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The velocity field and the associated shear stress corresponding to the torsional oscillatory flow of a 

fractional Oldroyd-B fluid, also called generalized Oldroyd-B fluid (GOF), between two infinite coaxial 

circular cylinders, are determined by means of the Laplace and Hankel transforms. Initially, the fluid and 

cylinders are at rest and after some time both cylinders suddenly begin to oscillate around their common 

axis with different angular frequencies of their velocities. The exact analytic solutions of the velocity field 

and associated shear stress, that have been obtained, are presented under integral and series forms in 

terms of generalized G and R functions. Moreover, these solutions satisfy the governing differential 

equation and all imposed initial and boundary conditions. The respective solutions for the motion 

between the cylinders, when one of them is at rest, can be obtained from our general solutions. 

Furthermore, the corresponding solutions for the similar flow of classical Oldroyd-B, generalized 

Maxwell, classical Maxwell, generalized second grade, classical second grade and Newtonian fluids are 

also obtained as limiting cases of our general solutions.  
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1. Introduction  

Flows in the neighborhood of spinning or oscillating bodies are of interest to both academic workers 

and industry. Among them, the flows between oscillating cylinders are some of the most important and 

interesting problems of motion. As early as 1886, Stokes [1] established an exact solution for the 

rotational oscillations of an infinite rod immersed in a classical linearly viscous fluid. Casarella and Laura 

[2] obtained an exact solution for the motion of the same fluid due to both longitudinal and torsional 

oscillations of the rod. Later, Rajagopal [3] found two simple but elegant solutions for the flow of a 

second grade fluid induced by the longitudinal and torsional oscillations of an infinite rod. These 

solutions have been already extended to Oldroyd-B fluids by Rajagopal and Bhatnagar [4]. Others 

interesting results have been recently obtained by Hayat et al [5] and Fetecau et al [10] and references 

therein [6 -8].  

The non-Newtonian fluids are increasingly being considered more important and appropriate in 

technological applications than the Newtonian fluids. Strictly speaking, the linear relation between stress 

and the rate of strain does not exist for a lot of real fluids, such as blood, oils, paints and polymeric 

solutions. In general, the analysis of the behavior of the fluid motion of the non-Newtonian fluids tends to 
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be much more complicated and subtle in comparison with that of the Newtonian fluids. There have been a 

fairly large number of flows of Newtonian fluids for which a closed form analytical solution is possible. 

However, for non-Newtonian fluids such exact solutions are rare.  

In order to describe the rheological properties of wide classes of materials more clearly and deeply, 

the rheological constitutive equations with fractional derivatives have been introduced for a long time, 

which are discussed in the papers given by Friedrich [25], Bagley [33], Glockle and Nonnenmacher [34], 

Rossikhin and Shitikova [35], [36], Mainardi [37], Mainardi and Gorenflo [38], Makris and Constantinou 

[23] and the references therein. The Oldroyd-B model contains as a special case the Maxwell model for 

which an inadequacy has been pointed out by Choi et al. [39]. In a simple shear flow of a real fluid, it pre-

dicts a linear relation between shear rate and shear stress. Furthermore, for the Maxwell model it was not 

possible to achieve satisfactory fit of experimental data over the entire range of frequencies [23]. A very 

good fit of experimental data was achieved when the ordinary Maxwell model has been replaced by the 

Maxwell model with fractional calculus [24]. Recently, the fractional calculus has encountered much 

success in the description of viscoelasticity. Especially, the rheological constitutive equations with 

fractional derivatives play an important role in the description of the behavior of the polymer solutions 

and melts. In other cases, it has been shown that the constitutive equations employing fractional 

derivatives are also linked to molecular theories [25]. At least the modified viscoelastic models are 

appropriate to describe the behavior for Xanthan gum and Sesbania gel [26]. The starting point of the 

fractional derivative models of non-Newtonian fluids is usually a classical differential equation which is 

modified by replacing the time derivative of an integer order by the so-called Riemann-Liouville 

fractional differential operator. This generalization allows us to define precisely non-integer order 

integrals or derivatives [13]. There is a vast literature dealing with such fluids, but we shall recall here 

only a few of the most recent papers [27-32, 40, 41].  

In the literature, we can find a lot of work corresponding to the oscillatory flows of viscoelastic non-

Newtonian fluids between two cylinders, when one of them is oscillating (see references therein), while 

the attempts to achieve exact solutions, when both cylinders are oscillating, are scarcely met. As far as the 

knowledge of authors is concerned, no attempt has been made regarding the torsional oscillatory flow of 

GOF in the annular region of two infinitely long coaxial circular cylinders, when both of them are 

oscillating simultaneously. So the aim of this paper is to examine the torsional oscillatory motion of a 

GOF between two infinite coaxial circular cylinders, both of them oscillating around their common axis 

with given constant angular frequencies 1  and 2 . Velocity field and associated tangential stress of the 

motion are determined by using Laplace and Hankel transforms and are presented under integral and 

series forms in terms of the generalized G  and R  functions. It is worthy to point out that the solutions 

that have been obtained satisfy the governing differential equation and all imposed initial and boundary 

conditions as well. The solutions corresponding to the similar flow of classical Oldroyd-B, generalized 

Maxwell, classical Maxwell, and Newtonian fluids are also determined as special cases of our general 

solutions. Unlike other authors, the corresponding solutions for generalized as well as classical second 

grade fluid are also achieved from general solutions. Furthermore, the respective solutions for the 

oscillatory motion between the cylinders, when one of them is at rest, can be obtained from our general 

solutions.  



 3 

2 Torsional oscillations between two cylinders  

2.1 Constitutive equations  

The constitutive equations of an incompressible GOF are given by [19, 20]  

                                             p  T I S , 1 r

D D

Dt Dt
  

 
   

 

S
S A                                                  (1) 

 

Where T is the Cauchy stress tensor, p I denotes the indeterminate spherical stress, S is the 

extra-stress tensor, T A L L  with L the velocity gradient,  and 
r are the material constants 

and D DtS and D DtA are defined by  
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Here V is the velocity vector,  is the gradient operator, the subscript T denotes the transpose 

operation and the fractional differential operators tD  and tD  are defined as [9, 21, 22] 
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where     is the Gamma function. This mode can be reduced to classical Oldroyd-B model when 

1  and 1  , to the fractional (or generalized ) Maxwell model when 0r  , to the classical 

Maxell model when 0r   ad 1  , and  to Newtonian model when 0   and 0r  .  

 
2.2 Mathematical formulation of problem and governing equation 

 

 Suppose that an incompressible GOF is situated in the annular region between two infinite 

straight circular cylinders of radii 1R and  2 2 1R R R . At time 0t  , the fluid and cylinders are at rest. At 

time, 0t  , inner and outer cylinders suddenly begin to oscillate around their common axis  0r   with 

the velocities  1 1sinW t and  2 2sinW t . Owing to the shear, the fluid between the cylinders is 

gradually moved, its velocity being of the form  

 

                                                           = , ,r t r t ev v                                                                           (4) 

    

where e is the unit vector along  -axis, of the cylindrical coordinate system  , ,r z . For such flows the 

constraint of incompressibility is automatically satisfied. Since the velocity field (4) depends only on 

r and t , so we assume that the extra stress tensor , S is also independent of   and z . Furthermore, if the 

fluid is assumed to be at rest at the moment 0t   then  

 

                                                                                           ,0 0r S                                                                                                                                              (5) 
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Equalities (1b), (4) and (5) imply 0rr zS S   and relevant equation 

 

                                                      
1

1 , 1 ,t r tD r t D r t
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Where    , ,rr t S r t  is the shear stress, which is different from zero.  In the absence of body forces 

and pressure gradient in the axial direction, the balance of the linear momentum leads to the meaningful 

equation  
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Eliminating  ,r t  between eqs. (6) and (7) we get the governing differential equation of our problem, as 

follows 
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The above governing equation (8) can be reduced to the governing equation (corresponding to the similar 

flow) of generalized second grade fluid when 0   and to the classical second grade fluid when 0   

and 1  . The appropriate initial and boundary conditions, for the present problem, are  

 

                                                 
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,0 0
r

r
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

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
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                                            1 1 1, sinR t W t    ,    2 2 2, sinR t W t                                        (10a, b) 

 

To solve this problem, we shall use as in [16, 17], the Laplace and Hankel transforms. 

 

2.3 Calculation of the velocity field 

 Applying the Laplace transform to Eqs. (8) - (10) and using the Laplace transform formula for 

sequential fractional derivatives [13], we obtain the ordinary differential equation  
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where the image function  ,r q  of   ,r t  has to satisfy the conditions 
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 In the following, let us denote by [18] 
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                                                     
2
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R
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R
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the finite Hankel transform of  ,r q , where nr are the positive roots of the transcendental equation 

 1 1 0B R r   and  

 

                                                          1 1 1 2 1 2 1n n n n nB rr J rr Y R r J R r Y rr                                       (14) 

 

In the above relation,  1J  and  1Y  are Bessel functions of order one of the first and second kind, respectively. 

Applying the finite Hankel transform (13) to Eq. (11) and taking into account the conditions (12), we find that [14] 
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or equivalently, 
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In order to determine  ,r q from  n q , we firstly write  n q under the suitable form as follows   
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and use the inverse Hankel transform formula [14] 
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and (A1) from appendix, we obtain 
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                                                                                                                                                                   (19) 

 

Now, in order to avoid the burdensome calculations of residues and contour integrals, we apply the 

discrete inversion Laplace transform method [11, 12], writing 
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and using (A2), where [15] 
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is the generalized G  function and  
j

c  is the Pochhammer polynomial [15]. 

 Finally, eqs.(19)-(21) and (A5) give the velocity field 
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where “”  denotes the convolution of two functions. 

 

2.4 Calculation of the shear stress 

 

 Applying the Laplace transform to eq. (6), we find that 
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has been obtained from (19) and (A6), where in the above relation 
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Introducing (24) into (23), applying again the discrete inversion Laplace transform to the obtained result 

and using (A3) and (A5), where 
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is R function [15], we find for the shear stress the expression 
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1 1

1 1 , 2, 1 2 2 , 2, 1

1 1

1 1 1 2 , 2, 1 1 1 , 2, 1

, sin ,

, sin ,

n m k k m k k

n m k k m k k

J R r G t t G t

W J R r G t t G t

   

   

   

    

 

     

 

     

     
 
 
 
     
 

          (26) 

 

Making the limits as 1  , 1  into Eqs. (22) and (26), we can recover the corresponding solutions 

for the classical Oldroyd-B fluid. 

 

3 Limiting case 

3.1 Generalized Maxwell fluid 

 

 Making 0r   into eqs. (22) and (26) and using (A4), we obtain the velocity field 
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 
       

 
   

   

         

1 1

2 2 2 2 2
1 1 2 1 2 2 1 2 1 1 1

2 22 2
1 0 1 22 1

1

2 2 1 1 2 1 1 1 2 1 , 1,

sin sin
,

cos cos ,

k

n nn
GM

n k n n

n n k k

W R R r t W R r R t J R r B rrr
r t

J R r J R rR R r

W J R r t W J R r t G t

  
 



    

 

 



 

    
   

  

     



 

 

                                                                                                                                                                   (27) 

and associated shear stress 

 

                            

 
 

     

       

   

        

 

1 1

11 2
1 2 2 2 1 1 ,02 2 2

2 1

2
1 1 1 1

2 2
1 0 1 2

1 1

2 2 1 1 , 2, 1 2 2 , 2, 1

1 1 1 2

2
, sin sin ,0,

1 /

, sin ,

GM

k

n n n nn

n k n n

n k k k k

n

R R
r t RW t R W t R t

R R r

J R r r B rr r B rrr

J R r J R r

W J R r G t t G t

W J R r G



 


   





 

    





 

 

 

     

       


    
  

 

    







      1 1

, 2, 1 1 1 , 2, 1, sin ,k k k kt t G t     

     

 
 
 
 
   
 

            (28) 

 

corresponding to the Generalized Maxwell fluid, performing the same motion. It is remarkable here that if 

we have 1  in Eqs. (27) and (28), then corresponding solutions for ordinary or classical Maxwell fluid 

are recovered. 

 

3.2 Generalized second grade fluid 

 

 Now, making the limit as 0  into Eqs. (22) and (26), we obtain the corresponding solutions 

for the generalized second grade fluid, which are given by 

 

                                       

 
       

 

 
 

   

   

       

1 1

2 2 2 2

1 1 2 1 2 2 1 2

2 2

2 1

2

1 1 1

2 2
1 0 , 0 1 2

2 2 1 1 2 1 1 1 2 1

sin sin
,

!

! ! 1

cos cos

GSG

k
ml m k

n n nr

n k l m n n

m k

n n

W R R r t W R r R t
r t

R R r

r J R r B rrk

l m m k J R r J R r

W J R r t W J R r t t 

 







   

   

  

 

  
 




 

    

    

                         (29) 

and  

 



 9 

 
 

         

   
 

       

   

 

1 1

2 21 2
1 2 2 2 2, 2 2 1 1 1 2, 12 2 2

2 1

2
1

1 1 1 1

2 2
1 0 , 0 1 2

1

2 2 1 1 2

2
, sin ,0, sin ,0,

11 !

! ! 2

si

GSG r r

k
ml m k

n n n nnr

n k l m n n

m k

n

R R
r t R W t R t R W t R t

R R r

J R r r B rr r B rrrk

l m m k J R r J R r

W J R r t

 




        






 

    

  

  

       
 

   
 

    

 

 

       1 1 1

2 1 1 1 2 1 1n sinm k m k m k

nt t W J R r t t t                 
 

 

                                                                                                                                                                   (30) 

 

By making 1   into (29) and (30), we get the corresponding solutions for the similar flow of classical 

or ordinary second grade fluid. 

 

3.3 Newtonian fluid  

 

 Making the limit as 1  , 1  , 1  , 1r  into eqs. (22) and (26), we obtain the 

corresponding solutions for the Newtonian fluid, which are given by 

 

 
       

 
   

   

 
       

 
       

1

1

2 2 2 2

1 1 2 1 2 2 1 2 1 1 1

2 2 2
12 1 1 1 2

2 2 1 1 2 2

2 2 22 4 2

2

1 1 1 2 2 2

1 1 12 4 2

sin sin
,

cos exp sin

cos exp sin

n n

N

n n n

n

n n

n

n

n n

n

W R R r t W R r R t J R r B rr
r t

R R r J R r J R r

W J R r
r t r t t

r

W J R r
r t r t t

r

 
 


    

 


    

 





  
  

 

 
    

 
 
 
 
    

  



                     (31) 

 

and  

 

 
 

    
       

   

 
       

 
       

1 1

2

1 1 1 11 2
1 2 2 2 1 1 2 22 2 2

1 1 22 1

2 2 1 1 2 2

2 2 24 2

1 1 1 2 2 2

1 1 14 2

1

22
, sin sin

cos exp sin

cos exp sin

n n n n

N

n n n

n

n n

n

n

n n

n

J R r r B rr r B rrR R
r t RW t R W t

J R r J R rR R r

W J R r
r t r t t

r

W J R r
r t r t t

r


   


    

 


    

 





  
   



 
   





   

 











 

                                                                                                                                                                   (32) 
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 It is important to point out that the terms containing  exp  in Eqs. (31) and (32), correspond to 

the transient parts of the solutions of   ,N r t and  ,N r t , respectively. For large values of time, these 

terms tend to zero and we remain with the steady-state solutions, which are periodic in time and are 

independent of the initial condition. 

 

Concluding remarks and results 

 

 Our purpose in this paper was to establish exact solutions for the velocity field and shear stress 

corresponding to the flow of a GOF between to infinite coaxial circular cylinders, by using Laplace and 

Hankel transforms. The motion of fluid was due to the simple harmonic sine oscillations of both cylinders 

around their common axis, with different angular frequencies 1 and 
2 of their velocities. It is important 

to point out that the velocity field and the shear stress for the oscillatory motion between the cylinders, 

when one of them is at rest, can be obtained from our general solutions by making 1 0W  , 2W W and 

2  (when inner cylinder is at rest) or 1W W ,
2 0W  and 

1   (when outer cylinder is at rest). For 

instance, the velocity field for the flow of generalized Maxwell fluid, when inner cylinder is at rest and 

outer cylinder is oscillating, is given by (from eq. (20)) 

 

                                        

 
   

 

   

   
   

2 2 2
2 1

2 2
0 0 , 02 1

2

1 1 1

, 1,2 2

1 1 1 2

sin !
,

! !

1
cos ,

k
ml m k

nr

n k l m

n n

m k k

n n

WR r R t rk
r t W

l mR R r

J R r B rr
t G t

J R r J R r
 

 
  



 

   

  



 

  
   

  

  


 

                 (33) 

 

The solutions that have been obtained, presented under integral and series forms in terms of the 

generalized G  and R  functions, satisfy the governing equation and all imposed initial and boundary 

conditions. The corresponding solutions for the similar flow of generalized as well as the classical 

Maxwell and second grade fluids are also achieved as special limiting cases of our general solutions. 

 

Appendix 

 

 Some results used in the text: 

 

The finite Hankel transform of the function 

 

                                                                
   

 

2 2 2 2

1 2 2 1

2 2

2 1

AR R r BR r R
a r

R R r

  



                                     (A1a) 

 

satisfying  1a R A  and  2a R B  is  
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                                                        
 

 

2

1

1 2

1 2 2

1 1

2 2
R

n

n n

n n nR

J R rB A
a ra r B rr dr

r r J R r 
                                     (A1b) 

 

                       

 
 1

, , ,
b

a b cc
a

q
L G d t

q d



 
 

 
  

;   0Re ac b  ,   0Re q  , 1
a

d

q
                                 (A2) 

 

      
 

 

 

1 1

1

,

0

, ,
1

j a bjdq b

a ba c
j

c t de q
L R c d t

q j a b

  







 
  

      
 , 0d  ,  Re j +1 a - b >0   ,  Re q >0              (A3) 

 

                                                                1,0R a,0,t = exp at                                                                   (A4) 

 

                                       If     1

1 1u t L u q  and     1

2 2u t L u q  then                                        (A5a) 

 

                                       1

1 2 1 2 1 2 1 2

0 0

t t

L u q u q u u t u t s u s ds u s u t s ds                             (A5b) 

 

                                                1 0 1 2 1 2 0 1

1
n n n n n n n

d
B rr r J rr Y R r J R r Y rr B rr

dr r
                            (A6) 

 

Nomenclature 

1R -radius of inner cylinder, [ m ] 

2R -radius of outer cylinder, [ m ] 

r -radial coordinate, [ m ] 

t -time, [ s ] 

 

Greek letters 

 -fractional order (dimensionless) 

 -fractional order (dimensionless) 

 -fluid density , [ 3.kg m ] 

 - dynamic viscosity [ 2. .N m s ] 

    fluid kinematic viscosity, [ 2 1m s ] 

 - angular frequency of velocity, [ 1s ] 

 -shear stress, [ 2.N m ] 

 

Subscripts 

1-inner cylinder 

2- outer cylinder 

GSC- generalized second grade  

N -Newtonian 
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