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Ground (soil) heat flux is important physical factor primarily because of its role 

in surface energy balance, analysis of atmospheric boundary layer and land 

surface-atmosphere interaction. Direct measurement of this property is often 

associated with difficulties arising from need for adequate calibration of 

measuring devices, determination of proper depth for probes, upward water 

migration and accumulation below measuring plates to lack of understanding of 

the governing thermal processes occurring at the ground surface. In the 

following paper approach for inferring heat flux indirectly, from known ground 

surface temperature time-dependant functions, using previously developed 

fractional diffusion equation for ground heat conduction is elaborated. 

Fractional equation is solved for two, most frequently encountered harmonic 

surface temperature functions. Yielded results were compared with analytic 

solutions. Validation results indicate that solutions obtained with fractional 

approach closely correspond to analytic solutions with remark that former are 

more general, containing the term covering the transitional effect. 
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1. Introduction 

 

Climatic conditions on the earth’s surface are in part a function of varying physical position 

(elevation and latitude) and the influence of large-scale meteorological forces such as air and ocean 

currents [1]. Earth (soil/ground) surface can be defined here as an active layer for radiation, heat and mass 

exchange between the ground beneath that layer and atmosphere below it. It has profound effect on micro 

climate in ground proximity. Properties of the ground surface affect the ratio of absorbed and reflected 

sunlight energy and accordingly energy balance of ground surface. 

The energy balance for the ground surface can be presented schematically as in Figure 1[2]. 

Dominant part of incident solar radiation is used for evaporation of water contained in ground, partly 
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reflects back to atmosphere in form of shortwave and longwave terrestrial radiation and dissipates as 

sensible heat transfer to the atmosphere. Just a small part of incoming energy penetrates into the soil. This 

fraction of energy is referred to as ground (soil) heat flux or heat flux density.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure1. Daytime heat balances (adopted from [2], after Baver [3]) 

 

At the beginnings of soil physics science, the process of heat transfer in soil was not properly 

understood. According to Sauer [4], Patten [5] can be credited as being the pioneer in providing the 

quantitative treatment of heat transfer processes in ground by measuring the thermal properties of several 

soils under controlled laboratory conditions.  

Today, following equation is most frequently used for describing energy balance at the ground 

surface: 

 nR  G  H –  LE   (1) 

where Rn is the net radiation – the net difference between incoming shortwave and longwave (terrestrial) 

radiation (W m
-2

), G is the ground heat flux  - a measure of the amount of energy moving into or out of the 

soil, which determines ground temperature and the rate of daily and seasonal temperature change (W m
-2

), 

H is the sensible heat flux  - energy involved in heating or cooling the air layer near the ground surface (W 

m
-2

) and LE is the latent heat flux – the amount of energy consumed by evaporating water or released 

during dew formation (W m
-2

) [1,4,6]. The equation stands if heating sources (from earth crust e.g.  inner 

geothermal energy sources) are not present. All of the terms in equation depend on ground surface 

temperature. 

In equation (1), ground heat flux is the smallest term. That was the reason why it had been 

previously omitted from heat balance equation (set to zero), parameterized from meteorological 

parameters (as a fixed percentage of the net radiation) or measured with simple techniques (by using the 

output of heat flux plate without compensation) [7]. However, significant errors with this approach 

(especially for bare dry soils, during night time and morning) noticed lately, have indicated importance of 

this term.  



 
 

Ground heat flux has profound effect on ground temperature profile which consequently affects 

microclimatic conditions on observed site and consequently rate of biological and chemical processes of 

plants. According to Sauer and Horton [1], ground heat flux can be measured by one of the following 

methods: flux plate, calorimetric, gradient or combination. Advantages as well as disadvantages of 

aforementioned methods are extensively covered in literature [8,9,10,11,12]. However,  precise heat flux 

measurement is often accompanied with various problems arising from the lack of understanding of 

processes occurring at the ground surface, to difficulties with determining proper depth for probes (plates) 

placement as well as problems with coupling of energy and water transfer affecting the accuracy of 

obtained data [7,13,14]. In order to avoid aforementioned problems, Wang and Bras [15] proposed method 

for inferring ground heat flux indirectly, from available time series of ground surface temperature using 

the fractional calculus. The method was tested using the data generated numerically and with data from 

two field experiments. Authors obtained satisfactory results with proposed method. Our primary aim in 

this article is to review that method and inter alia: 

 

 Provide analytic solution for thermal regime (pattern of ground temperature fluctuations by 

depth) at any time (covering transient regime) for arbitrary as well as for most common ground 

surface temperature time functions;    

 Review procedure for development of fractional ground heat conduction equation following 

the procedure proposed by Kulish [16] and particularly Agrawal [17] for arbitrary ground 

surface temperature time dependent functions and solve fractional equation for particular 

surface temperature time dependent function; 

 Compare analytic and fractional heat diffusion equation solutions and provide suggestion 

where method (approach) could be successfully applied.    

 

2. The analytic solution of ground heat conduction equation 

 

Heat propagation in ground can be regarded as special case of diffusion equation. According to 

Fourier law, heat flux (for homogenous body) is proportional to temperature gradient:  

 q T   (2) 

where q [W m
-2

] is heat flux, λ [W m
-1

 K
-1

] is thermal conductivity, and ∇T is spatial gradient of 

temperature. In one dimensional form (for z coordinate), law gets the following form: 

 

  (3) 

 

where 
T

z




is the temperature gradient in vertical direction representing ground depth. In this case, 

assumption is that ground is isotropic. Equation (3) is sufficient to describe heat conduction under the 

steady-state, but insufficient to cover non-steady (transient) conditions. In order to include this effect, one-

dimensional heat diffusion equation for heat transport in ground needs to be invoked: 
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where t [s] is time,  ρ [kg m
-3

] is the soil density, c [J kg
-1

 K
-1

] is soil specific heat capacity per unit mass, 

while product c [J m
-3

 K
-1

] represents the specific heat capacity per unit volume. Combining equations 

(3) and (4), leads to the second law of heat conduction: 

 

  (5) 

 

or, provided that the coefficient of soil thermal conductivity doesn’t vary significantly with depth: 

 

  (6) 

    
 

where a [m
2
 s

−1
] is the coefficient of thermal diffusivity. 

Starting with the assumption that the ground properties are uniform over the entire observed 

depth, and taking into account initial: 

 
0T(z,0) Т , 0 z    (7) 

as well as boundary conditions: 

 T(0, t) f ( ), t 0    (8) 

 T( , t) 0, t 0    (9) 

the overall form of solution for ground temperature profile (thermal regime) can be derived from formula 

for temperature distribution in half-space when surface temperature is time-dependent using the Duhamel 

theorem ([18], p.204), Fourier transformation ([19], p. 96), Laplace transformation ([19], p. 209) or 

combination of Laplace and Fourier transformations ([19], p. 244). Solution has the following form: 

 

  (10) 

 

which, after putting substitution: 

 

  (11) 

  

becomes: 

  (12) 

 

Only in this form solution satisfies the initial and boundary conditions. Alternatively, equation 

(10) can be written in the following form [20]: 

 

  (13) 

 

In equations (7-13) T0 is the initial temperature of the surface,  f  is arbitrary surface 

temperature time-dependent function and erfc is the error complementary function. 
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As to the ground heat flux, it can be derived from (3), making use of equation (13) and taking into 

account that: 

 erfc(z) 1 erf (z)   (14) 

as well as: 

  (15) 

 

After computations, ground heat flux obtains the following form: 

 

  (16) 

 

For ground surface (i.e. setting z = 0), equation (16) simplifies to: 

 

  (17) 

 

In order to solve the integrals in (10), (13), (16) and (17), surface temperature time function f(τ) 

needs to be defined. Ground surface temperature continuously fluctuates as a response to changing 

meteorological conditions. These fluctuations are consequences of regular, periodic influences 

(successions of days and nights, and of summer and winter) and irregular episodic effects (cloudiness, 

cold or warm spells, rain or snowstorms, and periods of drought) [21]. Moreover, ground surface 

temperature is affected by ground thermal properties such as heat capacity and thermal conductivity as 

well as geographic location and canopy/vegetation cover. The most straightforward way to model the 

surface temperature fluctuations is to estimate it as harmonic function of time around the average value. 

Regardless the fact that this approach doesn’t provide satisfactory results in certain cases [22-23], it is still 

most commonly used. Hence, analytic solutions of integrals will be provided for these most frequently 

encountered cases. 

 

2.1 Case 1 – Cosine ground surface temperature model 

 

One of the first attempts to model ground surface temperature fluctuations was to describe it with 

cosine function [24]: 

 f ( ) T(0, t) Tcos( t)      (18) 

where T is the amplitude of the surface temperature fluctuation, 02 / t  (t0 - radial period) is the 

radial frequency. The authors have demonstrated that, owing to Duhamel’s theorem, analytic solution for 

ground temperature profile could be obtained in the following form (procedure is explained step-by-step 

in [18], pp. 205-206):  

 

  (19) 

 

where η is independent variable defined as: 
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  (20) 

 

Solution in (19) contains transition part, the last term in equation, hence it covers any time point 

starting from t = 0. This feature adds to the generality of solution and distinguishes it from other quasi 

steady-state solutions commonly found in literature. However, this transition effect diminishes as t 

increases and process reaches steady-state regime. 

Ground surface heat flux, for surface temperature time dependant function as defined in (18), can 

be derived after putting (19) in equation (3). Upon the differentiation with respect to z, ground surface 

heat flux becomes: 

 

  (21) 

 

Solution doesn’t contain derivative of the last term in (19), hence it covers only the cases where 

time is sufficiently large, that is when transition effect diminishes. 

 

2.2 Case 2 – Sinusoidal ground surface temperature model 

 

In contemporary soil science literature, sinusoidal functions are most frequently used for ground 

surface temperature fluctuation approximation [1,2,21,22,25]. As proposed by Hiller [21], the surface 

temperature can have the following form:  

 
0f ( ) T(0, t) T Tsin( t), t 0       (22) 

where: T0 = T(z,0) and T as well as ω have the same values as defined in (18). Steady state thermal 

regime for surface temperature defined as in (22) gets the following form [26]: 

 

  (23) 

  

Making use of equation (3), ground heat flux becomes: 

 

  (24) 

 

or in simplified form: 

 

  (25) 

 

Clearly, setting z=0 gives the ground surface heat flux: 

 

  (26) 

 

The solution in (26) is the same as the result obtained in [27]. 
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3. Diffusion equation for heat propagation in ground – fractional approach 

 

The subject of fractional calculus is rather old, dating back to Leibnitz and almost coinciding with 

time of his work on classical calculus. In his letter to L’Hopital, dated 30 September 1695, Leibnitz for the 

first time provided note and meaning of the derivative of order of one half [28]. His idea was further 

elaborated and got more or less finished form primarily due to Liouville, Letnikov and Riemann. From 

that time on, fractional derivatives have been developed solely as pure theoretical field without any 

notable contribution to practice.  

One of the reasons for this was the lack of geometric interpretation of fractional derivative, which 

was not the case with integer derivatives. However, inability of classical, integer order derivative models 

in explaining complex phenomena (especially in elastodynamics, material science, electrochemistry, 

chemical physics and rheology), propelled further research in field and demonstrated strength of fractional 

calculus in solving practical problems. Some of the early works can be found in [29,30,31,32,33]. 

Power of fractional calculus in solving diffusion related problems was originally demonstrated by 

Oldham, K. B. and Spanier [34]. Later on, application of fractional calculus was extended to heat transfer 

(more particularly to conduction) problems. Kulish [16] demonstrated straightforwardness of fractional 

calculus procedure for solving conduction related problems in semi-infinite and one-dimensional case 

where the task was in determining surface time-varying temperature for given transient heat flux and vice 

versa. In fractional calculus approach, idea is in reducing the order of initial differential equation and 

consequently the computation time.  

Assuming that the heat propagation through ground is one-dimensional, and that the vertical 

dimension starting from the ground surface to the earth centre can be approximated as infinite (reasonable 

assumption taking into account: significant dumping effect of soil on temperature wave propagation and 

ratio of ground depth of interest and magnitude of earth diameter), fractional calculus procedure should be 

used with confidence to this kind of problems. This notion was firstly proposed by Wang and Bras [15]. 

 Here, procedure for developing fractional-diffusion equation for heat propagation in ground will 

be based on the work of Agrawal [17] and Kulish [16]. Let’s start with the equation (6) and initial (7) as 

well as boundary conditions (8) and (9). Introducing the auxiliary variable Φ, defined as: 

 
0Т Т   (27) 

and applying the Laplace transformation of equation (6) and boundary condition (8) gives: 

 

  (28) 

 

  z,s F(s) for z 0    (29) 

The solution of (28) can be expressed as: 

 

  (30) 

 

Taking into account boundary condition (9), which can be expressed in s-domain as ( ,s) 0   , 

constant A in (30) turns into zero. Hence, equation (30) becomes: 
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  (31) 

 

Provided that  z,s F(s) for z 0   , according to boundary conditions, one has: 

 B (s)  (32) 

Substituting (32) in (31): 

 

  (33) 

 

and differentiating equation (33) with respect to z gives: 

 

  (34) 

 

Making use of inverse Laplace theorem equation (34) becomes: 

 

  (35) 

 

Here, following property [35]: 

  (36) 

can be used for switching to half-order time derivative, where 
1/2D f (t) can be defined according to 

Riemann-Liouville notion as [35]: 

 

  (37) 

   

Applying property from (36) and Laplace transform rules, equation (37) becomes: 

 

  (38) 

 

or after restoring the original variables: 

 

  (39) 

 

Evoking (3) and using the properties of differintegration [34], heat flux becomes: 

 

  (40) 

 

Applying definition of fractional derivative from (37), equation (40) leads to: 
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Ground heat flux on the surface can be simplified from (40), setting z = 0: 

 

  (42) 

 

In order to verify the procedure, fractional solutions for ground surface heat flux provided in 

equation (42) were computed for ground surface temperatures as defined in (18) and (27) and compared 

with analytic solutions. 

 

3.1 Case 1 - Cosine ground surface temperature model – fractional approach 

 

Provided that the ground surface temperature is defined as in (18), equation (42) obtains the 

following form: 

 

  (43) 

 

Making use of semiderivative of cos(t) [34]: 

 

  (44) 

 

and following properties [34]: 
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equation (43) becomes: 

 

  (47) 

 

where A is auxiliary Fresnel integral defined as: 

 

  (48) 

 

with functions S(x) and C(x) defined as: 

 

  (49) 

 

For large enough time, as process reaches the steady-state regime, value of Fresnel function (48) 

becomes negligible hence the third term in (47) can be omitted. Similarly, the first term becomes 

 

1/2

0

1/21/2

TT(0, t)
q(0, t)

tа t

  
  

   

 

1/2

0

1/21/2

T[ Tcos( t)]
q(0, t)

tа t

    
  

   

1/21/2

1/2 1/2

[cos(t)] 1 2t
cos t 2 A

t ( t) 4

     
        

       

1/2 1/2

1/2 1/2

[Cf (x)] [f (x)]
C

t t

 


 

 

1/2

0

1/21/2

T1 2 t a
q(0, t) T cos t 2 A

а ( ( t) 4 t

        
          

           

 
2 21 x 1 x

A x S(x) cos C(x) sin
2 2 2 2

       
         
      

x x2 2

0 0

t t
C(x) cos dt and S(x) sin dt

2 2

    
    

   
 

1/2 1/2
1/2

1/2 1/2

[f (Ct)] [f (Ct)]
C

t (Ct)

 


 



 
 

insignificant. Finally, assuming that heat flux is close to zero in initial moment, equation (47) obtains 

exactly the same form as in (21). 

 

3.2 Case 2 - Sinusoidal ground surface temperature model – fractional approach 

 

As to the sinusoidal ground surface temperature model, approach is similar. Provided that the 

ground surface temperature variation model is defined as in (22), ground surface heat flux, upon 

substitution of (22) in (47), obtains the following form: 

 

  (50) 

  

or in simplified form: 

  (51) 

 

Making use of semiderivative of sin(x) [34]: 

 

  (52) 

 

and properties of semiderivative stated in (45) and (46), ground surface heat flux gets the final form: 

 

  (53) 

 

where B is auxiliary Fresnel integral defined as: 

 

  (54) 

 

and C(x) and S(x) are defined as in (49). 

Similarly as in the case with cosine ground surface temperature function, for large enough time, 

value of Fresnel function (54) becomes negligible hence the last term in (53) can be omitted. Upon 

performing this simplification, ground surface heat flux gets exactly the same form as in (26).  

 

Conclusion  

 

It has been shown that solutions of problems of heat conduction in ground could be considerably 

simplified with application of fractional (half order time) derivatives. Results indicate that solutions 

obtained with fractional calculus closely correspond to analytic solutions with remark that fractional 

calculus solutions are more general containing the term covering the transitional effect. Method is 

particularly effective in determining surface heat flux for a given surface temperature time dependant 

function. In that case solution reduces to single equation (48) and consequently to half-order time 

derivative of given ground surface temperature function. While procedures for determining analytical 
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solutions for arbitrary surface temperature functions exist, primary owing to Duhamel theorem, they are 

intricate and very often require considerable computation effort. This particularly stands for complex 

ground surface time dependant temperature functions.  

Cases studied in this article cover only the most frequently encountered models of ground surface 

temperature oscillations; however approach can be extended with confidence to one containing more 

complex functions. This is of particular importance taking into account recently published papers [22,36] 

suggesting and demonstrating respectively, inability of simple harmonic functions in providing accurate 

estimates of ground temperature variations. This kind of problems could be overcome using the data-

driven models (developed from representative time series obtained from measurement (e.g. remote 

sensing)), where artificial neural networks with appropriate architecture seems promising in providing 

satisfactory estimation results. Consequently, obtained surface temperature models could be used in 

estimating unknown ground surface heat flux, using developed fractional derivative equations.  

Finally, it can be concluded that obtained results encourage further work and in the same time 

indicate that application of fractional calculus should not be confined merely to soil sciences. 

Furthermore, method could be easily extended to provide solutions to similar problems encountered in 

hydrology, environmental and energy related disciplines.  

 

Nomenclature 

 

a –  coefficient of thermal diffusivity, [m
2
 s

−1
] 

c –  soil specific heat capacity per unit mass, [J kg
-1

 K
-1

] 

erfc –  error complementary function 

f (τ)       – arbitrary surface temperature time-dependent function  

q –  ground heat flux, [W m
-2

] 

t, τ  –  time, [s] 

T0   –  initial temperature of the surface, [K] 

ΔT  –  amplitude of the surface temperature fluctuation, [K] 

∇T –  spatial gradient of temperature, [K] 

 

Greek letters 

 

λ –   thermal conductivity, [W m
-1

 K
-1

]  

ρ –   soil density, [kg m
-3

] 

Φ –  auxiliary variable  
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