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In the present paper, natural convection fluid flow and heat transfer in a square
cavity heated from below and cooled from sides and the ceiling with a thin fin at-
tached to its hot bottom wall is investigated numerically. The right and the left walls
of the cavity, as well as its horizontal top wall are maintained at a constant temper-
ature Tc, while the bottom wall is kept at a constant temperature Th ,with Th > Tc.
The governing equations are solved numerically using the finite volume method and
the couple between the velocity and pressure fields is done using the SIMPLER al-
gorithm. A parametric study is performed and the effects of the Rayleigh number
and the length of the fin on the flow pattern and heat transfer inside the cavity are
investigated. Two competing mechanisms that are responsible for the flow and
thermal modifications are observed. One is the resistance effect of the fin due to the
friction losses which directly depends on the length of the fin, whereas the other is
due to the extra heating of the fluid that is offered by the fin. It is shown that for high
Rayleigh numbers, placing a hot fin at the middle of the bottom wall has more re-
markable effect on the flow field and heat transfer inside the cavity.
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Introduction

Free convection heat transfer occurs in many industrial and engineering systems such

as solar collectors, home ventilation systems, refrigeration unit, fire prevention, etc. [1]. In gen-

eral, increasing, controlling, and modification of fluid flow and heat transfer inside the differen-

tially heated cavities is down using a partition or fin attached to the walls. Many researchers

have been investigated free convection inside cavities with fin on the walls. Zimmerman and

Acharya [2] conducted a numerical study on free convection heat transfer in a cavity with a cen-

trally mounted vertical finitely conducting baffle to one-half of the cavity height and attached to

the floor or ceiling. They found that the baffle strongly influences the hot-wall Nusselt number

distribution, but has a weaker effect on the cold-wall Nusselt number distribution. Frederick [3]
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studied numerically laminar free convection in an air filled differentially heated inclined cavi-

ties with a thin partition placed at the middle of its cold wall. Frederick and Valencia [4] studied

free convection heat transfer in a square cavity with a conducting partition located at the middle

of its hot wall using a numerical simulation. They observed that for a low value of the parti-

tion-to-fluid thermal conductivity ratio and for Rayleigh numbers 104-105 a reduction in heat

transfer relative to the case of cavity with no partition occurs. Nag et al. [5] investigated the ef-

fect of a horizontal thin partition positioned on the hot wall of a horizontal square cavity. They

observed that for a partition of infinity thermal conductivity, the Nusselt number on the cold

wall is greater than the case with no fin. Lakhal et al. [6] studied numerically natural convection

in inclined rectangular cavities with perfectly conducting fins attached on the heated wall.

Bilgen [7] reported numerical results of laminar and turbulent free convection in cavities with

partition positioned on the insulated horizontal walls. Results of a numerical study on laminar

free convection in a differentially heated square cavity due to a perfectly conducting thin fin on

its hot wall were reported by Shi and Khodadadi [8]. They found that heat transfer on the cold

wall without fin can be promoted for high Rayleigh numbers and with the fins placed closer to

the insulated walls. Effect of radial fins on turbulent natural convection in a horizontal annulus

was investigated by Rahnama and Farhadi [9], numerically. Results obtained for local Nusselt

number variation of the inner cylinder show that the fin arrangement has no significant effect on

the heat transfer rate, and higher fin heights have a blocking effect on flow causing lower heat

transfer rate. Kim and Ha [10] studied numerically laminar free convection inside annuli with

internal fins. They found that the Nusselt number decreases with increasing the number of fins

and the ratio of the annulus gap to inner radius. Ben-Nakhi and Chamkha [11] investigated ef-

fects of length and inclination of a thin fin placed on the middle of hot wall on free convection in

a square cavity, using a numerical simulation. They found that the Rayleigh number, thin fin in-

clination and the fin's length have significant effects on the average Nusselt number of the

heated wall of the cavity. The problem of free convection heat transfer in a tall cavity with adia-

batic or heat conducting fins attached to one of the side walls was studied by Terekhov and

Terekhov [12], numerically. They found that the mean Nusselt number for adiabatic fins, first

increases with the number of fins to reach a maximum, and then decreases by approximately

30% compared to smooth walls. Ben-Nakhi and Chamkha [13] conducted a numerical simula-

tion to study the conjugate free convection around a finned pipe in a square cavity with internal

heat generation. They found that the finned pipe inclination angle, fins length, and the external

and internal Rayleigh numbers have significant effects on the rate of heat transfer and flow field.

Subsequently, Kasayapanand [14] investigated numerically free convection in a finned cavity

under electric field. He found that the flow and heat transfer enhancements are the decreasing

function of the Rayleigh number. Moreover, it is found that the heat transfer coefficient is sub-

stantially improved by the electric field effects, especially at the high number of fins, and the

long fin length. Recently the problem of transition to a periodic flow in a differentially heated

cavity with a thin fin on its side wall was investigated numerically by Xu et al. [15]. They found

that the unstable temperature configuration above the fin results in intermittent plumes at the

leeward side of the fin, which in turn, induce strong oscillations of the downstream boundary

layer flow. Sharifi et al. [16] developed a numerical model for simulating the melting of a phase

change material housed within an internally-finned metal enclosure and found that with hori-

zontal fins, rapid melting occurred during the early stages of the phase change. Jani et al. [17]

conducted a numerical simulation for study of laminar natural convection in a differentially

heated square cavity with a high conductive thin fin on its cold wall. Their results showed that at

high Rayleigh numbers, a long fin placed at the middle of the right wall had a more remarkable
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effect on the flow field and heat transfer inside the cavity. An experimental and numerical study

on laminar natural convection in a cavity heated from bottom due to an inclined fin was done by

Varol et al. [18]. They observed that the heat transfer can be controlled by attaching an inclined

fin on its wall.

In the present study, the problem of natural convection in an air filled square cavity

heated from below and cooled from other walls, with a high conductive thin fin on its bottom

wall is studied using the finite volume method. This problem may be occurred in a number of

important technical applications such as enhancement and modification of cooling of electronic

equipment and chips which has not been considered in the previous papers. In such a case, the

electronic chip is located on the bottom of the cavity and the cold side walls are used to transfer

the heat from the chip, while the fin attached on the bottom wall (chip) is used to increase the

rate of heat transfer. The focus of the present study is to investigate the effects of the Rayleigh

number and the length of the fin on temperature distribution, flow pattern and free convection

characteristics inside this cavity.

Problem definition

A schematic view of the square cavity with a thin

fin attached to its bottom wall considered in the present

study is shown in fig. 1. The width and the height of the cav-

ity are denoted by H. The length of the geometry perpendic-

ular to its plane is assumed to be long enough; hence, the

problem is considered two dimensional. The right and the

left walls of the cavity, as well as its horizontal top wall are

maintained at a constant temperature Tc, while its bottom

wall is kept at a relatively high temperature Th. A high con-

ductive vertical thin fin is placed at the middle of the heated

bottom wall, and is maintained at the same temperature of

the wall to which it is attached. The dimensionless variable

L for the length of the fin is defined as L = l/H. The fluid

flow is assumed to be laminar and incompressible, and the thermophysical properties of air in-

side the cavity are assumed to be constant with the exception of the density which varies accord-

ing the Boussinesq approximation [19].

The continuity, momentum, and energy equations for the 2-D, laminar, and steady free

convection in a cavity are:
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Equations (1)-(4) can be converted to non-dimensional forms, using the following

non-dimensional parameters:
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Figure 1. A schematic diagram of
the physical model
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The non-dimensional continuity, momentum and energy equations are:
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where the Rayleigh number and the Prandtl number, are:
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The boundary conditions, used to solve the eqs. (6)-(9) are:
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The stream function in dimensionless form is defined as:
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The local Nusselt number is defined as:
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where h and k are heat transfer coefficient and thermal conductivity of the fluid (air), respec-

tively. The heat transfer coefficient can be written as:
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By replacing eqs. (16) and (15) in eq. (14) the local Nusselt number along vertical and

horizontal walls of the cavity can be written as:
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on vertical walls (17)

and
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on horizontal walls (18)
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The average Nusselt number of the cold wall Nuc, is obtained by integration of local

Nusselt number along the cold walls:
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The average Nusselt number of the hot wall and the fin, Nuh,f, is obtained by integra-

tion of local Nusselt number along the bottom wall and the fin length:
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Also the average Nusselt number of the hot wall, Nuh, only is calculated to achieve a

better understanding about the existence of the thin fin. This parameter is calculated according

to:

Nu Nu dh l� �
�

Y
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1

(21)

In order to study the effect of the fin on the average heat transfer rate for the hot and

cold walls of the cavity, one may explained it via introducing a variable called the Nusselt num-

ber ratio (NNR) [8]:

NNR
Nu

Nu
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without a fin

� (22)

Thus, NNR for the cold walls, NNRc, for the hot wall, NNRh, and for the hot wall and

the thin fin, NNRh,f, can be obtained according to eq. (22). Value of NNR greater than 1 indi-

cates that the heat transfer rate is enhanced on that surface, whereas reduction of heat transfer is

indicated when NNR is less than unity.

Numerical approach

The governing equations of mass, momentum, and energy, written in terms of the

primitive variables are discretized using the finite volume method [20]. The coupling between

velocity and pressure fields is done using the SIMPLER algorithm. The diffusion terms are

discretized using a second-order central difference scheme; while, the hybrid scheme, which is a

combination of first order upwind and first order central difference approximations, is employed

to discretize the convective terms. The set of discretized equations are solved iteratively yield-

ing values of the velocity, pressure, and temperature at the nodal points. An under-relaxation

scheme is employed to obtain converged solutions. The convergence criterion is defined by the

expression:
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where m and n are the number of meshes in the x- and y- direction, respectively, x is the a trans-

port quantity, and t – the number of iteration. It should be noted that finite discontinuities in tem-

perature distribution appear at the edges of the bottom wall. In the present study this problem is

resolved by assumption of the average temperature of the two walls at the corner nodes and

keeping the adjacent nodes at their respective wall temperatures.
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In order to validate the proposed numerical scheme, two different test cases are consid-

ered and the obtained results by the present code are compared with the existing results of these

test cases in literature.

The first test case is laminar natural convection in an air-filled differentially-heated

square cavity with a cold right wall, a hot left wall and adiabatic horizontal walls. The obtained

results for this test case with the results of other investigates are presented in tab. 1. Also the per-

centages of difference between the results of the present study with those of other investigators

are presented in this table.

As the second test case, the problem of natural convection in an air filled differen-

tially-heated square cavity with a thin fin attached to its hot wall is analyzed, using the presented

code, and the results are compared with the results of Shi and Khodadadi [8] for the same prob-

lem. The left and the right sidewalls of the cavity are maintained at constant temperatures Th and

Tc, respectively, with Th > Tc; while, its top and bottom walls are insulated. The fin with the

length of 0.35 of the width of the cavity is located in three different positions, namely, 0.25, 0.5,

and 0.75 of the height of the hot wall. Figure 2 shows the streamlines for these cases at Ra = 104

obtained in the present study. Also the results of Shi and Khodadadi [8] for the same problem are

presented in fig. 2. As it can be observed from tab. 1 and fig. 2 very good agreements exist be-

tween the obtained results of the present study and those obtained by other investigators.

Table 1. Comparison of the present results with those of other investigators for the natural convection in a
differentially-heated square cavity filled with air

Present study Davis [21] Markatos and Pericleous [22] Fusegi et al. [23]

Nu

Ra = 103 1.113 1.118 (0.4%) 1.108 (0.45%) 1.105 (0.72%)

Ra =104 2.254 2.243 (0.5%) 2.201 (2.3%) 2.302 (2%)

Ra =105 4.507 4.519 (0.3%) 4.430 (1.7%) 4.646 (3.1%)

Ra = 106 8.802 8.799 (0.03%) 8.754 (0.55%) 9.012 (2.4%)

To conduct a grid independency study, an air filled cavity with a thin fin with the

length of L = 0.6, attached to its bottom wall is considered, while the Rayleigh number is kept at

Ra = 106. Six different uniform grids, namely, 21×21, 41×41, 61×61, 81×81, 101×101, and

121×121 are employed for the numerical simulations. The average Nusselt numbers of the cold

walls of the cavity correspond to these grids are shown in tab. 2. Based on the results of this fig-
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ures, a 61×61 uniform grid is used for all of the subsequent numerical calculations. Percentages

of difference of the average Nusselt number for all grids compared to 61×61 grid are presented

in this table.

Table 2. Average Nusselt number of cold walls for different uniform grids

Grid size 21×21 41×41 61×61 81×81 101×101 121×121

Nu 6.011 (19%) 7.212 (3.65%) 7.486 7.487 (0.01%) 7.488 (0.02%) 7.488 (0.03%)

Results and discussion

Having verified the numerical procedure via solving different test cases and compar-

ing the results with the existing results in the literature, the proposed code is employed to inves-

tigate the problem of the natural convection fluid flow and heat transfer inside the air filled

square cavity with a vertical thin fin attached to the middle of its bottom wall, shown in fig.1.

The Prandtl number of the air is kept at 0.71. The effects of the fin's length, L, and the Rayleigh

number, on the change of the absolute values of Ymax (maximum value of the stream function

field) will be shown and analyzed. Furthermore, representative results for the local and average

Nusselt number and the NNR for various conditions will be presented and discussed. The results

are presented for a range of Rayleigh numbers from 103 to 106, and four length of the fin,

namely, 0, 0.2, 0.4, and 0.6.

Figure 3 presents the variation of streamlines inside a square cavity with respect to the

Rayleigh number and different lengths of the fin. Some arrows indicating rotation of vortices

are shown in the figure at Ra =

= 103. As it seen from this fig-

ure, due to the symmetrical ge-

ometry and boundary condi-

tions on the walls, the flow

consists of two counter rotat-

ing vortices which are fairly

symmetric, regardless of the

fin's length and the Rayleigh

number. For all values of L, as

the Rayleigh number in-

creases, the kernel of each vor-

tex moves upward and the

streamlines become more

packed next to the fin and the

walls of the cavity, implying

that the flow moves faster as

free convection is intensified.

It is observed that for Ra � 105,

the kernel of each vortex

moves upward somewhat by

increasing the fin's length up

to 0.4, but then moves down-

ward for the case of L = 0.6. At
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Ra = 106, the kernel of each vortex breaks into two distinct smaller vortices for large values of L

(0.4 and 0.6). This behavior can be related to the stronger buoyant flows at this Rayleigh number

which intensify the strength of the circulating vortices which affects the formation of the inner

eddies.

Figure 4 shows variation of the absolute value of stream function with the length of the

fin, for different Rayleigh numbers from 103 to 106, respectively. It should be noted that for a

differentially heated square cavity as the Rayleigh number increases the difference between the

values of stream function on the wall (generally taken to be zero) and the extreme values of the

stream function field (minimum or maximum) widens monotonously. Therefore, the absolute

value of Ymax (maximum value of the stream function field) can be viewed as a measure of the

intensity of natural convection. So it is necessary to study how the length of the fin affects the

absolute value of the Ymax. It is evident from the figure that the variations range of Ymax for each

Rayleigh number, increases by increasing the Rayleigh number which causes stronger buoyant

forces, figs. 4(a)-4(d). For Ra = 103, fig. 4(a), the absolute value of Ymax increases with increas-

ing L, for all considered values of lengths of the fin. At Ra = 103, where conduction dominates

the heat transfer regime, an increase in the fin's length intensities the natural convection which

results an enhancement in the strength of the vortices somewhat.

For Ra = 104, fig. 4(b), placing a fin at the middle of the bottom wall with L � 0.4 can

enhance the main vortices, but for 0.4 � L � 0.6 it can weaken the main vortices. Noting that al-

though the absolute value of Ymax decreases for L > 0.2, but is still larger than that of the no-fin

case (L = 0), in the range of L = 0.2 to 0.4. Hence, while the fin's length is shorter than 0.4, plac-

ing a fin at the bottom of the cavity intensifies the circulating cells in comparison with a no-fin

cavity, for Ra = 104. For L > 0.45, the fin's presence brings about resistance to the motion of the

vortexes and weakens the intensity of them. From another point of view, it can be said that for

L < 0.2 the extra heating effect of the fin is dominant which increases the flow strength. As the

fin becomes longer, the friction loss of the fin increases which decreases the strength of the fluid

flow. The same manner for the absolute values of Ymax can be observed for the case of Ra = 105,

fig. 4(c). Similar to the case of Ra = 104, the fluid flow weakens for the high values of the fin's

length (L > 0.4). Figure 4(d) shows the variation of the absolute value of Ymax with the length of
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the fin when Ra = 106. Due to this figure, one can observe that all the computed Ymax values are

below the value of the no-fin case (L = 0). This means that the presence of a fin of any length can

always decrease the strength of the two counter-rotating vortices. This reduction is because the

hot fin's effect of resisting the fluid motion is more dominant than the effect of heating the fluid

to enhance the two circulating cells in this case.

In summary, one can observe that most computed absolute values of Ymax are greater

than those with no fin for the low and moderate Rayleigh numbers, namely Ra = 103, 104, and

105, whereas all computed absolute values of Ymax are smaller than those with no fin at Ra = 106.

This implies that the extra heating effect of the hot fin and enhancing the strength of two coun-

ter-rotating vortices becomes less marked with the rise of the Rayleigh number, while friction

loss and resistance effect of the fin on the motion of the vortices becomes more important.

Figure 5 depicts the isotherm contours in a square cavity with a vertical thin fin at-

tached to middle of its bottom wall for various Rayleigh numbers, and for different lengths of

the fin (L = 0, 0.2, 0.4, and 0.6). The isotherms also have symmetrical shape at each Rayleigh

number however, they display different behaviors as the Rayleigh number changes. For the

cases of Ra = 103 and 104, where conduction dominates the heat transfer regime, the variation of
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the fin's length only changes the temperature distribution locally at the vicinity of the thin fin

and the rest of the cavity remains nearly unaffected. For each length of the fin, it can be seen that

by increase in the Rayleigh number, the isotherms in the vicinity of the fin and next to the walls

of the cavity becomes more densely packed. This phenomenon is the major characteristic of nat-

ural convection heat transfer. Moreover, with increasing the Rayleigh number, as the stream-

lines exhibit stronger flow patterns, the isotherms display more distinguished boundary layers.

In addition, one can observed the thermal stratification in the regions between the fin and the

sidewalls of the cavity, which is more pronounced for the higher values of L.

A plume-like temperature distribution is also obtained near the top wall of the cavity

which becomes more noticeable by increasing the fin's length. The convection region adjacent

to the fin and the sidewalls of the cavity becomes thinner and more packed, producing higher

temperature gradients, with increasing Rayleigh number.

The variation of the local Nusselt number, Nul, along the bottom wall of the cavity, for

the Rayleigh number ranging from 103 to 106, and for different lengths of the fin (L = 0, 0.2, 0.4,

and 0.6) is illustrated in figs. 6(a)-6(d), respectively. It can be seen that the variation of the local

Nusselt number along the heated wall is symmetric and nearly identical for each Rayleigh num-

ber, regardless of the fin's length. The local Nusselt number increases by increase in the Ray-

leigh number, while the deviation of local Nusselt number for different values of Rayleigh

number increases by moving far from the fin's location. This is because as the Rayleigh number

increases, the heat transfer rate within the cavity intensifies and consequently, causes an in-

crease in the variation slope of local Nusselt number along the bottom wall. As can be seen from

the figure no heat transfer occurs from the bottom wall in the regions close to the fin's location (X

� 0.5), because of the presence of a tiny dead zone next to a corner region between the bases of

the fin and the bottom wall of the cavity. Also it is evident that at the vicinity of the side walls,

which a steep temperature gra-

dient exists, for all values of

Rayleigh number, the same lo-

cal Nusselt numbers are ob-

tained.

The effect of the length of

the fin on the local Nusselt

number, along the bottom wall

of the cavity is depicted in

figs. 7(a)-(d), for different

Rayleigh numbers. It is evi-

dent that in the presence of a

fin, the value of local Nusselt

number exhibits a sharp reduc-

tion at the location of the

wall/fin intersection where it

becomes a minimum there due

to flow stagnation. In princi-

ple, the attachment of a fin in

the middle of the heated bot-

tom wall always reduces the

local Nusselt number for the

heated wall by a ratio that is re-
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Figure 6. Variation of the local Nusselt number along the bottom
wall of the cavity with Rayleigh number



lated to L and Rayleigh

number. For the cases with Ra=

= 103, 104, and 105, the local

Nusselt number of the bottom

wall exhibits insensitivity to the

length of the fin when a hot fin

is placed near the middle of the

bottom wall. For Ra = 106, and

in the medial regions of the bot-

tom wall (0.25 < X < 0.75), one

can observed that the local

Nusselt number of the bottom

wall decreases somewhat with

an increase in the length of the

fin, whereas in the regions

close to the both ends of the

bottom wall, the maximum val-

ues of local Nusselt number are

related to the longer fin lengths.

This behavior can be due to the

stronger buoyant flows in the

regions far from the position of

the fin, at this Rayleigh num-

ber. It was previously observed

that at Ra = 106 via existence of a thin and its friction loss effect, the flow intensity decreases for

all length of the fin. Therefore at this Rayleigh number, the local Nusselt number along the bot-

tom wall at the vicinity of the fin decreases with increase in the fin's length, whereas in the re-

gions close to the side wall, which the friction loss effects of the fin weaken, the local heat trans-

fer increase with increase in the fin's length.

Figures 8(a)-(c) show the effect of the length of the fin on the average Nusselt number

of the cold walls, hot wall, and the hot wall with the thin fin, at different Rayleigh numbers, re-

spectively. It may be noted that with a fin placed on the middle of the hot wall, the difference be-

tween the average Nusselt numbers of the cold walls and the hot wall only signifies the enhanc-

Jani, S., et al: Numerical Investigation of Natural Convection Heat Transfer in ...
THERMAL SCIENCE: Year 2014, Vol. 18, No. 4, pp. 1119-1132 1129

Figure 7. Variation of the local Nusselt number along the bottom
wall of the cavity with fins at different lengths

Figure 8. Variation of the average Nusselt number along the cold and hot walls of the cavity with respect to
Rayleigh number and for fin at different lengths; (a) cold walls, (b) hot wall, and (c) hot wall and thin fin



ing or degrading role of the fin in transferring heat from the hot wall to the cold walls. Also, a

comparison between the average Nusselt numbers of the hot wall only, and the hot wall and the

thin fin together can show the heat transfer from the fin. From these figures, it can be seen that

the average Nusselt numbers for the cold walls (Nuc), the hot wall (Nuh), and the hot wall and the

thin fin (Nuh,f), increase with the rise of the Rayleigh number, regardless of the fin's length. It

should be noticed that the average Nusselt number increases on the cold walls and the hot wall

with thin fin with increase in the length of the fin, regardless the Rayleigh number, whereas de-

creases somewhat on the hot wall with the rise of the fin's length, especially for the lower values

of Rayleigh number, i. e., Ra � 104. This is because for the average Nusselt number on the cold

walls and the average Nusselt number of the hot wall with the thin fin, as the length of the fin in-

creases, the effect of the extra heating of the fin and enhancing the main vortex becomes more

remarkable in comparison with the resistance effect of the fin on the movement of the vortices,

with the rise of the Rayleigh number. For the case of the average Nusselt number along the hot

wall only, these two mechanisms certainly counter balance each other at the higher Rayleigh

numbers, namely, Ra = 105 and 106. Finally, it can be concluded that when a thin fin is located at

the middle of the bottom wall, the total heat transferred to the fluid increases, while the rate of

heat transfer from only the hot wall decreases. Therefore, this further heat transfer to the fluid is

due to the thin fin.

Figures 9(a)-(c) show the variations of NNR for the cold walls, NNRc, hot wall, NNRh,

and the hot wall with the thin fin, NNRh,f, with the fin's length for different values of Rayleigh

number. Based on these figures, it is observed that placing a fin on the middle of the bottom wall

always increases heat transfer on the cold walls, since NNRc is always more than 1. Moreover, it

is to be noticed in these figures that the average Nusselt number for the cold walls and the hot

wall with the thin fin becomes larger with the increase of the fin's length, regardless of the Ray-

leigh number fig. 9(a) and 9(c). This is because the extra heating of the fin near the fin which en-

hances the corresponding convection in that area, especially at the higher values of Rayleigh

number, which this effect becomes more noticeable. The heat transfer rate on the only hot wall

always reduces for any length of the fin, in lower Rayleigh numbers (Ra = 103 and 104), but in-

creases for the higher Rayleigh numbers (Ra = 105 and 106) somewhat fig. 9(b). These trends are

similar to those were presented in fig. 8(b). Thus, similar discussions can be extended. Due to

fig. 9(b), it can be observed that the average Nusselt number of the heated wall exhibits nearly

insensitivity to the length of the fin if L � 0.2.
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Figure 9. Variation of NNR along the cold and hot walls of the cavity with fins at different lengths; (a) cold
walls, (b) hot wall, and (c) hot wall and thin fin



Conclusions

Using the finite volume method, the free convection fluid flow and heat transfer inside

a symmetrically-cooled square cavity with a fin attached to its heated bottom wall was studied

numerically and the following results were obtained.

� For all considered values of the Rayleigh number and length of the fin, two fully developed

counter-rotating vortices are formed inside the cavity.

� Two different effects for the thin fin are identified. The first is extra heating of the fin which

increases the rate of heat transfer and intensifies the natural convection. The second is the

friction loss of the fin which weakens the fluid flow within the cavity and decreases the rate

of heat transfer.

� At Ra = 103, the flow strength increases with increasing the length of the fin while at Ra = 104

and 105 it occurs for L < 0.4 and further increase in the length of the fin decreases the flow

strength. At Ra = 106, nearly pure convection regime, the existence of the fin with all

lengths reduces the flow strength.

� Existence of a thin fin at middle of the bottom wall motivates the fluid flow to be blocked in

this region follows reduction of the local Nusselt number in regions adjacent to middle of the

bottom wall.

� By placing a thin fin on the middle of the bottom wall the average Nusselt number of the cold

walls increases and as the Rayleigh number increases, the favorite effect raises.

� By placing a thin fin on the bottom wall of the cavity the total heat transferred to the fluid

inside the cavity increases, while the average Nusselt number of only the bottom wall

decreases. Therefore the further heat transfer occurs due to the thin fin.
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