CONVERTING FRACTIONAL DIFFERENTIAL EQUATIONS INTO PARTIAL DIFFERENTIAL EQUATIONS

by

Ji-Huan HE* and Zheng-Biao LI

a National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
b College of Mathematics and Information Science, Qujing Normal University, Qujing, Yunnan, China

Original scientific paper
DOI: 10.2298/TSCI110503068H

A transform is suggested in this paper to convert fractional differential equations with the modified Riemann-Liouville derivative into partial differential equations, and it is concluded that the fractional order in fractional differential equations is equivalent to the fractal dimension.

Key words: modified Riemann-Liouville derivative, time-fractional heat conduction equation, fractional KdV equation

Introduction

In our previous work [1, 2], we suggested a fractional complex transform to convert fractional differential equations directly into ordinary differential equations. Though such transform makes solution process extremely simple, it is valid only for a general “wave” solution where the variables \(t, x, y, \) and \(z \) can not change freely but follow the following constraint:

\[
\xi = \frac{qt^\alpha}{\Gamma(1+\alpha)} + \frac{px^\beta}{\Gamma(1+\beta)} + \frac{ky^\gamma}{\Gamma(1+\gamma)} + \frac{lz^\lambda}{\Gamma(1+\lambda)}
\]

where \(p, q, k, \) and \(l \) are constants.

In this paper we will suggest a similar transform to convert fractional differential equations, instead of ordinary differential equations, into partial differential equations.

How to convert fractional differential equations to partial differential equations?

Consider the following general fractional differential equation:

\[
f(u_t^{(\alpha)}, u_x^{(\beta)}, u_y^{(\gamma)}, u_z^{(\lambda)}, u_t^{(2\alpha)}, u_x^{(2\beta)}, u_y^{(2\gamma)}, u_z^{(2\lambda)}, \ldots) = 0
\]

* Corresponding author; e-mail: hejihuan@suda.edu.cn
where \(u^{(\alpha)} = \frac{\partial^\alpha u(x, y, z, t)}{\partial t^\alpha} \) denotes the modified Riemann-Liouville derivative [3-5];
\(0 < \alpha \leq 1, 0 < \beta \leq 1, 0 < \gamma \leq 1, 0 < \lambda \leq 1 \).

We introduce the following transforms:

\[
\begin{align*}
\frac{gt}{\Gamma(1 + \alpha)} & \quad (3) \\
\frac{px}{\Gamma(1 + \beta)} & \quad (4) \\
\frac{ky}{\Gamma(1 + \gamma)} & \quad (5) \\
\frac{lz}{\Gamma(1 + \lambda)} & \quad (6)
\end{align*}
\]

where \(p, g, k, \) and \(l \) are constants.

Using the above transforms, we can convert fractional derivatives into classical derivatives:

\[
\begin{align*}
\frac{\partial^\alpha u}{\partial t^\alpha} &= q \frac{\partial u}{\partial s} \\
\frac{\partial^\beta u}{\partial x^\beta} &= p \frac{\partial u}{\partial X} \\
\frac{\partial^\gamma u}{\partial y^\gamma} &= k \frac{\partial u}{\partial Y} \\
\frac{\partial^\lambda u}{\partial z^\lambda} &= l \frac{\partial u}{\partial Z}
\end{align*}
\]

Please note that eqs. (7)-(10) are valid for only Jumarie modification of Riemann-Liouville derivative [3-5].

We can, therefore, easily convert fractional differential equations into partial differential equations, so that everyone familiar with advanced calculus can deal with fractional calculus without any difficulty.

Examples

Consider the following fractional-time heat conduction equation:

\[
\frac{\partial^\alpha T}{\partial t^\alpha} = D \frac{\partial^2 T}{\partial x^2}, \quad x \in (0, \infty), \quad t > 0; \quad 0 < \alpha \leq 1
\]

Using eq. (3), we have the following partial differential equation:

\[
q \frac{\partial T}{\partial s} = D \frac{\partial^2 T}{\partial x^2}, \quad x \in (0, \infty), \quad t > 0
\]

Now consider the following fractional KdV equation:

\[
\frac{\partial^\alpha u}{\partial t^\alpha} + 6u \frac{\partial^\beta u}{\partial x^\beta} + \frac{\partial^3 u}{\partial x^3} = 0
\]
Using the above transformation, we have:
\[q \frac{\partial u}{\partial s} + 6pu \frac{\partial u}{\partial X} + p^3 \frac{\partial^3 u}{\partial X^3} = 0 \]
(14)

For simplicity, we set \(p = q = 1 \); this results in:
\[\frac{\partial u}{\partial s} + 6u \frac{\partial u}{\partial X} + \frac{\partial^3 u}{\partial X^3} = 0 \]
(15)

Its soliton solution reads:
\[u = \frac{A}{2} \operatorname{sech}^2 \left[\frac{\sqrt{A}}{2} (X - As) \right] \]
(16)

or
\[u(x, t) = \frac{A}{2} \operatorname{sech}^2 \left[\frac{\sqrt{A}}{2} \left(\frac{x^\beta}{\Gamma(1 + \beta)} - \frac{At^\alpha}{\Gamma(1 + \alpha)} \right) \right] \]
(17)

Discussion and conclusions

The transformation is very similar to that given in the fractal derivative \([6, 7]\), which is defined as:
\[\frac{Du(x)}{Dx^\alpha} = \lim_{\Delta \to 0} \frac{u(A) - u(b)}{\Delta} \]
(18)

The distance between two points \(A \) and \(B \) is
\[ds = kL_0^\alpha \]
(19)

where \(k \) is a constant, \(\alpha \) – the fractal dimension, and the distance between two points in a discontinuous space can be expressed as:

Comparing eq. (4) and eq. (19), we conclude that the fractional order in fractional differential equations is equivalent to the fractal dimension.

The transformation is simple and straightforward, it is extremely accessible to non-mathematicians. The use of the present method requires no special knowledge of fractional calculus.

Acknowledgment

The work is supported by PAPD (A Project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions), National Natural Science Foundation of China under Grants No. 11061028 and 50806011, and Natural Science Foundation of Yunnan Province under Grant No. 2010CD086

References

