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ABSTRACT 

This purpose is about a three dimensional study of natural convection 
within cavities. This problem is receiving more and more research 
interest due to its practical applications in the engineering and the 
astrophysical research 
The turbulent natural convection of air in an enclosed tall cavity with 
high aspect ratio (AR=H/W=28.6) is examined numerically. Two cases 
of differential temperature have been considered between the lateral 
cavity plates corresponding, respectively, to the low and high Rayleigh 
numbers:  Ra=8.6×105 and Ra=1.43×106 [1].  For these two cases, 
the flow is characterized by a turbulent low Reynolds number. This led 
us to improve the flow characteristics using two one point closure low-
Reynolds number turbulence models: RNG k-ε model and SST k-ω 
model, derived from standard k-ε model and standard k-ω model, 
respectively. Both turbulence models have provided an excellent 
agreement with the experimental data. In order to choose the best 
model, the average Nusselt number is compared to the experiment and 
other numerical results. The vorticity components surfaces confirm 
that the flow can be considered two-dimensional with stretched vortex 
in the cavity core. 
Finally, a correlation between Nusselt number and Rayleigh number is 
obtained to predict the heat transfer characteristics  

Key words: low-Reynolds number, turbulent natural convection, 
numerical simulation, rectangular cavity, turbulence modelling, heat 
transfer. 

1. INTRODUCTION  
 

The turbulent natural convection flows are omnipresent in several sciences domain (Solar and 
stellar structure, Earth mantle, atmospheric turbulence, engineering, electronics…), which depends 
mainly on both the physicochemical properties of the fluids and the geometrical conditions of the 
configuration. Usually, the natural convection flow, laminar or turbulent, is considered by the 
Rayleigh number, defined by the following expression:  
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This work is carried out numerically to study and improve the structure of turbulent natural convection 
flows within a parallelepiped enclosure.  Therefore, heat transfer process has been performed by a 
large number of theoretical, experimental and numerically studies. The numerical study of the natural 
convection in an enclosure becomes more complicated when the configuration is three-dimensional 
and with turbulent flow. Special attention will be given in this paper to these both challenges because 
they often occur in the natural environment and numerous industrial processes.  Peng and Davidson 
[2] performed Large eddy Simulation LES (3D) for the same experimental condition of Tian and 
Karayiannis [3]. The authors obtained a better agreement between the measured stratification and LES 
prediction and indicate that 3D simulations would be more successful in predicting the thermal 
stratification within the cavity core.  Turbulent natural convection in a large air-filled cavity for 3D 
and 2D configuration, Salat and al [4] investigated experimentally and numerically a differentially 
heated cavity. They observed a good agreement between the experiment and numerical results for the 
velocity field and of velocity auto-correlations. Nevertheless, discrepancies along the centreline of the 
thermal stratification and of temperature auto-correlation remain still important. They concluded that 
introducing experimental temperature measurements in numerical simulations don’t answer to the 
definitively to the discrepancy observed on the thermal stratification in the cavity core. 
In recent numerical works, Gustaven and Thue [5], Yang and Zhu [6] and Pons [7] examined 
numerically the three dimensional natural convection in tall cavity. Gustaven and Thue considered a 
laminar flow of differentially heated air-filled tall cavity with different vertical aspect ratios of 20, 40 
and 80 and horizontal aspect ratios of 5 and 0.2. The Nusselt number was correlated for different ratios 
in order to predict the heat transfer in equipments or building sections. Their CFD simulations showed 
that cavities with horizontal aspect ratio are greater than five (5) could be considered as two-
dimensional for heat transfer rates up to 4%. Except, the velocity and temperature profiles should be 
three-dimensional for better precision. Aich et al [8] used the control-volume finite-element method to 
study numerically the flow field inside a prismatic cavity, their results shows that at the lower 
Rayleigh number (Ra<104) the diffusion is the dominating heat transfer mechanism whereas at higher 
Rayleigh number (Ra> 105 and 106) buoyancy driven convection is more important. Consequently, the 
average Nusselt number at the heated wall does not change significantly for the diffusion dominated case 
whereas it increases rather rapidly with Ra for the convection-dominated case. On the other hand, Yong 
and Zhu used the DNS calculation for unsteady turbulent natural convection with high Rayleigh 
number in a tall cavity with height-depth-width ratio of 16:8:1. For these conditions, the results 
showed that the flow becomes turbulent and asymmetric.  For experiment work, Betts and Bokhari [9] 
conducted an experimental investigation of turbulent natural convection air-filled-rectangular tall 
cavity : 0.076×2.18×0.52m (corresponding to the width ‘W’, height ‘H’ and depth ‘D’, respectively), 
where the ratio between the height and the width corresponds to the large aspect ratio : 
AR=H/W=28.6. The natural convection flow in the cavity is generated by two differential 
temperatures between the two vertical lateral plates 19.6°C and 39.9°C, where temperature gradient 
direction is perpendicular to the gravity. Under theses physical and geometrical conditions, the flow in 
the cavity core becomes fully turbulent with low Reynolds number [9] and the temperature is stratified 
[10].  In fact, this paper is the further of our previous work [11], which consisted to study numerically 
the turbulent natural convection of air in the tall cavity by using two turbulence models: the standard 
k- ε model and its derivative RNG k-ε model. The comparison between the numerical results and the 
experimental data [11] revealed that the results were suitable for the RNG k-ε model compared to its 
standard model, which is not appropriate for flow at low Reynolds number. However, the aim of this 
work is to study the same problem by using two low-Re number turbulence models: RNG k-ε model 
[12] and SST k-ω model [13]. The numerical results for the vertical velocity, the temperature and the 
turbulent kinetic energy are compared to the experimental data [9]. In addition, the average Nusselt 
number along the heated wall is compared to the experiment values of Betts and Bokhari [9] and the 
numerical results of Heish and Lien [10]. Moreover, the iso-surface of vorticity magnitude shows the 
generation of the stretched vortex along the tall cavity. The size of this vortex increases with Rayleigh 
number. The stretched vortex has been confirmed in the literature for slow flow [14]. However, the 
second objective of this work is to predict the heat transfer versus Rayleigh number evolution. Several 
works [3, 5, 6, 15, 16, 17, 18, 19 and 20] predicted a correlation between the average Nusselt number 
and Rayleigh number for an enclosed cavity for a high cavity aspect ratio.  In this paper, we propose a 
new correlation for a high cavity aspect ratio and a Prandtl number which less than one. 
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2. Turbulence models 

 
Mass conservative equation (eq. 1), SRANS (Steady Reynolds Average Navier Stokes) 

equations (eq. 2) coupled to the averaged energy equation (eq. 3) of the turbulent compressible flows 
are written as follow:   

 
Mass conservative equation:  
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In these equations, the Reynolds stress component and correlations between the velocity and 

temperature fluctuations appear which require a closure. The one point closure turbulent models are 
generally based on the concept of Prandtl-Kolmogorov’s turbulent viscosity which is applied in its 
high Reynolds number form. Thus, the turbulent Reynolds stress tensor and the correlation of the 
velocity and temperature fluctuations are deduced using the following algebraic relations (Boussinesq 
assumption [21]): 
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By analogy with molecular transport, the turbulent Prandtl number for thermal transport can 

be deduced by eq.6:  
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The Reynolds stresses component and the velocity – temperature correlation appearing 

respectively in the Reynolds equations and the averaged energy equation require to be modelled.  Two 
one point closure turbulence models recommended for low Re number: RNG k-ε model and SST k-ω 
model have been used in this work.  
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2.1. RNG k-ε model:  
 

For near wall turbulence modelling, the Renormalization group (RNG) methods are 
recommended for the asymptotic properties of their scales (the space and time fluctuations exist over 
all scales). On the basis of the scale invariance, inherent characteristic of the critical phenomena, the 
method allows to obtain systematically the intrinsic properties of the system constituents. 
Renormalization group (RNG) methods were initially developed in the context of quantum field 
theory. Yakhot and Orszag in 1986 [12] derived from the standard k-ε model the RNG k-ε model 
using the Renormalisation group (RNG) methods. The equations of the RNG model are summarized 
as follow: 
 
The turbulence kinetic energy: 
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The dissipation rate equation: 
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TugG iib ′′βρ−=  is the production of turbulent kinetic energy due to the buoyancy. 

Compared to the standard k-ε model, the additional term in the equation ε is defined: 
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This additional term includes the effect of streamline curvature and provides an analytical 

derived differential formula for effective viscosity in order to take in accounts the low Reynolds 
number effect.  Where:    

ε
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The effective viscosity is deduced from the following differential equation (Eq. 10): 
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Where: µµµ eff=ˆ  and µ̂C ≈100. 

 
2.2. SST k-ω model: 
 

In 1993, Menter [13] developed another turbulence model based on the shear stress transport 
k-ω model. The process of the SST method is to use the k-ω formulation in the inner zone of the 
boundary layer and the k-ε model in the outer part of the boundary layer. In order to combine these 
two models, the standard k-ε model has been transformed into k and ω equations, which leads to the 
introduction of a cross-diffusion term in the dissipation rate equation. The formalism of SST model is 
summarised as follows [13, 21]:  
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The turbulence kinetic energy: 
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The dissipation rate equation: 
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Where: 
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1ijijk ε= is the generation of turbulence kinetic energy due to mean velocity gradients. 

For SST Model, the coefficients are expressed in the following form: 
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Close to the wall, the blending function F1 is set to one and zero far from the wall, where:  
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The difference between the standard k-ω model and SST model is in that the term γ is 
evaluated by eq.13., so ( ) 2111 F1F γ−+γ=γ . Where the constants Φ are deduced through:  Φ1 from the 
k-ω model constants and Φ2 from the k-ε model constants: 
 
For Φ1: 
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The eddy viscosity is defined by (eq. 15): 
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3. NUMERICAL PROCEDURE: 

 
We consider an air flow within a tall rectangular cavity with high aspect ratio 

(AR=H/W=28.68). The dimensions of cavity are: 0.076×2.18×0.52(m), as sketched in the fig. 1. The 
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spatial derivatives in the equations are solved with the finite volume method [22]. The aim of the finite 
volume method is to transform the governing equations by the following conservative expression (eq. 
16): 
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This equation is transformed into the algebraic equation by the following form:  
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Where n is the iteration number and nb is the specification of its neighbour grids (representing north, 
east, south, west point). Since the flow is steady in average, the SIMPLE algorithm is applied for the 
pressure–velocity coupling and the power law scheme is use for the interpolation process for all 
independent variables [28]. The low-Reynolds number turbulence models require refined grid in the 
inner zone of the boundary layer. The structured mesh has been used in this study. Different grids 
sizes have been tested previously [11]. The present numerical results are achieved by 50x300x50 
rectangular non-uniform cells. For the near wall treatment, the enhanced wall function has been 
applied to specify the turbulence in the near wall region particularly the viscous sublayer. It was also 
shown that the enhanced wall treatment, which needs a finer mesh in the viscous sublayer, provides 
more accurate results and perfectly predicts velocity profile within the viscous and buffer layers [23]. 

For the boundary conditions, two differential temperatures are applied between the lateral 
plates of 19.6°C and 39.9°C, as showing in Tab. 1. The front, back, bottom and top walls were kept 
adiabatic with no slip condition, vx=0 , vy=0 and vz=0. 
 

Table 1. Thermal conditions.  

 Cold wall  Hot wall  Ra Pr 
1- First case 
2-Second case 

15.1°C 
15.6 °C 

34.7 °C 
55.5 °C 

0.86x106 
1.43x106 

 

0.734 
0.726 

 
 

Figure 1. The geometry setting (W=0.076m, H=2.18m, D=0.52m) 
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4. RESULTS AND DISCUSSION 
 

4.1. The vertical velocity and the normal vorticity: 
 

At different heights of the cavity for z/D=0.0, the vertical velocity for both turbulence models 
are compared with experimental data [9] as shown in the fig. 2.a and fig. 2.b, which correspond to the 
low and high Rayleigh numbers respectively. The vertical velocity distributions indicate that the 
velocity gradient is more significant near the heated walls, with two peaks. Near the hot wall where    
Th > Tm, the fluid is heated and becomes hot and therefore rises. Fluid from the neighboring areas 
rushes in to take the place of this rising fluid. On the other hand, near the cold wall (Tc < Tm) the plate 
is cooled and the fluid flows downward. Moreover, in the core region (y/H=0.5, x/W=0.5) the figures 
show that the flow is practically quiescent (vy≈0) [24]. The vertical velocity profiles for the two 
turbulence models are in good agreement compared to the experimental data, with minor discrepancy.  
However, for more accuracy; the tab. 2 represents the vertical velocity maximum determined 
experimentally and numerically by both turbulence models. The error between experimental data and 
numerical results is expressed as follow: 
 

( ) numnumexp RRREr −=  (18) 
 

The errors are indicated between the brackets on the tab.2.. It should be noted that the vertical 
velocity maximum determined by SST k-ω model is better than RNG k-ε model. This reveals that the 
k-ω SST model is more suitable for low Reynolds number turbulent flows.  
Furthermore, for natural convection flow the extremum of the vertical velocity in the vicinity to the 
wall denotes the separation between two layers (fig. 2.b, for y/H=0.5). The first one, is the inner layer 
which is close to the wall and is dominated by the viscous shear; whereas the second one is the outer 
layer generated by the turbulent shear with a length until the vertical velocity vanishes (vy =0). Also, at 
the mid-width (x/W=0.5) the vertical velocity profiles show an interaction between the outer layer 
from the cold wall with outer layer from the hot wall. This interaction is caused by the narrow width of 
the cavity (W=0.076m) in the temperature gradient direction, which produces strong vertical 
stratification around the cavity centre and limits the development of turbulent boundary layer along the 
heated walls. So, two-layer models were developed in order to predict suitable turbulent kinetic energy 
profiles in order to provide accurate concentrations and temperatures [25].  
Additionally, the main physical difference between two-dimensional and three-dimensional flows is 
that, in the two-dimensional case, the vorticity has only one component in the normal direction to the 
plane of the flow. This imposes a strict constraint on the kinematics and the dynamics of the 
turbulence [26]. In this study the configuration is three dimensional, thus for each point of the flow 
field has a related a vorticity vector. The vorticity, which represent the rate of spin of particle fluid, 
can be defined as the curl of velocity as the following expression: 
 

u
rrr

×∇=Ω  (19) 

The fig. 3 illustrates the vorticity components profiles along x/W axis for y/H=0.5 and 
z/D=0.0. Fig.3 highlighted, and confirms [9, 10], that the flow is two dimensional with normal 
vorticity Ωz, which is perpendicular to the plane of the flow (x, y). Also, this figure proves that the 
normal vorticity magnitude is optimal near the wall. However, the high vorticity near wall region is 
generated by shear stress components and not from a swirling or rotational motion.  

However, flow patterns determined by the three-dimensional simulations are more complicated 
than that of two-dimensional simulations. Due to the solid edge of boundaries, where the fluid 
undergoes a buoyancy effect by heat transfer into it from the end boundaries, the three-dimensional 
effects occur and are more important close to the cavity corners probably caused by local temperature 
gradient. This phenomenon makes the visualization of three-dimensional (3D) a challenge in CFD 
predictions. Some qualitative features of different vortical structures are often visualized by three-
dimensional simulation by considering the spanwise vorticity component [27]. The fig. 4.a and fig. 4.b 
show the normal vorticity iso-surfaces at the level of Ωz=2.5s-1 and Ωz=6.0s-1 for Ra=8.6x105 and at 
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the level of Ωz=2.5s-1 and Ωz=8.0s-1 for Ra=1.43x106.  For low Rayleigh number, fig. 4.a evidences a 
stretched vortex in the core region with magnitude of Ωz=6.0s-1. The stretched vortex is confirmed by 
the literature, which is generated in a flow with low velocity [14]. It can be noticed that when the 
Rayleigh number increases (fig. 4.b.), and when the flow is still done at low velocity, the magnitude 
and scale of the stretched vortex are expanded. Furthermore, the second iso-surface of the normal 
vorticity with magnitude Ωz=2.5s-1, and less than stretched vortex, is in the vicinity of the top cold wall 
and the bottom hot wall, close to the cavity corners. The two-dimensional simulations do not predict 
the visualisation of these vortexes. The flow pattern shows an excellent symmetry with respect to 
centre of the cavity, indicating that the heat transfer rate from the heated vertical wall should be 
identical to the cooling vertical wall. Also, when the thermal gradient increases, the flow is accelerated 
in these zones leading to increase the vortex scale.  

 
Table 2. The maximum and minimum vertical velocities using different turbulence models 

compared to the experimental data. 

Ra=8.6×105 
 ( )

minyv  ( )
maxyv  

 y/H=0.1 y/H=0.5 y/H=0.9 y/H=0.1 y/H=0.5 y/H=0.9 
Experiment 
results [9] 

-0.101 -0.135 -0.18 0.193 0.14 0.103 

k-ε RNG model  -0.1204 
(16.11%) 

-0.1732 
(22.06%) 

-0.1674 
(7.53%) 

0.1695 
(13.86%) 

0.1732 
(19.17%) 

0.1240 
(16.94%) 

k-ω STT model -0.1057 
(4.45%) 

-0.1661 
(18.72%) 

-0.1729 
(4.11%) 

0.1728 
(11.69%) 

0.1661 
(15.71%) 

0.1060 
(2.83%) 

Ra=1.43×106 
 ( )

minyv  ( )
maxyv  

 y/H=0.1 y/H=0.5 y/H=0.9 y/H=0.1 y/H=0.5 y/H=0.9 
Experiment 
results [9] 

-0.135 -0.189 -0.239 0.258 0.190 0.145 

k-ε RNG model  -0.1690 
(20.12%) 

-0.2399 
(21.22%) 

-0.2331 
(2.53%) 

0.2342 
(10.16%) 

0.24056 
(21.02%) 

0.17061 
(15.01%) 

k-ω STT model -0.1418 
(4.80%) 

-0.2280 
(17.11%) 

-0.2436 
(1.89%) 

0.2470 
(4.45%) 

0.2299 
(17.36%) 

0.1469 
(1.29%) 

 
4.3. The turbulent kinetic energy 
 

The experiment [9] does not provide data of the normal fluctuating velocity w’, since it is very 
difficult to estimate w’ for the anisotropic turbulent natural convection without direct measurement. 
Therefore, to compare the turbulent kinetic energy k evolution between different numerical methods 
and experiment, equation (Eq. 20) has been used in order to deduce k thought the experimental data: 
 

( )ii uu
2

1
k ′′=  (20) 

 
The fig. 5.a and fig. 5.b illustrate the streamwise profiles of the turbulent kinetic energy (at 

y/H=0.5 and z/D=0.0). For the fluctuating values, the both turbulence models reproduce practically 
numerical results compared to the experimental data. However, for the three-dimensional study, the 
normal fluctuating velocity values w’ are not negligible, than the turbulent kinetic energy is 
underestimated experimentally. In the core of the cavity (x/W=0.5), the turbulent kinetic energy is 
high inversely to the vertical velocity which is practically zero (fig.2) and where this zone is 
considered as the outer layer of boundary layer. These figures show clearly that the level of turbulent 
kinetic energy increase with Rayleigh number. Besides, for high Ra number, the experimental values 
are more underestimated by the increase of w’. 
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(a) Ra=8.6×105 (b) Ra=1.43×106 

Figure2. Vertical velocity profiles across the cavity width at various heights for two Rayleigh 
number, for z/D=0.0. 

 

y/H=0.5, z/D=0.0 

y/H=0.1, z/D=0.0 

y/H=0.9, z/D=0.0 
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Figure 3. Profile of the vorticity components across the cavity width for y/H=0.5 and z/D=0.0, 
(Ra=8.6x105). 

 

 
 
 

(a) Ra=8.6x105 

 

 
 
 

(b) Ra=1.43x106 
 

Figure 4. The spanwise normal vorticity iso-surfaces. 
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(a) Ra=8.6x105 

 
(b) Ra=1.43x106 

 
Figure 5.  Evolution of the turbulent kinetic energy, across the cavity (y/H=0.5, z=0). 

 
4.3. The temperature evolutions and the heat transfer: 

 
The mean temperatures profiles for both low and high Rayleigh numbers are plotted in                                 

fig.6.a and fig.6.b, respectively. The numerical results are in good agreement with experimental data 
for the RNG k-ε and the SST k-ω models. Similarly, to the mean vertical velocity evolution, the mean 
temperature shows strong gradients close to the wall with an almost linear variation in the cavity core. 
Xaman et al [19] explain this result by the heat conduction through the central core of the layer in 
addition to the heat transport by natural convection. Furthermore, in the vicinity to the wall, the 
temperature evolution is linear characterising the conductive and viscous sublayers. 

However, the heat transfer along the heated wall is calculated using Nusselt number, which 
characterizes the ratio of convective to conductive heat transfer across the corresponding boundary 
(Eq. 21):   
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TT
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δ
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Where q is the heat transfer rate, δx is the distance from the surface boundary to the nearest local 
point. The mean Nusselt number along the heated vertical wall is deduced through the following 
expression: 
 

H

dyNu

Nu

H

0
∫

−=  
(22) 

 
The fig. 7 shows the local Nusselt number deduced by the SST k-ω model along the hot wall.  

This figure evidences that the evolution of Nusselt number along the heated wall has not the transition 
zone, and this confirms that the interaction between the both outer layers, which will generate a 
vertical stratification will prevent the transition to turbulent flow. 
The different values of the average Nusselt number along the hot wall for the both models (SST and 
RNG models), experimental value [9] and the numerical results for Hsieh and Lien [10] are 
summarised in the tab. 3. Heish and Lien [10] used an unsteady RANS approach combined with low-
Re k-ε model of Lien and Leschnizer [29] for the 2D flow simulation in the tall cavity with aspect 
ratio AR=28.68. They concluded that the steady RANS can be used to compute this flow without 
countering convergence problems. Tab. 3 shows that the better predictions are obtained by the SST k-
ω model, especially for low Rayleigh number cases. Nevertheless, the difference still not significant 
compared to the RNG k-ε model. 
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Table 3.  Mean Nusselt number near the hot wall for high and low Rayleigh numbers, in 
brackets the error compared to experiment results. 

 Nu  

(LowRa) 

Nu  

(HighRa) 

Experiment (Betts and Bokhari, 2000). 5.85 7.57 

Numerical results (Hsieh and Lien, 2004). - 6.39 
(15.59%) 

Numerical results for RNG model. 5.51 
(5.81%) 

6.905 
(8.78%) 

Numerical results for SST model. 5.66 
(3.25%) 

6.96 
(8.06%) 

 
Generally, the heat transfer depends on the Rayleigh number, Prandtl number and the aspect 

ratio as: Nu=f(Ra, Pr, AR). In this work, Prandtl number Pr is almost constant within the range of the 
considered temperature variation and the dimensions of the cavity are constant. So, we have just to 
examine the variation of the average Nusselt number versus the Rayleigh number.  

In order to correlate this variation, different differential temperatures between the two vertical 
plates have been applied (tab. 4.). In this part, only the SST k-ω model has been considered in the 
simulations. For natural convection, MacGregor and Emery [17], Henkes et al [30], Dafa’alla and 
Betts [15] measure the flow within different cavities sizes; all gave an averaged wall-heat transfer 
correlation by a power law expression (Eq. 23):  
 

31RacNu =  (23) 

Where the constant c is somewhat different (c=0.046, 0.047 and 0.053, respectively). 
 

Conversely, for large aspect ratios and for moderate Rayleigh number:  
• MacGregor et al. proposed the following correlations [16, 17]: 
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• When a cavity is heated at a fixed temperature (isothermally) from the sides, correlation 

equation for the Nusselt number relation in the turbulent regime, based on experimental data, 
has been proposed by El Sherbiny et al [20]: 
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(a) Ra=8.6x105 

 
(b) Ra=1.43x106 

 
Figure 6.  Temperature profile cross the cavity for the low and the high Rayleigh number 
 (y/H=0.5, z=0). 

 

 
Figure 7.  Local Nusselt number along the hot wall deduced by SST k-ω  model, 
Ra=1.43x106 

 
 

Figure 8.  Profile of the average Nusselt number versus the Rayleigh number. 
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Fig.8. shows the variation of Nu number versus Ra number obtained by: this present numerical 
study (Tab. 4), experimental results [9], MacGreror correlations (Eq. 24) and El Sherbiny correlation 
(Eq.25).  We observe in the Fig.8. that the MacGregor correlations underestimate the Nu number 
compared to the experimental data and numerical results, because the correlations proposed is for 
Prandtl number case great than one Pr ≥1.  While, the Nu number evolution shows a good agreement 
with the experimental results of El Sherbiny (Nu1). However, the El Sherbiny correlation (Eq.25.) 
shows that when aspect ratio increases the range of Rayleigh number should decrease. Therefore, the 
Fig.8. shows that the Sherbiny  correlation tends to underestimate the Nu number when the Rayleigh 
number increases.  

Consequently, according to the eq.24.2. and eq.25., and after fitting respectively by a quadratic 
interpolation, a new correlation (fig. 8) is proposed for air and for high aspect ratio. 
 

31Ra0635.0Nu =  (24) 

 

Table.4. Average Nusselt number by SST k-ω model for different Rayleigh numbers. 

Ra 8.6E+5 9.5E+5 1.11E+6 1.25E+6 1.43E+6 

Nu  5.66 6.54 6.66 6.92 6.96 

 

5. CONCLUSION 
In this work, a three dimensional numerical study has been investigated using two one-point 

closure turbulence models: RNG k-ε and SST k-ω models. The numerical results are compared to the 
experimental data of Betts and Bokhari for the air turbulent natural convection. 

A good agreement between the experimental and numerical prediction is observed for both 
RNG k-ε model and SST k-ω model. However, for more accuracy the better results were obtained by 
using SST k-ω model. The profiles of the mean vertical velocity, mean temperature and the turbulent 
kinetic energy denote that the flow in the core region of the tall cavity is very weak and the turbulence 
level increases with Rayleigh number. 

Accordingly, where the motion occurs, the iso-surface vorticity highlighted a stretched vortex 
along the tall cavity and two small scales vortex close to the cavity corners. The stretched vortex 
increases in magnitude and in scale when Rayleigh numbers increases.  

Finally, the correlations between the Rayleigh number and the Nusselt number is 
underestimate by MacGregor correlations whereas the experimental results of El Sherbiny provide à 
good correlation. However, for aspect ratio AR=28.6, when the Ra number increases, El Sherbiny 
correlation becomes to underestimate the experimental results. In this paper, a new correlation is 
proposed for natural convection air flow in an enclosed tall cavity with high aspect ratio.  

 

NOMENCLATURE 
a Thermal diffusivity, [m2s-1]    ε turbulent energy dissipation rate, [m2s-3] 
AR Cavity aspect ratio, [-]    µ dynamic viscosity, [kgm-1s-1]   
D Depth of the cavity, [m]    µeff   effective viscosity, µeff = µ+ µt 
H Height of the cavity, [m]    µt eddy viscosity, [kgm-1s-1]   
K      Thermal conductivity, [W.K−1.m−1]   υ kinematics viscosity, [m2s-1] 
k turbulent kinetic energy, [m2s-2]   ρ fluid density, [kgm-3] 
Nu Nusselt number, [-]     σk turbulent Prandtl number for k, [-] 
Pr Prandtl number, [-]     σt turbulent Prandtl number, [-]  
Ra Rayleigh number, [-]    σε  turbulent Prandtl number for ε, [-]  
Re Reynolds number, [-]              σω  turbulent Prandtl number for ω, [-] 
Rij Reynolds stress tensor, [Kg m-1s-3]    τij viscous stress tensor, [m2s-2] 
S Modulus of the mean rate-of-strain    Ω vorticity magnitude, [s-1] 

tensor, [s-1]      ω  turbulent frequency, [s-1]  
T Temperature, [K]       
T0 Operating temperature, [K]     Subscripts and Superscripts   
Tref Reference temperature, [K]     c, h  cold, hot wall 
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vy [ms-1]      m mean value 
W Width of the cavity, [m]    RNG     constants for the RNG k-ε model 
       t turbulent 

Greek symbols      ( )  average value 

 
αt Eddy diffusivity, [m2s-1]  
β Thermal expansion coefficient, [K-1]  
υ Kinematics viscosity, [m2s-1]      
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