SQUEEZED FLOW AND HEAT TRANSFER IN A SECOND GRADE FLUID OVER A SENSOR SURFACE

by

Tasawar HAYAT, Majid HUSSAIN, Sohail NADEEM, Ahmed ALSAEEDI, and Saleem OBAIDAT

Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan
Department of Mathematics, College of Science, King Saud University, Riyadh, Saudi Arabia
University of Engineering and Technology (RCET Campus), Lahore, Pakistan
Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia

An analysis has been carried out for the hydromagnetic flow and heat transfer over a horizontal surface located in an externally squeezed free stream. Mathematical formulation is developed by using constitutive equations of a second grade fluid. The resulting problems have been solved by a homotopy analysis method. In addition the skin friction coefficient and Nusselt number are tabulated. The physical quantities of interest are analyzed for various emerging parameters.

Keywords: second grade fluid, squeezed flow, heat transfer, sensor surface, boundary layer flow, auxiliary parameters

Introduction

The boundary layer flow and heat transfer inside thin films has practical relevance in lubrications, microchannels, and heat pipes. Hence various investigations have examined the flow in hydromagnetic or squeezed thin films. Langlois [1] discussed the hydromagnetic flow in isothermal squeezed thin films when density depends upon the pressure. The influence of moving boundary on pulsatile flow has been studied by Damodaran et al. [2]. The flow of dusty fluid inside squeezed thin films is studied by Bhattacharjee et al. [3]. Hamza [4] and Bhattacharyya et al. [5] examined the role of squeezing on the temperature profile inside the thin film. The variation of external but constant squeezing velocity on the temperature of squeezed fluid with fixed volume is reported by Debbaut [6]. Hydromagnetic squeezed flow and heat transfer over a sensor surface is studied by Khalid and Vafai [7]. They considered the time dependent transpiration velocity. Mahmood et al. [8] revisited the study [7] when transpiration velocity is uniform and time independent. Such considerations resulted locally non-similar formulation of the problem.

All the mentioned studies have been carried out for the viscous fluid. The formulation of the problems have been presented by employing the Navier-Stokes equations. However there are many fluids in engineering and industrial applications for which the Navier-Stokes equations are inadequate. The simplest model amongst such fluids is known as second grade. Having

* Corresponding author; e-mail: majid_gul@yahoo.com
such importance in mind, the present article aims to extend the analysis of [7] into three directions. Firstly to consider a second grade fluid. Secondly to include the viscous dissipation effect. Thirdly to obtain the solutions for the velocity and temperature. Solution expression have been derived by homotopy analysis method (HAM) [9-20]. Finally the graphical results are reported and discussed.

Governing problem

We examine an incompressible flow of second grade fluid over a horizontal surface inside a squeezing channel. The x-axis is chosen along the length of the surface while the y-axis is normal to x-axis. We assume that the surface is enclosed inside a squeezed channel in such a manner that the \(h(t)\) is greater than the boundary layer thickness. The squeezing in the free stream is assumed to start from the tip of the surface (see fig. 1 [6]). A time dependent magnetic field with strength \(B_m\) is exerted in the y-direction and thus the second grade fluid is electrically conducting with electrical conductivity \(\sigma_m\). The induced magnetic field is neglected under the assumption of Reynolds number. The governing equations are:

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0
\]

\[
\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial x} + \nu \frac{\partial^2 u}{\partial y^2} + \alpha_1 \left(\frac{\partial^3 u}{\partial y^3} + u \frac{\partial^2 u}{\partial x \partial y} - \frac{\partial u}{\partial x} \frac{\partial^2 u}{\partial y \partial x} \right) - \frac{\sigma_m B_m^2}{\rho} u
\]

\[
\frac{1}{\rho} \frac{\partial p}{\partial x} = \frac{\partial U}{\partial x} + \frac{\sigma_m B_m^2}{\rho} U
\]

\[
\rho c_p \left(\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} \right) = \beta \frac{\partial^2 T}{\partial x^2} + \mu \left(\frac{\partial u}{\partial y} \right)^2 + \alpha_1 \left(\frac{\partial u}{\partial y} \right) + \frac{\partial u}{\partial y} \frac{\partial u}{\partial x} + \frac{\partial u}{\partial x} \frac{\partial^2 u}{\partial y^2} + q(T - T_0)
\]

subject to the following boundary conditions

\[
u(x, 0, t) = v_0(t), \quad u(x, \infty, t) = U(x, t)
\]

\[-k \frac{\partial T(x,0,t)}{\partial y} = q(x), \quad T(x,\infty,t) = T_w
\]

In the equations \(\alpha_1\) is the second grade parameter, \(\rho\) – the density, \(\sigma_m\) – the electrical conductance, \(q\) – the heat flux, and \(k\) – the thermal conductivity.

From eqs. (2) and (3) we have:

\[
\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = \frac{\partial U}{\partial t} + u \frac{\partial U}{\partial x} + v \frac{\partial^2 u}{\partial y^2} + \frac{\sigma_m B_m^2}{\rho} (U - u) + \alpha_1 \left(\frac{\partial^3 u}{\partial y^3} + u \frac{\partial^2 u}{\partial x \partial y} - \frac{\partial u}{\partial x} \frac{\partial^2 u}{\partial y \partial x} \right) \]
where the free stream velocity U and surface heat flux q are $U = ax, a = 1/(s + bt)$, $q = q_0x$ (where a is the strength of squeeze flow in which s is a constant and b – the squeezing parameter).

We now set:

$$
\eta = y \sqrt{\frac{a}{v}}, \quad f(\eta) = \frac{\Psi}{x \sqrt{a v}}, \quad \theta = \frac{T - T_m}{q_0 v x} \sqrt{\frac{v}{a}}, \quad q(x) = q_0(x)
$$

(8)

$$
\beta_m(t) = \beta m_0 \sqrt{a}, \quad v_0(t) = v_i \sqrt{a}, \quad u = axf'(\eta)
$$

(9)

Note that eq. (1) is identically satisfied and eqs. (2), (3), (5), and (6) give:

$$
a \left(f + \frac{b}{2} \eta \right) f'' + f'''(2b\alpha - 2\alpha f) - 1 + \frac{f'''}{f'}(f' - b + N) + b - N - 1 = 0
$$

(10)

$$
\theta'' + Pr \left(f - \frac{b}{2} \eta \right) \theta - Pr \left(2f - \frac{b}{2} - \lambda_i \right) \theta + Ec Pr[f'' + af''(ff'' - ff''')]
$$

(11)

$$
f'(0) = 0, \quad f(0) = -g_0, \quad f'(\infty) = 1
$$

(12)

$$
\theta'(0) = -1, \quad \theta(\infty) = 0
$$

(13)

in which $N = \sigma_n \beta_m^2 / \rho$, $g_0 = v/(\nu)^{1/2}$, $Pr = mc_p/\beta$, $Ec = a^2 K/c_n q_0(\nu)^{1/2}$, $\alpha = a/\nu, \lambda_i = Q/a$.

The wall shear stress τ^* and the Nusselt number are given by:

$$
\tau^* = \frac{\tau_w}{\mu a \sqrt{Re}}, \quad Nu = \frac{x}{\theta(0)} \sqrt{\frac{a}{v}}
$$

The next section comprises the solution of problems containing eqs. (10)-(13) by a homotopy analysis method.

Solution of the problems

We select the initial guesses and auxiliary linear operators as follows:

$$
f_0(\eta) = g_0 + \lambda \eta + (1 + \lambda)[\exp(-\eta) - 1]
$$

(14)

$$
\theta_0(\eta) = \exp(-\eta)
$$

(15)

$$
L_f f(\eta) = \frac{\partial^3 f}{\partial \eta^3} + \lambda \frac{\partial^2 f}{\partial \eta^2}
$$

(16)

$$
L_\theta \theta(\eta) = \frac{\partial^2 \theta}{\partial \eta^2} + \frac{\partial \theta}{\partial \eta}
$$

(17)

$$
L[c_1 e^{-\eta} + c_2 e^\eta + c_3] = 0
$$

(18)

$$
L[c_4 e^{-\eta} + c_5 e^\eta] = 0
$$

(19)

where $c_1 - c_5$ are the arbitrary constants. Denoting h_1 and h_2 the non-zero auxiliary parameters and $\rho \in [0, 1]$ as an embedding parameter the zeroth-order deformation problems are:
When p varies from 0 to 1, then $\hat{f}(\eta, p)$ and $\hat{\theta}(\eta, p)$ vary from the initial guesses $f_0(\eta)$ and $\theta_0(\eta)$ to the final solutions $f(\eta)$ and $\theta(\eta)$, respectively. Considering that the auxiliary parameters h_ξ and h_η are so properly chosen that the series of $f(\eta; p)$ and $\theta(\eta; p)$ converge at $p = 1$ then:

\begin{align}
 f(\eta) &= f_0(\eta) \sum_{m=1}^{\infty} f_m(\eta) \\
 \theta(\eta) &= \theta_0(\eta) + \sum_{m=1}^{\infty} \theta_m(\eta) \\
 f_m(\eta) &= \frac{1}{m!} \left. \frac{\partial^m \hat{f}(\eta, p)}{\partial p^m} \right|_{p=0} \\
 \theta_m(\eta) &= \frac{1}{m!} \left. \frac{\partial^m \hat{\theta}(\eta, p)}{\partial p^m} \right|_{p=0}
\end{align}

The associated problems at the m^{th} order deformation are:

\begin{align}
 L_f [f_m(\eta) - \chi_m f_{m-1}(\eta)] &= h_f R_{f,m}(\eta) \\
 L_\theta [\theta_m(\eta) - \chi_m \theta_{m-1}(\eta)] &= h_\theta R_{\theta,m}(\eta) \\
 f_m(0) &= 0, \quad f'_m(0) = 0, \quad \theta_m(0) = 0 \\
 f'_m(\eta) &= 0, \quad \theta(\eta) = 0, \quad as \quad \eta \to \infty
\end{align}
The solutions of eqs. (32-35) through Mathematica can be expressed as:

\[f(\eta) = A_{0,0} + A_{1,0} \eta + \sum_{k=0}^{\infty} A_{k,m} \eta^k \exp(-m \eta) \] \\
\[\theta(\eta) = \sum_{k=0}^{\infty} B_{k,m} \eta^k \exp(-m \eta) \]

where the constants \(A_{0,0}, A_{1,0}, A_{k,m} \), and \(B_{k,m} \) have been computed easily.

Discussion

This section concerns with the effects of different parameters on the velocity field. Figure 2 displays the variation of magnetic parameter \(N \). It is noticed that boundary layer thickness reduces as \(N \) increases. However the surface temperature decreases when the magnetic field increases (fig. 3).

Figure 4 shows the effect of Prandtl number on the velocity profile. Figures 5 and 6 show the effects of the wall dimensionless permeable velocity \(g_0 \) for \(f' \) and \(\theta \). It is observed that the negative values of \(g_0 \) causes the fluid to be more attached to the surface when compared with the blowing conditions.

Figure 7 shows the variations in different values of the index of the squeezed flow. Here the velocity field decreases when there is an increase in \(b \) but it shows the reverse behavior...
The effect of \(l_1 \) on the velocity is shown in fig. 9. It is found that an increase in \(l_1 \) causes an increase in the velocity profile. The effects of Eckert number and fluid thermal diffusivity \(\alpha \) are displayed in figs. 10 and 11. In these figures the dimensionless velocity profile increases when \(Ec \) and \(\alpha \) are increased.

The convergence of the series solutions is obtained through \(h \)-curves. The convergence of homotopy analysis solutions strongly depends for \(\theta(\eta) \) (see fig. 9).
upon the values of the auxiliary parameter \(h \) [14]. For the reasonable value of \(h \), the residual error is plotted (see fig. 12) which shows minimum error. The \(h \)-curves are plotted in figs. 13 and 14. The range of \(h_1 \) for \(f' \) is \(0.5 \leq h_1 \leq 1 \) and similarly for \(\theta \) it is \(-0.33 \leq h_2 \leq -0.31 \). From figs. 13 and 14 we can see that the values of \(h \)-curves strongly depend on the values of different parameters involved in the physical problem. The wall shear stress and Nusselt number are shown through tab. 1. It is found that the skin friction coefficient and Nusselt number increases by increases the order of approximations.

Closing remarks

The squeezed flow and heat transfer in a second grade fluid over a sensor surface are analyzed. The main findings have been summarized as follows.

- By increasing the magnetic parameter \(N \) the velocity \(f'(0) \) increases but \(\theta(\eta) \) decreases.

<table>
<thead>
<tr>
<th>Order of approximations</th>
<th>(C_f\text{Re}_x^{1/2})</th>
<th>(-\text{Nu}_R^{1/2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>N = 1, Pr = 1, Ec = 1/2 α = 1, (\lambda_1 = 2, \beta = 2)</td>
<td>1.4975</td>
<td>0.71</td>
</tr>
<tr>
<td>1.13975</td>
<td>0.8435</td>
<td></td>
</tr>
<tr>
<td>1.19466</td>
<td>1.27573</td>
<td></td>
</tr>
<tr>
<td>1.27438</td>
<td>1.85253</td>
<td></td>
</tr>
<tr>
<td>1.31493</td>
<td>2.43864</td>
<td></td>
</tr>
<tr>
<td>1.32952</td>
<td>2.99042</td>
<td></td>
</tr>
<tr>
<td>1.33487</td>
<td>3.53174</td>
<td></td>
</tr>
<tr>
<td>1.33738</td>
<td>4.4663</td>
<td></td>
</tr>
<tr>
<td>1.33834</td>
<td>4.61019</td>
<td></td>
</tr>
<tr>
<td>1.33837</td>
<td>5.64364</td>
<td></td>
</tr>
<tr>
<td>1.33857</td>
<td>5.88523</td>
<td></td>
</tr>
<tr>
<td>1.33878</td>
<td>5.94620</td>
<td></td>
</tr>
<tr>
<td>1.33899</td>
<td>5.97462</td>
<td></td>
</tr>
</tbody>
</table>

Figure 12. Residual error

Figure 13. \(h_1 \)-curve for \(f''(0) \) at 10th order of approximation

Figure 14. \(h_2 \)-curve for \(\theta''(0) \) at 10th order
For Prandtl number the temperature profiles first decreases and then increases. The effects of the permeable velocity parameter \(g_0 \) on \(f'(h) \) increases for suction and decreases for blowing. Temperature \(\theta(\eta) \) decreases for negative values of \(g_0 \) but increases for positive values. Increasing the value of indexed squeezed parameter \(\tilde{b} \), \(f'(h) \) decreases but \(q(h) \) increases. Temperature profiles increase by increasing the values of \(l_1, Ec \) and thermal diffusibility.

Acknowledgment

The authors would like to thank the anonymous reviewers for their useful comments.

References

Paper submitted: July 10, 2011
Paper revised: October 22, 2011
Paper accepted: October 26, 2011