynolds number, and, thus, again to high computational costs. For better coping with

these limitations, several methods, including the so-called Interpolation Supplemented LBM

(ISLBM) [15-20] were proposed.

In ISLBM, a non-uniform (finite difference like) computational grid is used, which al-

lows the nodes to be distributed according to the needs of the problem. The nodes of this grid do

not need to coincide with the underlying lattice structure. The distribution functions are evalu-

ated and stored only at the nodes of the computational grid. Collision takes place at the nodes of

the computational grid. However, the streaming step results in the values of the distribution

function being available off-grid. Thus, the distribution functions at the nodes of the computa-

tional grid need to be calculated by an appropriate interpolation procedure, i.e. Lagrangian inter-

polation which was first outlined in [15].

In the present work, the ISLBM approach is implemented. The equations for the 2-D

Lagrangian interpolation are not presented here, but can be found in [15-20]. Linear interpola-

Taymaz, I., et al.: Numerical Investigation of Incompressible Fluid Flow and ...
540 THERMAL SCIENCE: Year 2015, Vol. 19, No. 2, pp. 537-547



tion (LI) and second order interpolation

schemes are implemented. For the sec-

ond order interpolation, two schemes are

implemented, namely, a central second

order scheme (CSOI), and an upwind

second order scheme (USOI). For better

understanding, the schemes are sketched

in fig. 3.

In ISLBM, collision takes place at the

nodes on computational grid. After that,

streaming occurs, but distribution func-

tions can not reach the neighbour computational grid. Therefore, Lagrangian interpolation

schemes uses for calculating distribution functions value in computational grid using these

unreached distribution functions. As you see in fig. 3, point where interpolation is performed

changes, while Lagrange interpolation schemes are changing.

On boundaries, LI can readily be implemented. For the second order interpolation, ei-

ther CSOI, or USOI is used, depending on the orientation of the boundary and the availability of

the nodes.

Results

For validating the present LBM results, the well-established CFD code Fluent [9] is

used. An outline of the modeling used in Fluent calculations can be given as follows: A second or-

der upwind procedure is used in discretizing the convective terms. In time, a second-order back-

ward Euler scheme is used. For treating the velocity-pressure coupling, the SIMPLEC scheme is

used for steady-state computations, whereas the PISO algorithm is applied for unsteady computa-

tions. Default under-relaxation factors are used (pressure: 1.0, momentum: 0.7). As convergence

criteria, 100 times smaller tolerances for the scaled residuals are required than the default values

(all equations except energy lower than 10–5, the energy equation lower than 10–8).

LBM is an intrinsically unsteady procedure, where, a steady-state solution, if it exists,

is found as a result of integration in time. In physically unsteady cases (high enough Reynolds

number, without symmetry boundary) always the same time-step size is used for LBM and Flu-

ent calculations. In unsteady computations, the flow starting from any initial distribution is com-

puted for a period of time, until a periodic flow structure gets established. Subsequently, the re-

sults are time-averaged for a sufficiently long time for getting time-averaged distributions that

are time-invariant.

For a better comparability of the results, always the same computational grids are used for

both codes. The only exception is the local grid

structure in the vicinity of the triangular prism.

In LBM, the triangular shape is approximated

by a staircase structure, whereas it is accurately

resolved by the finite volume grid of Fluent, us-

ing a locally unstructured configuration. For il-

lustration purposes, detail views of the both

grids are compared in fig. 4, for a rather coarse

resolution, i. e. for N = 4 (N: number of cells

along half base length of the triangular

cross-section).
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Figure 3. Skecth of the interpolation schemes; (a) LI,
(b) CSOI, (c) USOI

Figure 4. Detail view of grids for N = 4; (a) LBM,
(b) Fluent



For all computations, Reynolds number is based on density, mean inlet velocity, hy-

draulic diameter, and dynamic viscosity. For channel flow, hydraulic diameter is taken as two

channel height (2H).

Preliminary validation

For the implementation of the energy equation (different from [12]), a preliminary val-

idation is performed for laminar forced convection in a fully-developed channel flow. A simple

channel geometry (without TP) is modeled for Re = 160,

with a constant inlet and a constant wall temperature, with

channel length long enough to allow a thermally fully de-

veloped flow. The predicted and theoretical [24] Nusselt

numbers are compared in tab. 1, where a good agreement

is observed.

Traditional LBM results

First, the influence of the inaccuracy in representing the shape of TP is investigated.

This study is carried out for the steady-state flow, assuming a symmetry boundary through the

middle of the prism (fig. 1), for Re = 100. De-

noting the number of lattice units/finite volumes

along the half-height of the triangular cross-sec-

tion by N, four different grid resolutions,

namely grids with N = 4 (fig. 4), 8, 12, and 16

are investigated. Predicted profiles of axial ve-

locity along traversal direction, at an axial posi-

tion half triangle base behind TP are shown in

fig. 5. All predictions are qualitatively similar.

Quantitatively, LBM and Fluent predictions for

N = 4 differ from each other and from the other

curves. For N = 16, LBM and Fluent predictions

perfectly agree with each other. Results for the

lower resolutions, i. e. for N = 8, 12 (not dis-

played) are very close to those of N = 16. In

the main computations, a resolution with at least

N = 8 (or higher) is applied.

Table 2 shows the CD predictions for steady state-flow (symmetry) with four grid reso-

lutions (N = 4, 8, 12, 16). For these grid resolutions, used number of total lattice units/finite vol-

umes is given for whole domain in tab. 2. Ac-

cording the table, changes of drag coefficient

are so small after N = 8 for both LBM and Flu-

ent. Because of these results, at least N = 8 grid

resolution is used for accuracy of simulations

in LBM and Fluent.

Predictions are performed for Re = 160,

270, 530, 800, and 1070. In these computa-

tions, performed for the full channel domain

(without symmetry plane, fig. 1), it is observed

that the flow converges to a steady-state solu-
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Table 1. Nu for fully-developed
channel flow (Re = 160)

LBM Theory [24]

Nu 7.55 7.54

Figure 5. Axial velocity along traversal direction
at an axial distance of B/2 downstream for prism
(Re = 100)

Table 2. Number lattice units / finite volumes and
CD predictions for steady-state flow (symmetry)
with four grid resolutions (Re = 100)

Number of lattice
units/finite volumes

LBM
(CD)

Fluent
(CD)

N = 4 2620 6.26 6.46

N = 8 10480 5.96 6.72

N = 12 23868 5.95 6.74

N = 16 41536 5.96 6.74



tion for Re = 160 and 270. An un-

steady behavior with vortex

shedding is observed for higher Re

(Re = 530, 800, 1070). However,

also for those Reynolds number,

steady-state solutions are artifi-

cially obtained by employing sym-

metry (fig. 1), for better demon-

strating the consequences of this

assumption. In all unsteady computations, the time step size applied can be considered to be fairly

small, which resulted in a resolution of a period in at least 1000 time steps and, in cell Courant

numbers (Co) about 0.2 (based on bulk inlet velocity). For all full channel domain simulations,

number of lattice units/finite volumes for the half height of the triangular cross-section is taken as

N = 25. This grid resolution is enough for accuracy according to steady-state flow (symmetry) grid

numbers study (tab. 2). Figure 6 displays, in the near-field of the TP, the unsteady/instantaneous

streamlines, the unsteady/time-averaged streamlines, and the steady-state streamlines, as pre-

dicted by LBM for Re = 1070 (the steady-state solution shown in fig. 6(c) is enforced by solving

the equations in the half-domain, applying the symmetry boundary condition of fig. 1. Results are

displayed for full-domain, for post-processing purposes, by mirroring the solution around the

symmetry plane in fig. 6(c). The instantaneous streamlines indicate the unsteady, and at any time

non-symmetric flow structure behind the prism due to vortex shedding, fig. 6(a). The time-aver-

aged streamlines appear symmetric around the

channel mid-plane, of course, and exhibit a rather

small re-circulation zone behind the prism, fig.

6(b). If the flow unsteadiness is neglected and a

steady-state flow is enforced by artificially sup-

pressing the unsteadiness by a symmetry plane,

the size of the re-circulation zone is highly

over-predicted, fig. 6(c). Additionally, when the

symmetry is imposed to the flow, the vortex shed-

ding instability eliminates and the length of the

re-circulation zone increases linearly with respect

to Reynolds number.

Figure 7 shows the comparison of the

dimensionless skin friction (C) values of LBM and

Abbasi et al. [7] at the channel bottom wall for

Re = 160. One can observe that, dimensionless

skin friction predictions of LBM and Abbasi et al.

[7] are close with each other.

Table 3 compares the drag coefficient (time-

-averaged) and Strouhal number predicted by

LBM and Fluent, for the unsteady flow at Re =

=i1070. Here, the frequency associated with the

lift force on the prism is considered in determin-

ing the Strouhal number. A quite good agree-

ment between the LBM and Fluent predictions

are observed (tab. 3).
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Figure 6. Streamlines predicted by LBM for Re = 1070;
(a) unsteady/instantaneous, (b) unsteady/time averaged,
(c) steady-state using symmetry plane

Figure 7. Skin friction values at the channel
bottom wall for Re = 160

Table 3. CD and St predicted for Re = 1070

LBM Fluent

CD 6.40 6.46

St 0.35 0.34



Isotherms predicted by LBM for cases with and without triangular prism, using differ-
ent modeling approaches are displayed in fig. 8, for Re = 1070. The unsteady-periodic pattern of
the temperature field can be seen in fig. 8(a). This simulation is confined case, because channel
flow with built-in triangular prism is setup with wall boundary conditions. This isotherms
clearly shows that, the von Karman vortices in the wake are inverted with respect to the classical
configuration in the unconfined case (channel flow with symmetry conditions) in fig. 8(a) [25].
One can observe that the temperature field of the (artificially obtained) steady-state solution, fig.
8(c) does not differ much from that of the solution without prism, fig. 8(d) except in the
near-field of the prism, without necessarily implying a remarkable heat transfer enhancement.

The time-averaged results of the unsteady solu-
tion, fig. 8(b), differ from the steady-state solu-
tion, (fig. 8c), and imply a more substantial heat
transfer enhancement. Predicted Nasselt num-
ber variations along channel wall for Re = 1070
are shown in fig. 9. Results neglecting flow un-
steadiness (using an artificial symmetry plane)
show an increase of the Nasselt number in the
near-field of TP, purely due to blockage effects.
However, behind TP, steady-state Nasselt num-
ber predictions undershoot the values of the
case without TP (deceleration behind TP). A
higher mean Nasselt number is still predicted.
However, this artificially obtained steady-state
result does not have much physical signifi-
cance. The variations of the instantaneous and
the time-averaged Nasselt number are also dis-
played in fig. 9. The time-averaged Nasselt
number shows a local peak nearly at the same

location as the stationary solution, which is, but, slightly lower. This is followed by a secondary
local peak in downstream. It is interesting to see that the time- averaged Nasselt number values
are much higher than those of the case without prism and those of the stationary computation
with TP, especially in the downstream region. Thus, one can see that the heat transfer to channel
walls can be enhanced by a triangular prism, and this effect is mainly due to the unsteady-peri-
odic vortex shedding. Again, a perfect agreement of the LBM predictions with those of Fluent is
observed.
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Figure 8. Isotherms predicted by LBM for Re = 1070; (a) unsteady/instantaneous with TP,
(b) unsteady/time averaged with TP, (c) steady-state with TP, (d) steady-state, without TP

Figure 9. Predicted Nu along channel wall
(Re = 1070)



ISLBM results

Figure 10 shows the non-uniform

grid used for ISLBM and Fluent compu-

tations, for Re = 530. This grid resulted

from a grid-independency study per-

formed by Fluent and, thus, represents

an optimal grid for a finite volume based

CFD calculation. Thus, a performance

comparison of based on this grid can be seen to be a fair one. Figure 11 compares profiles of the

time-averaged axial velocity along traversal direction, at an axial position half triangle base be-

hind TP, predicted by ISLBM (CSOI, USOI) and Fluent, for Re = 530. All predictions show a

quite good agreement.

Time-averaged Nu variations along channel wall predicted for Re = 530 by ISLBM

(CSOU, USOI) and Fluent are shown in fig. 12. Again, a quite close agreement of the predic-

tions can be observed.

Table 4 presents computing times required

for one period, for the unsteady/periodic computa-

tion, for Re = 530. One can see that LBM requires

much smaller computer times.

Conclusions

The Lattice Boltzmann Method (LBM) is used to computationally investigate the lam-

inar forced convection in a 2-D channel with a built-in triangular prism, assuming incompress-

ible flow with constant material properties. Both the traditional LBM, and the interpolation sup-

ported LBM techniques are implemented. Predictions show that the presence of a triangular

prism affects the flow and heat transfer patterns for the steady-state (Re < 300) and unsteady/pe-
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Figure 10. Grid for ISLBM study (Re = 530)

Figure 11. Axial velocity along transversal
direction at an axial distance of B/2
downstream the prism (Re = 530)

Figure 12. Predicted Nasselt number along
channel wall (Re = 530)

Table 4. Unsteady computing times for
one period (Re = 530)

LBM Fluent

User time [s] 27 703



riodic flow (Re > 300) regimes. It is observed that heat transfer can be enhanced by the presence

of a triangular prism, especially for the high Reynolds numbers, where an unsteady-periodic

flow structure (vortex shedding) is observed, which appears to be the main mechanism responsi-

ble for this enhancement. It is also demonstrated that an artificial suppression of flow unsteadi-

ness (e. g. by a symmetry plane) can lead to large errors in the prediction of the time-averaged

values. The developed LBM code is validated by means of comparisons with a well-established

commercial CFD code. It is also shown that computing times required by LBM are much

smaller compared to the finite volume methods, especially for unsteady problems.
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Nomenclature

A – projected prism area, [m2]
a – thermal diffusivity (= k/rcp), [m2s–1]
B – base of triangular prism cross-section
C – skin friction

– [= 2(�(u/u0)/�y)], [–]
c – lattice speed, [ms–1]
CD – drag coefficient [= FD/(0.5ru

0
2A)]

cp – isobaric specific heat capacity, [JK–1]
cs – lattice sound speed, [ms–1]
Co – cell courant no. based on u0(= u0dt/d),

– [–]
Dh – hydraulic diameter (= 2H), [m]
�

ea – discrete lattice velocity set, [ms–1]
FD – drag force, [Nm–2]
f – dominant frequency, [1s–1]
fa – discrete density distribution function,

– [kgm–3]
ga – discrete temperature distribution

– function, [K]
H – channel height (= 4 B), [m]
h – heat transfer coefficient [= q/(TW – TF,0),

– .[Wm–2K–1]
k – thermal conductivity, [WmK–1]
LI – linear interpolation
Nu – Nusselt number (= hDh/k)
p0 – reference static pressure, [Pa]
Pr – Prandtl number (= mcp/k)
q – heat flux, [Wm–2]
Re – Reynolds number (= ru0Dh/m), [–]
St – Strouhal number (= fB/u0)
T – temperature, [K]
t – time, [s]

u – axial velocity, [ms–1]
u0 – mean inlet velocity, [ms–1]
�

x – position vector
x,y – 2-D Cartesian co-ordinates

Greek symbols
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dt – time step, [s]
q – dimensionless temperature

[= (T – TF,0)/(TW – TF,0)]
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Acronims
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F – fluid
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0 – Inlet
~ – post-collision state
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