INFLUENCE OF MIXED CONVECTION ON BLOOD FLOW OF JEFFREY FLUID THROUGH A TAPERED STENOSED ARTERY

by

Noreen Sher AKBAR*, Tasawar HAYATb, Sohail NADEEMb, and Awatif A. HENDIc

a DBS&H, CEME, National University of Sciences and Technology, Islamabad, Pakistan
b Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan
c Department of Physics, Faculty of Science, King Saud University, Riyadh, Saudi Arabia

Original scientific paper
DOI: 10.2298/TSCI111121144A

Effect of heat and mass transfer on the blood flow through a tapered artery with stenosis is examined assuming blood as Jeffrey fluid. The governing equations have been modelled in cylindrical co-ordinates. Series solutions are constructed for the velocity, temperature, concentration, resistance impedance, wall shear stress, and shearing stress at the stenosis throat. Attention has been mainly focused to the analysis of embedded parameters in converging, diverging, and non-tapered situations.

Key words: Jeffrey fluid, blood flow, mixed convection

Introduction

The non-planer arterial configuration is associated closely with swirling blood flow. Arteries (as a living tissues) require a supply of metabolites including oxygen and removal of waste products. Blood is multi-component mixtures, consisting of plasma, red and white blood cells, platelets, etc. [1]. The analysis of blood flow in arteries is very popular now a days because of some cardiovascular diseases [2, 3]. The nature of blood itself sometimes has a key role in such diseases. No doubt, it is concluded now that blood is a non-Newtonian fluid at low shear rate (100/s). Humphrey and Delange [2] pointed out that a rheological properties of blood greatly depends upon the change in flow configuration. He characterized blood as a mixture (i.e. solid and fluid). Further Thurston [4] and Chien et al. [5] experimentally observed viscoelastic properties of blood. Jones [6] found that the flow behaviour of blood changes from Newtonian to non-Newtonian character when there is a change in the diameter of vessel from large arteries to small branches and capillaries. The flow varies with typical Reynold number from small arteries to large arteries. Siddiqui et al. [7] examined the rheological effects on pulsatile flow of blood in a stenosed artery. Mekheimer and El Kot [8] presented micropolar fluid model for axisymmetric blood flow through an axially non-symmetric but radially symmetric mild stenosis tapered artery. Unsteady flow analysis for blood as non-Newtonian fluid through tapered arteries with a stenosis is studied numerically by Mandal [9] and Varshney et al. [10] considered the generalized power law fluid model for blood flow in an artery having multiple stenosis. They carried out the numerical study under the action of transverse magnetic field. Power law fluid model for blood flow through a tapered artery with a stenosis is recently developed by Nadeem et al. [11]. In another article, Nadeem and Akbar [12] revisited the flow analysis of ref. [11] for Jeffrey fluid. Mustafa et al. [13] presented the numerical simulation of generalized Newtonian blood flow through a couple
of irregular arterial stenosis. The blood flow with an irregular stenosis in presence of magnetic field has been looked at Abdullah et al. [14].

It is noted from existing literature that only few attempts investigate the blood flow in presence of heat and mass transfer. Influence of pulsatile blood flow and heating scheme on the temperature distribution with reference to hyperthermia treatment was studied by Khanfer et al. [15]. Unsteady flow and mass transfer in models of stenotic arteries considering fluid-structure interaction was simulated by Valencia and Villanueva [16]. Back et al. [17] examined the flow field and mass transfer analysis in arteries with longitudinal ridges. Heat and mass transfer in a separated flow region for high Prandtl and Schmidt numbers have been studied by Ma et al. [18]. Akbar and Nadeem [19] constructed the simulation of heat and chemical reactions for Reiner-Rivlin fluid model of blood flow through a tapered artery subject to a stenosis. Recently Nadeem and Akbar [20] studied the blood flow for Walter’s B fluid model through a tapered artery with heat and mass transfer. Some important article related to the topic are included in refs. [22-26].

The interest in the present article is to analyze the effects of mixed convection blood flow of Jeffery through a tapered stenosid artery. Analysis has been carried out in the presence of heat and mass transfer.

Problem development

We examine incompressible flow of Jeffrey fluid with constant viscosity μ and density ρ in a tube having length L. The cylindrical co-ordinate system (r, θ, z) is chosen such that u and w are the velocity components in the r and z directions, respectively. Here $r = 0$ is selected the axis of the symmetry of the tubes. Mixed convection is considered in the presence of heat and mass transfer by assigning the temperature T_0 and concentration C_0 to the wall of the tube. Symmetry condition for both temperature and concentration is employed at the centre of the tube. The consideration of stenosis is represented as [8]:

$$h(z) = d(z)\left\{1 - \eta_1(b^{n-1}(z-a) - (z-a))^n\right\} \quad \text{for} \quad a \leq z \leq a + b$$

otherwise

$$h(z) = d(z),$$

with

$$d(z) = d_0 + \xi z$$

In eqs. (1) and (2) $d(z)$ is the radius of the tapered arterial segment in the stenotic region, d_0 – the radius of the non-tapered artery in the non-stenotic region, ξ – the tapering parameter, b – the length of stenosis, $n \geq 2$ – a parameter determining the shape of the constriction profile ($n = 2$, gives symmetric stenosis), and a indicates location of the stenosis (fig. 1).

The parameter η is given by:

$$\eta = \frac{\delta^* n^{n-1}}{d_0 b^n (n-1)}$$

in which maximum height of stenosis located at $z = a + b/(n^{(n-1)})$ [8], and δ^* is the width of artery (minimum diameter of artery at z).
The equations governing the flow are:

\[
\frac{\partial \bar{u}}{\partial \bar{r}} + \frac{\bar{u}}{\bar{r}} + \frac{\partial \bar{w}}{\partial \bar{z}} = 0
\]

(3)

\[
\rho \left(\frac{\bar{u}}{\partial \bar{r}} + \frac{\bar{w}}{\partial \bar{z}} \right) \bar{u} = -\frac{\partial \bar{p}}{\partial \bar{r}} + \frac{1}{\bar{r}} \frac{\partial}{\partial \bar{r}} (\bar{r} \bar{S}_{\bar{r}\bar{r}}) + \frac{\partial}{\partial \bar{z}} \left(\bar{S}_{\bar{z}} \right) - \frac{\bar{S}_{\bar{r}\bar{b}}}{\bar{r}}
\]

(4)

\[
\rho c_p \left(\frac{\bar{u}}{\partial \bar{r}} + \frac{\bar{w}}{\partial \bar{z}} \right) \bar{T} = \bar{S}_{\bar{r}\bar{r}} \frac{\partial \bar{u}}{\partial \bar{r}} + \bar{S}_{\bar{r}z} \frac{\partial \bar{w}}{\partial \bar{z}} + \bar{S}_{\bar{z}\bar{z}} \frac{\partial \bar{u}}{\partial \bar{z}} + \bar{S}_{\bar{z}\theta} \frac{\partial \bar{w}}{\partial \bar{z}} + k \left(\frac{\partial^2 \bar{T}}{\partial \bar{r}^2} + \frac{1}{\bar{r}} \frac{\partial \bar{T}}{\partial \bar{r}} + \frac{\partial^2 \bar{T}}{\partial \bar{z}^2} \right)
\]

(5)

\[
\left(\frac{\bar{u}}{\partial \bar{r}} + \frac{\bar{w}}{\partial \bar{z}} \right) \bar{C} = D \left(\frac{\partial^2 \bar{C}}{\partial \bar{r}^2} + \frac{1}{\bar{r}} \frac{\partial \bar{C}}{\partial \bar{r}} + \frac{\partial^2 \bar{C}}{\partial \bar{z}^2} \right) + \frac{DK_T}{T_m} \left(\frac{\partial^2 \bar{T}}{\partial \bar{r}^2} + \frac{1}{\bar{r}} \frac{\partial \bar{T}}{\partial \bar{r}} + \frac{\partial^2 \bar{T}}{\partial \bar{z}^2} \right)
\]

(6)

where \(\bar{p} \) is the pressure, \(\bar{T} \) – the temperature, \(\bar{C} \) – the concentration of fluid, \(\rho \) – the density, \(k \) – the thermal conductivity, \(c_p \) – the specific heat at constant pressure, \(T_m \) – the temperature of the medium, \(D \) – the coefficient of mass diffusivity, \(K_T \) – the thermal-diffusion ratio, and \(g \) – the acceleration due to the gravity.

Extra stress tensor \(\bar{S} \) in Jeffrey fluid is [12]:

\[
\bar{S} = \frac{\mu}{\lambda_1} (\dot{\gamma} + \lambda_2^* \dot{\gamma})
\]

(8)

where \(\mu \) is the viscosity, \(\lambda_1 \) – the ratio of relaxation to retardation times, \(\dot{\gamma} \) – the shear rate, and \(\lambda_2^* \) – the retardation time. Defining:

\[
\begin{align*}
\bar{r} &= \frac{\bar{r}}{d_0}, \quad \bar{z} = \frac{\bar{z}}{b}, \quad \bar{w} = \frac{\bar{w}}{u_0}, \quad \bar{u} = \frac{\bar{u} u_0 \delta}{b \mu}, \quad \bar{p} = \frac{d_0^2 \bar{p}}{u_0 b \mu}, \quad \bar{h} = \frac{\bar{h}}{d_0}, \\
Re &= \frac{\rho b u_0}{\mu}, \quad S_{\bar{r}\bar{r}} = \frac{b \bar{S}_{\bar{r}\bar{r}}}{u_0 \mu}, \quad \bar{S}_{\bar{r}z} = \frac{d_0 \bar{S}_{\bar{r}z}}{u_0 \mu}, \quad S_{\bar{z}\bar{z}} = \frac{b \bar{S}_{\bar{z}\bar{z}}}{u_0 \mu}, \quad S_{\theta \theta} = \frac{b \bar{S}_{\theta \theta}}{u_0 \mu}, \\
\lambda_2 &= \frac{\lambda_2 u_0}{b}, \quad \theta = \frac{\bar{T} - \bar{T}_0}{\bar{T}_0}, \quad Ec = \frac{u_0^2}{c_p T_0}, \quad Pr = \frac{c_p \mu}{k}, \quad Cr = \frac{\gamma a d_0^3 \bar{C}_0}{\nu^2}, \\
St &= \frac{\rho D K_T}{\mu T_m \bar{C}_0}, \quad Sc = \frac{\mu}{D \bar{p}}, \quad \sigma = \frac{\bar{C} - \bar{C}_0}{\bar{C}_0}, \quad Gr = \frac{\gamma a d_0^3 \bar{T}_0}{\nu^2}
\end{align*}
\]

(9)

where \(\text{Re} \) is the Raynolds number, \(Ec \) – the Eckert number, \(Pr \) – the Prandtl number, \(Sc \) – the Soret number, \(Sc \) – the Schmidt number, \(Gr \) – the Grashof number, \(Cr \) – the local concentration number, \(\nu \) – the kinematic viscosity, \(\mu \) – the dynamic viscosity, \(u_0 \) – the velocity averaged over the section of the tube of the width \(d_0 \), and \(\sigma \) is the concentration, and using eqs. (6) and (9) along with the additional conditions [8]:

\[
\frac{\text{Re} \sigma n^{\frac{1}{3}}}{b} \ll 1
\]

(10a)
we have for mild stenosis ($\delta^*/d_0 < 1$) the following expressions:

\[
\frac{1}{\delta^*/d_0} \sim O(1) \quad (10b)
\]

\[
\begin{align*}
\frac{\partial u}{\partial r} + \frac{u}{r} + \frac{\partial w}{\partial z} &= 0 \quad (11) \\
\frac{\partial p}{\partial r} &= 0 \quad (12) \\
\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \theta}{\partial r} \right) + B_T \left(\frac{1}{1 + \lambda_1} \left[\left(\frac{\partial w}{\partial r} \right)^2 + \lambda_2 w \frac{\partial^2 w}{\partial r \partial z} \right] \right) &= 0 \quad (13)
\end{align*}
\]

\[
\begin{align*}
\frac{1}{Sc} \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \sigma}{\partial r} \right) \right) + Sr \left[1 \frac{\partial}{\partial r} \left(r \frac{\partial \theta}{\partial r} \right) \right] &= 0 \quad (14)
\end{align*}
\]

\[
\begin{align*}
\frac{\partial w}{\partial r} = 0, \quad \frac{\partial \theta}{\partial r} = 0, \quad \frac{\partial \sigma}{\partial r} = 0 \quad \text{at} \quad r = 0 \\
w = 0, \quad \theta = 0, \quad \sigma = 0 \quad \text{at} \quad r = h(z) \quad (16a)
\end{align*}
\]

\[
h(z) = (1 + \xi z)[1 - \eta_1 (z - \sigma_1) - (z - \sigma_1)^\nu] \quad \sigma_1 \leq z \leq \sigma_1 + 1 \quad (17)
\]

where the Brickman number (Br) = EcPr. The boundary conditions are now given by:

\[
\frac{1}{n} \delta^* \frac{\partial n}{\partial r} = \frac{\delta^*}{d_0}, \quad \delta^* = \frac{\delta}{d_0}, \quad \sigma_1 = \frac{a}{b} \quad (18)
\]

\[
\xi' = \frac{\xi b}{d_0}, \quad \xi = \tan \phi
\]

in which ϕ is called tapered angle. Further, for converging tapering or ($\phi < 0$) non-tapered artery ($\phi = 0$) and the diverging tapering ($\phi > 0$) (fig. 2).

Solution of the problem

We have an interest to compute the series solution by homotopy perturbation method [21]. For that we write:

\[
H(q, w) = (1 - q)[L(w) - L(w_{10})] + q \left[L(w) - \frac{\partial p}{\partial z} (1 + \lambda_1) - \right.
\]

\[
- \lambda_2 (1 + \lambda_1) w \left(\frac{\partial^2 w}{\partial r \partial z} \right) + Gr (1 + \lambda_1) \theta + Cr (1 + \lambda_1) \sigma \left. \right]\]
\]
\[H(q, \theta) = (1 - q)[L(\theta) - L(\theta_{10})] + q \left(L(\theta) + Br \left\{ \frac{1}{1 + \lambda_1} \left(\frac{\partial w}{\partial r} \right)^2 + \lambda_2 w \frac{\partial^2 w}{\partial r \partial z} \right\} \right) \]

\[H(q, \sigma) = (1 - q)L(\sigma) - [L(\sigma_{10})] + q \left\{ L(\sigma) + SrSc \left[\frac{1}{r} \frac{\partial}{\partial r} \left(\frac{r \partial \theta}{\partial r} \right) \right] \right\} \]

and choose \(L = (1/r)(\partial/\partial r)[r(\partial/\partial r)] \) as the auxiliary linear operator. Further the initial guesses are represented by:

\[w_{10}(r, z) = \frac{\partial p_0}{\partial z} \left(\frac{r^2 - h^2}{4} \right), \quad \theta_{10}(r, z) = \left(\frac{r^2 - h^2}{4} \right), \quad \sigma_{10}(r, z) = -\left(\frac{r^2 - h^2}{4} \right) \]

Putting

\[w(r, q) = w_0 + qw_1 + q^2w_2 + ... \]

\[\theta(r, q) = \theta_0 + q\theta_1 + q^2\theta_2 + ... \]

\[\sigma(r, q) = \sigma_0 + q\sigma_1 + q^2\sigma_2 + ... \]

and then employing the procedure of ref. [19] for \(q = 1 \) we have the following results for velocity, temperature, and concentration fields:

\[w(r, z) = \left(\frac{r^2 - h^2}{4} \right)(1 + \lambda_1) \frac{\partial p}{\partial z} + a_2 (r^2 - h^2) + a_3 (r^3 - h^3) + a_4 (r^4 - h^4) + \\
+ a_23 (r^8 - h^8) + a_24 (r^7 - h^7) + a_25 (r^6 - h^6) + a_26 (r^5 - h^5) + \\
+ a_27 (r^4 - h^4) + a_28 (r^3 - h^3) + a_29 (r^2 - h^2) \]

\[\theta(r, z) = a_5 (r^4 - h^4) + a_6 (r^6 - h^6) + a_51 (r^{11} - h^{11}) + a_52 (r^8 - h^8) + \\
+ a_53 (r^7 - h^7) + a_54 (r^6 - h^6) + a_55 (r^5 - h^5) + a_56 (r^4 - h^4) + a_57 (r^3 - h^3) \]

\[\sigma(r, z) = -\left(\frac{r^2 - h^2}{4} \right)[-SrSc[a_5 (r^4 - h^4) + a_6 (r^6 - h^6) + a_51 (r^{11} - h^{11}) + \\
+ a_52 (r^8 - h^8) + a_53 (r^7 - h^7) + a_54 (r^6 - h^6) + a_55 (r^5 - h^5) + \\
+ a_56 (r^4 - h^4) + a_57 (r^3 - h^3)]] \]

Expressions (formulas) for \(a_1 \) to \(a_{57} \) are given in the Appendix.

The volume flow rate \(Q \) is expressed as:

\[Q = \int_0^h rw dr \]

Through eqs. (26) and (29) one has:

\[\frac{dp}{dz} = -\frac{16Q}{(1 + \lambda_1)h^4} + \frac{16a_{58}}{(1 + \lambda_1)h^4} \]

The pressure drop (\(\Delta p = p \) at \(z = 0 \) and \(\Delta p = -p \) at \(z = L \)) across the stenosis between the section \(z = 0 \) and \(z = L \) can be obtained using the expression given below:

\[\Delta p = \int_0^L \left(-\frac{dp}{dz} \right) dz \]
Resistance impedance

The resistance impedance is given by:

\[
\tilde{\lambda} = \frac{\Delta p}{Q} = \frac{1}{h} \int_{a}^{b} F(z) \, dz + \frac{a + b}{a} \int_{a}^{b} F(z) \, dz + \frac{1}{h} \int_{b}^{a} F(z) \, dz
\]

(32)

in which

\[
F(z) = \frac{16}{(1 + \lambda_1)h^4} - \frac{16a_{58}}{Q(1 + \lambda_1)h^4}
\]

On simplification, eq. (32) yields:

\[
\tilde{\lambda} = (L - b) \left(\frac{16}{(1 + \lambda_1)h^4} - \frac{16a_{58}}{Q(1 + \lambda_1)} \right) + \frac{a + b}{a} \int_{a}^{b} F(z) \, dz
\]

(33)

Expression for the wall shear stress

The expression for dimensionless shear stress is:

\[
\tilde{S}_{rz} = \left[1 + \frac{\partial w}{\partial r} + \lambda_2 \frac{\partial^2 w}{\partial r \partial z} \right]
\]

(34)

The wall shear stress is of the form:

\[
\tilde{S}_{rz} = \left[\frac{1}{1 + \lambda_1} \left(\frac{\partial w}{\partial r} + \lambda_2 \frac{\partial^2 w}{\partial r \partial z} \right) \right]_{r=b}
\]

(35)

The shearing stress at the stenosis throat i.e. the wall shear at the maximum height of the stenosis located at \(z = (a/b) + [1/h^{a+b-1}]\) can be expressed as:

\[
\tilde{\tau}_s = \left. \tilde{S}_{rz} \right|_{h=1-\delta}
\]

(36)

The final expressions for the dimensionless resistance to \(\lambda\), wall shear stress \(S_{rz}\) and the shearing stress at the throat \(\tau_s\) are:

\[
\lambda = \frac{\tilde{\lambda}}{\lambda_0} = \frac{1}{3} \left[\left(1 - \frac{b}{L} \right) + \frac{16a_{58}}{Q(1 + \lambda_1)} \right] + \frac{1}{L} \int_{a}^{b} F(z) \, dz
\]

(37)

with

\[
\frac{\tilde{\tau}_s}{\tau_0}, \quad \frac{\tau_s}{\tau_0} = \tilde{\tau}_s
\]

(38)

\[
\lambda_0 = 3L, \quad \tau_0 = 4Q
\]

(39)

Numerical results and discussion

Our interest is to analyze the effects of the ratio of relaxation to retardation time \(\lambda_1\), retardation time \(\lambda_2\), the stenosis shape \(n\), and maximum height of the stenosis \(\delta\) for converging tapering, diverging, and non-tapered arteries in Jeffrey fluid. This object has been achieved through the plots (3) to (11). The variation of axial velocity for \(\lambda_1, n, \lambda_2,\) and \(\delta\) in converging, diverging, and non-tapered arteries are displayed in figs. 3(a) to 3(d). We observed that due to increase in \(\lambda_1, n,\) and \(\delta\), the velocity profile decreases. The velocity increases due to increase in \(\lambda_2\). It is also seen that for the case of converging tapering the velocity gives larger values as com-
pared to the case of diverging tapering and non-tapered arteries. Figures 4(a) to 4(c) show how the converging, diverging and non-tapered arteries influence on the wall shear stress \(\tau \). Interestingly with an increase in \(\lambda_1 \) and \(\delta \) the shear stress increases and decreases with an increase in \(\lambda_2 \). It is also seen that the stress yield diverging tapering with tapered angle \(\phi > 0 \), converging tapering with tapered angle \(\phi < 0 \), and non-tapered artery with tapered angle \(\phi = 0 \). In figs. 5(a) and 5(b) it has been noticed that the impedance resistance increases for converging, diverging, and non-tapered arteries when we increase \(\lambda_1 \). Such resistance decreases upon increasing \(\lambda_2 \). We also observed that resistive impedance in a diverging tapering appear to be smaller than in converging tapering because the flow rate is higher in the former case when compared with the later. Impedance resistance attains its maximum values in the symmetric stenosis case \((n=2) \). Figures 6(a) and 6(b) illustrate the variation of shearing stress at the stenosis throat \(\tau_s \) with \(\delta \). The shearing stress at the stenosis throat decreases with an increase in \(Q \) and \(\lambda_1 \). Figures 7(a) and 7(b) depict the variation of temperature profile for different values of Brinkman number and ratio of relaxation to retardation time. It is observed that with an increase in Br, the temperature profile decreases, while increases with an increase in ratio of relaxation to retardation time \(\lambda_1 \). Temperature profile has the large values for converging tapering when compared with the diverging and non-tapered arteries. Figures 8(a) and 8(b) are prepared to see the variation of concentration profile for Brinkman number, ratio of relaxation to retardation time, \(\lambda_1 \) and Soret effect.

Figure 3. Variation of velocity profile for (a) \(\lambda_1 = 0.3, n = 2 \), and \(\lambda_2 = 0.5 \), (b) \(\lambda_1 = 0.3, n = 2 \), and \(\delta = 0.5 \), (c) \(\lambda_1 = 0.3, \lambda_2 = 0.5 \), and \(\delta = 0.5 \); the other parameters are \(Br = 0.3, \sigma_1 = 0.0, z = 0.5, Q = 0.3, Gr = 0.5, Cr = 0.3, Sc = 0.5, \) and \(Sr = 0.5 \).
number. It is found that with an increase in Brinkman number, and Soret number, the concentration profile increases. However it decreases because of an increase in ratio of relaxation to retardation time \(\lambda_1 \). It is also observed that concentration profile has an opposite behavior as compared to the temperature profile. Figures 9 to (11) show the streamlines for different values of \(n \),
Figure 6. Variation of shear stress at the stenosis throat for (a) $Q = 0.5$, (b) $\lambda_1 = 0.3$; the other parameters are $Br = 0.3$, $\sigma = 0.0$, $z = 0.5$, $n = 2$, $\delta = 0.3$, $Gr = 0.5$, $Cr = 0.3$, $Sc = 0.5$, $Sr = 0.5$, and $\lambda_2 = 0.3$

Figure 7. Variation of temperature profile for (a) $\lambda_1 = 0.5$, (b) $Br = 0.3$; the other parameters are $Q = 0.3$, $\sigma = 0.0$, $z = 0.5$, $n = 2$, $\delta = 0.3$, $Gr = 0.5$, $Cr = 0.3$, $Sc = 0.5$, $Sr = 0.5$, and $\lambda_2 = 0.3$

Figure 8. Variation of concentration profile for (a) $Sr = 0.5$, (b) $\lambda_1 = 0.3$; the other parameters are $Q = 0.3$, $\sigma = 0.0$, $z = 0.5$, $n = 2$, $\delta = 0.3$, $Gr = 0.5$, $Cr = 0.3$, $Sc = 0.5$, and $\lambda_2 = 0.3$
Streamlines for different values of the stenosis shape n is shown in fig. 9. Here it is noticed that the size of the trapping bolus increases when we increase the stenosis shape. Figures 10 and 11 are plotted to see the streamlines for different values of ratio of relaxation to retardation time λ_1 and retardation time λ_2. Here the size of the trapping bolus increases with an in-

Figure 9. Streamlines for different values on n (a) $n = 2$, (b) $n = 4$; the other parameters are $Q = 0.3, \delta = 0.1$, $\lambda_1 = 0.2$, $Gr = 0.4$, $Sc = 0.5$, $Sr = 0.5$, $Cr = 0.6$, and $\lambda_2 = 0.3$

Figure 10. Streamlines for different values of λ_1 (a) $\lambda_1 = 0.1$, (b) $\lambda_1 = 0.3$; the other parameters are $Q = 0.3$, $\delta = 0.1$, $n = 2$, $Gr = 0.4$, $Sc = 0.5$, $Sr = 0.5$, $Cr = 0.6$ and $\lambda_2 = 0.3$

Figure 11. Streamlines for different values of λ_2 (a) $\lambda_2 = 0.1$ (b) $\lambda_2 = 0.3$; the other parameters are $Q = 0.3$, $\delta = 0.1$, $\lambda_1 = 0.2$, $Gr = 0.4$, $Sc = 0.5$, $Sr = 0.5$, $Cr = 0.6$, and $\nu = 2$
crease in ratio of relaxation to retardation time while it decreases when retardation time increases.

Conclusions
This study examines the mixed convection effects on blood flow of Jeffrey through a tapered stenosed artery. The main points of the performed analysis are as follows.

- The influence of relaxation to retardation times λ_1, shape of the stenosis n, and height of the stenosis δ on the velocity profile is qualitatively similar.
- The velocity profile increases when retardation time λ_2 increases.
- The velocity in converging tapering gives larger values when compared with the cases of diverging and non-tapered arteries.
- The resistive impedance in a diverging tapering is smaller than converging tapering.
- Shear stress increases by increasing λ_1 and δ. However the shear stress decreases with an increase in λ_2.
- It is observed that with an increase in Brinkman number the temperature profile decreases. The temperature profile increases with an increase in ratio of relaxation to retardation times λ_1.
- Concentration profile has an opposite behavior in comparison to the temperature profile.

Appendix
Here we have:

\[
\begin{align*}
 a_1 &= \left(\frac{dP_0}{dz} \right)^2 (1 + \lambda_1)^2, \\
 a_2 &= \left(\frac{dP_0}{dz} \right) \frac{(1 + \lambda_1)}{4}, \\
 a_3 &= \frac{-\lambda_2 a_1 h^2}{36} + \frac{Gr h^2}{12} + \frac{Br h^2}{12}, \\
 a_4 &= -\frac{\lambda_2 a_1}{100} + \frac{-Gr}{64} - \frac{Br}{64}, \\
 a_5 &= -\frac{Br}{1 + \lambda_1} \left(\frac{dP_0}{dz} \right)^2 (1 + \lambda_1)^2 + \frac{Br a_1}{128} \\
 a_6 &= -\frac{Br a_2}{1 + \lambda_1} \left(\frac{dP_0}{dz} \right) \frac{1 + \lambda_1}{288}, \\
 a_7 &= \left(\frac{dP_0}{dz} \right) \frac{1 + \lambda_1}{2}, \\
 a_8 &= \frac{a_4 a_7}{49}, \\
 a_9 &= \frac{a_1 a_2}{36} - \frac{Gr(1 + \lambda_1) h^2}{16} - \frac{Gr(1 + \lambda_1)(a_5 a_6 h^4)}{4} - \frac{Br(1 + \lambda_1)}{36} \\
 a_{10} &= \left(\frac{dP_1}{dz} \right) \frac{(1 + \lambda_1) h^2}{100} + \frac{a_2 a_2}{5}, \\
 a_{11} &= \left(\frac{dP_1}{dz} \right) \frac{a_1 a_2}{100} - \frac{a_2 a_2 h^2}{9} - \frac{a_2 a_2 h^2}{9} - \frac{a_4 a_2 h^4}{9} \\
 a_{12} &= 3a_1 \left(\frac{dP_0}{dz} \right) \frac{1 + \lambda_1}{144}, \\
 a_{13} &= \left(\frac{dP_0}{dz} \right) \frac{(1 + \lambda_1)^2}{200} + a_2 b_1 \left(\frac{dP_0}{dz} \right) \frac{1 + \lambda_1}{50} \\
 a_{14} &= a_4 \left(\frac{dP_0}{dz} \right) \frac{(1 + \lambda_1) h^2}{16} - 3a_1 \left(\frac{dP_0}{dz} \right) \frac{(1 + \lambda_1) h^2}{64}
\end{align*}
\]
\[a_{15} = \left(\frac{dP_0}{dz} \right) (1 + \lambda_1)^2 \left(-\frac{h^2}{72} \right) - 2a_4' \left(\frac{dP_0}{dz} \right) (1 + \lambda_1) \left(\frac{h^2}{36} \right) \]
\[a_{16} = -a_4' \left(\frac{dP_0}{dz} \right) (1 + \lambda_1) h^2 \]
\[a_{17} = \frac{Gr(1 + \lambda_1) a_6}{64} \]
\[a_{18} = \frac{Gr(1 + \lambda_1)}{64} a_5 \]
\[a_{20} = -\frac{Br(1 + \lambda_1) a_5}{64} \]
\[a_{21} = \frac{Br(1 + \lambda_1) SrSc}{64} \]
\[a_{23} = -a_{17} - a_{20} \]
\[a_{24} = -\lambda_2 a_9 - \lambda_2 a_{12} \]
\[a_{25} = -\lambda_2 a_9 - \lambda_2 a_{12} \]
\[a_{26} = -a_{10} \lambda_2 - a_{13} \lambda_2 \]
\[a_{27} = -\lambda_2 a_{14} - a_{21} \]
\[a_{28} = -\lambda_2 a_{15} - \lambda_2 a_{16} \]
\[a_{29} = -a_{19} - a_{22} \]
\[a_{30} = \frac{\left(\frac{dP_1}{dz} \right)}{2} + 2a_2 \]
\[a_{31} = \frac{16a_4^2}{121} \]
\[a_{32} = \frac{24a_3 a_4}{49} \]
\[a_{33} = \frac{a_4^2}{4} + \frac{2a_3 a_4}{9} \]
\[a_{34} = \frac{6a_3 a_{10}}{25} \]
\[a_{35} = \frac{a_{30}}{16} \]
\[a_{36} = \frac{3a_3' \left(\frac{dP_0}{dz} \right)}{392} \]
\[a_{37} = \frac{\left(\frac{dP_0}{dz} \right)}{576} \]
\[a_{38} = \frac{3a_3' \left(\frac{dP_0}{dz} \right)}{200} \]
\[a_{39} = \frac{\left(\frac{dP_0}{dz} \right)}{256} \]
\[a_{40} = a_4' \frac{\left(\frac{dP_0}{dz} \right)}{128} \]
\[a_{43} = \frac{\left(\frac{dP_0}{dz} \right)}{288} \]
\[a_{47} = \frac{\left(\frac{dP_0}{dz} \right)}{196} \]
\[a_{48} = \frac{\left(\frac{dP_0}{dz} \right)}{144} \]
\[a_{49} = \frac{\left(\frac{dP_0}{dz} \right)}{100} \]
\[a_{50} = \frac{\left(\frac{dP_0}{dz} \right)}{128} \]
\[a_{51} = \frac{a_3 a_7}{1 + \lambda_1} \]
\[a_{52} = \frac{a_4 a_7}{1 + \lambda_1} \]
\[a_{53} = \frac{a_4 a_7}{1 + \lambda_1} \]
\[a_{54} = \frac{a_4 a_7}{1 + \lambda_1} \]
where primes denotes the derivatives with respect to z.

Acknowledgment

T. Hayat as a visiting Professor recognizes the support of Global research Network for Computational Mathematics and King Saud University.

References

