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An investigation is made on the effect of Hall ents and suspended
particles on the hydromagnetic stability of a copygsible,
electrically conducting Rivlin-Ericksen elasticasoous fluid. The
perturbation equations are analyzed in terms ofnmalr modes after
linearizing the relevant set of hydromagnetic eopret. A dispersion
relation governing the effects of viscoelasticityagnetic field, Hall
currents, compressibility and suspended particteddrived. For the
stationary convection Rivlin-Ericksen fluid behalike an ordinary
Newtonian fluid due to the vanishing of the visastt parameter.
Compressibility and magnetic field are found to dnav stabilizing
effect on the system whereas Hall currents andeswdgd particles
hasten the onset of thermal instability. These wialresults are
confirmed numerically and the effects of variousapzeters on the
stability parameter are depicted graphically. Thétical Rayleigh
numbers and the wavenumbers of the associatedhsices for the
onset of instability as stationary convection afgtained and the
behavior of various parameters on critical therrRayleigh numbers
has been depicted graphically. It has been obsetiati oscillatory
modes are introduced due to the presence of viasbaty,
suspended particles and Hall currents which wereaxisting in the
absence of these parameters.
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1. Introduction

Chandrasekhar [1] in his celebrated monographudiad in detail the theoretical and
experimental results of the onset of thermal irBtab(Bénard convection) under varying
assumptions of hydrodynamics and hydromagneticsifmous/inviscid fluids. If an electric
field is applied at right angles to the magnetédj the whole current will not flow along the
electric field. This tendency of the electric cumréo flow across an electric field in the
presence of magnetic field is called Hall effecheTHall current is important in flows of
laboratory plasmas as well as in geophysical atro@sysical situations. Sherman and Sutton
[2] have considered the effect of Hall currentstia efficiency of a magneto-fluid dynamic
(MHD) generator while Gupta [3] studied the effe€tHall currents on the thermal instability
of electrically conducting fluid in the presenceusfiform vertical magnetic field. In another
study, Sharma and Gupta [4] discussed the effektatif currents and finite Larmor radius on
thermosolutal instability of a rotating plasma astiablished the destabilizing influence of Hall
currents. Chandra [5] observed a contradiction betwthe theory and experiment for the onset
of convection in fluids heated from below. He pemied the experiment in an air layer and

* corresponding author.



found that the instability depended on the depttheflayer. A Bénard-type cellular convection
with the fluid descending at the cell centre waseobed when the predicted gradients were
imposed for layers deeper than 10 mm. A convedatibich was different in character from that
in deeper layers occurred at much lower gradigms predicted if the layer depth was less
than 7 mm, and called this motion, “Columnar iniigt. Scanlon and Segel [6] investigated
some of the continuum effects of particles on Bénewnvection and found that a critical
Rayleigh number was reduced solely because the btaadcity of the pure gas was
supplemented by that of the particles. The effécsuspended particles was thus found to
destabilize the layer. Sharma et al. [7] considéhedeffect of suspended particles on the onset
of Bénard convection in hydromagnetics and confitmiés destabilizing role while
Palaniswamy and Purushotham [8] studied the dhaluifi shear flow of stratified fluids with
fine dust and have found that the effect of finstdsi to increase the region of instability. Later
on, Sharma and Gupta [9] investigated the effeddalf currents and suspended particles on
thermal instability of compressible fluids satungta porous medium.

For compressible fluids, the equations governing slistem become quite complicated.
Spiegel and Veronis [10] simplified the set of egua governing the flow of compressible
fluids assuming that the depth of the fluid laysemuch smaller than the scale height as defined
by them and motions of infinitesimal amplitude amnsidered. Under these assumptions, the
flow equations for compressible fluids are the saméor incompressible fluids except that the
static temperature gradiefit is replaced by its excess over the adiabatic

(,B—g/Cp),Cpbeing specific heat of the fluid at constant pressahermal instability

problem in the presence of compressibility for tagyassumptions of rotation, magnetic field,
finite Larmor radius and Hall currents for Newtamifluids has been considered by Sharma
[11], Sharma and Gupta [12] and Sharma and SuBj! [t all the above studies, fluid has been
considered to be Newtonian. There is growing imgure of non-Newtonian viscoelastic fluids
in geophysical fluid dynamics, chemical technol@md petroleum industry. Such flows have
particular relevance in the extrusion of polymeeeds, glass blowing, manufacturing plastic
films, crystal growing, hot rolling and many othefhere are some viscoelastic fluids which
are characterized by Maxwell's constitutive relaicand some by Oldroyd’s [14] constitutive
relations. Bhatia and Steiner [15] studied the [gwbof thermal instability of a Maxwellian
viscoelastic fluid in the presence of rotation whihermal instability of an Oldroydian
viscoelastic fluid acted on by a uniform rotatioashbeen studied by Sharma [16].Another
important class of elastico-viscous fluids is giv®nRivlin-Ericksen [17]. Rivlin and Ericksen
[17] in mid fifties have proposed a theoretical mbébr such elastico-viscous fluids. Such
polymers are used in agriculture, communicationliappes and in biomedical applications.
Some more investigations on thermal instabilityRiflin-Ericksen fluid in the presence of
magnetic field, rotation, finite Larmor radius awndriable gravity have been reported by
Sharma and Kumar [18], [19], Prakash and Kumar &M@ Kumar et al. [21].

Recently, Gupta and Sharma [22], [23], Gupta anth&u[24], Kolsi et al. [25] and Savet
al. [26] studied thermal/thermosolutal convectioalglems but for non-dusty viscoelastic fluids
with rotation, magnetic field and Hall currents. tWated by the fact that knowledge regarding
fluid and dust particle mixture is not commensuratigh their industrial and scientific
importance and the importance of Hall currents@ophysical and astrophysical situations in
addition to the flow of laboratory plasmas we hawestigated the combined effect of Hall
currents and suspended/dust particles on a conifgieesRivlin-Ericksen fluid-layer. This
problem may be considered as an extension of thiereaork of Gupta and Aggarwal [27] and
has not been studied so far to the very best okoowledge.

2. Mathematical formulation of the problem
We have considered an infinite, horizontal, corapitde electrically conducting Rivlin-

Ericksen fluid permeated with suspended/dust pesti®ounded by the planes z = 0 and z = d,
as shown in fig.1. This layer is heated from bekmthat temperature at bottom Zat 0) and



at the upper layer (@=d) is T, and T, respectively and a uniform temperature

gradient3(= dT/ d2 is maintained. A uniform vertical magnetic fiefttensityH = (0,0,H )
and gravity forceg = (0,0,—g)pervade the system.
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Let p,u, 1, p,Vv=(u,v,wWdenote, respectively, the density, viscosity, wasticity,
pressure and velocity of the pure fluid, =(1,r,s), N(X,t) denote the velocity and number

density of the suspended particlgs, the magnetic permeabilitys = (x, Y, z) . The equations
of motion and continuity relevant to the problera @&handrasekhar [1], Rivlin-Ericksen [17])

ov - - 0\ o U o -
—+(vO)v |=-0Op+p0+| p+pu'— [O°V+==(0Ox Hx H+ KN(Y -V,
p[at (v.O0) } p+pY (/J /Jatj pplClaly) (V-

1)
—+D.(,0\7)=0, (2)

where K' =67un',n' being the particle radius, is the Stokes’ dragffament. Assuming
uniform particle size, spherical shape and smdltike velocities between the fluid and
particles, the presence of particles adds an datee term, in the equations of motion (1),
proportional to the velocity difference betweentigdes and fluid. In the equations of motion
for the particles there will also be an extra foreen equal in magnitude but opposite in sign
because the force exerted by the fluid on the @astiis equal and opposite to that exerted by
the particles on the fluid. Interparticle reacti@s ignored because the distances between the
particles are assumed to be quite large compardd tweir diameter. The effects due to
pressure, gravity and magnetic field on the pasidre small and so ignored. N is the
mass of the particles per unit volume, then theagons of motion and continuity for the
particles are

mNBltM(y,.D)ﬂ = KN(V="),

5 ®3)
N -
E+D.(Nvd)=0. 4)



LetC:, Cy , T andq denote, respectively, the heat capacity of the flurd, the heat capacity

of particles, the temperature and the “effectiveritial conductivity” of the pure fluid.
Assuming that the particles and the fluid are iarttal equilibrium, the equation of heat
conduction gives

0 . 0 . »
C. | —+vl | T+mNC | —+y| T= T
P f(at J Qt(at Y j ol

®)
From Maxwell’s equations in the presence of Halftents, we have
al:i — ™ 2 — 1 — —
—=Ux(vxH)+pU'H-———F0x%x| (UxH)xH |, 6
o =0x(Vx H)nD?H - Ox[(OxH)xH| (6)
OH =0, @)

wheren , N' ande denote, respectively, the resistivity, the elattrmumber density and the
charge of an electron. The state variables presdarsity and temperature are expressed in the
form (Spiegel and Veronis [10])

fx,y,z9= £+ £+ f(x, % 2, @)

where f_ stands for constant space distribution fof f, is the variation in the absence of

motion and f'(X, Y, z,t) is the fluctuation resulting from motion. For thasic state of the
system with a uniform particle distribution, we bav

p=p(2,0=p(2, T= T 3" (0,0,0),H =(0,0,H),V, =(0,0,0) and ©)
N = N, = constant.

Following Spiegel and Veronis [10], we have

p()= 1, - (o, + ) dz
P(2) = py[1=a, (T-T)+ K, (p- B,

T(9=-Fz+ 7,

__[1op) -
am_ (paij( aisay)a

Km = [10_’0} ,
pop ).
where p,, and p,, stand for a constant space distributionpoéndp ; and p,and T, stand for
the density and temperature of the fluid at theclolaoundary.

(10)

3. Perturbation equations
Let us consider a small perturbation on steady s@lution and ledp, o, 6,

v=(uvw, 9, =(Lr,s),h= ( h.h, Q) andN denote the perturbations in fluid pressure,
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density, temperature, fluid velocity, particle vatg, magnetic field intensitﬁ and patrticle
number densityN, respectively. Then the linearized hydromagnetitupbation equations of
the fluid-particle layer are

ov Yo 0) o M KN, /= -
—=——-(0dp)+g—+| V+V 02+ -2 (Ox Rx H+ 11
o= 08p) + 02| ve v ot e Oy P Ty,
OV =0, (12)
N,
ot = KMNo(V-%). (13)
oM o
o V=0 (14
Oh=0, (15)
oh _ - -1 oo
—— =(HOWN+n?h—-———0Ox[(Ox hyx H], 16
(H.ONV+n NG [(Oxh)x H] (16)
00 _ g 5
(1+hy)—=| B-= |(w+ hy 9 +«D?6, (17)
ot C,
wherea,, —i:a say, V -~ V':i,K:L and g/Cp,V,V' and « stand for the
Tm ,Om IOm IOme

adiabatic gradient, kinematic viscosity, kinematitscoelasticity and thermal diffusivity

respectively. AlsoM , = N/N, and h, —LC‘“ In eq. (17), the static temperature gradient

m f

[ is replaced by its excess over the adlab(syﬁc- g/Cp) , C, being specific heat of the fluid

at constant pressure following assumptions andtssfaunr compressible fluids given by Spiegel
and Veronis [10].

Eliminating V, between egs. (11) - (13) and rewriting the alsBteof egs., we have

2 2
(ﬂi j 2w ga| O 2437 |- L9y |
K' ot ot ox= oy 4mp,, 0z

(18)
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(i—qmzj{:HaC+ N9 (),

ot 0z 4mN'ed z (21)
m 0 G-1)( ma
— —+1| (1+ ——KD2 0= ——+H, |w,
(K, pr J{( h)3 } ﬁ( S j{ o dj 22)
0
where —@—@ is the z-component of vorticity& ——m % is the z-component of
ox oy ox oy

_ C
current density an = (—”j B.
g

4. Dispersion relation

Analyzing the disturbances into normal moaesassume that the perturbation quantities
are of the form

[Wwh,6..¢1=[W(2 K20( )% Tk Kkexp( k& jky h  (23)

where k, and kyare the wavenumbers alongand y directions and resultant wavenumber is

given by k =(kf + K/z)m andn is the growth rate.
Using expression (23) and the following non-dimenalized parameters

2 1
a=Kkd, U:nd Pli — PI’_V F:Lz,Hd:1+hd,f=mN0'r: n;le’
n d P d
(24)
X _y _Z _d
x=Z yw=2 =2 D=—,
X d y d d dz*
egs. (18)-(22) are modified to
(1+Pyror) O*-a°) (+oF)D*-a’)-0 |W- fo (D’~ &)W+
2
@+Pror) S o2 a2y = e pror @ 0 25)
(1+Pyor)| (+oF )O*-a*)-0 |2~ foZ=~ HeHd (1+ Pror) DX
Amp, v (26)
2
(1+Pror) [D*-a*-H, Pgap+Bd (G 1j(H + Pror)W= 0
K G
(27)
Hd Hd _
[D?-a®-Pr. J]K+[ , )DW—4 - DX=0 28)



Hd
”)Dz NG OID(D2 &) K=0. (29)

Considering the case of two free boundaries in Wwhite medium adjoining the fluid is
perfectly conducting and temperatures at the bauweslare kept fixed. The relevant boundary
conditions are following (Chandrasekhar [1])

[D?-a®-Pr,g]X +(

W=D’W=0,DZ=0, ©=0 atz=0and1,
(30)
K =0, on perfectly conducting boundaries

and h,, i’g, h are continuous. Since the components of magnietit ihtensity are continuous
and the tangential components are zero outsidfiuide we have

DK =0, on the boundaries. (31)

Using the above boundary conditions (30) and (B1dan be shown that all the even order
derivatives ofW must vanish for z = 0 and 1. Hence, the propertisolwof W characterizing
the lowest mode is

W =W,sinmz (32)

whereW, is a constant. Eliminatin®, X,Z and K between egs. (25)-(29), we obtain

R :(&y(u X)(1+ iProyrr)[ (1 X) (i io,Fr Yo, |+i( #x) fo,+

+{Q1(1+inaln2r)(1+x)[(l+ x+i0, PE{( i le'ﬂzl')[( ix)( -]:iFO'ﬂ'z)+i0'1}+if0'}+

Ql(1+i Pgalnzr)}} [{M (I+x )+ (I+ x+ io, Py 3}{( i F}Ulnzr)[( ix)( 1iFalﬂz)+i0’1]

| . . -1\ (1+x+iH, P g,
+if 0.} +Q, (1+i ProyPr) (14 x +io, PE)] >>E(H +i p(; glinzr)) (33)
d 11

Rl:gaf,é’d4 Q. = U H?d? v = H ’
vkt Y 4mp wni?’ AariN'ey )

2
: g
X =— (square of the scaled wavenumber) amj=—..

e 7
But for the sake of convenience, we will be using term ‘wavenumber’ instead of ‘square of
the scaled wavenumber’farhereatfter.
Equation (33) is the required dispersion relatinaoluding the effects of Hall currents and
compressibility on the thermal instability of RmdEricksen fluid permeated with dust
particles. The dispersion relation can be reduoeithe one derived by Sharma and Aggarwal
[28] under the following conditions
1. The factor corresponding to Hall current4 € 0) is reduced to zero.
2. The factor corresponding to viscoelasticity of thid F is negative as Walters’ (Model)B

fluid has been considered therein.

where

5. Case of stationary convection

When the instability sets in the form of stationaoyvection, the marginal state will be
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characterized by, = 0. Puttingo, =0, the dispersion relation (33) reduces to

R1=( G j 1+ x)2+( Ql{(1+x)2+Ql} (1+xj’ (34)

G-1 1+x)(M+1+ %)+ Q || xH,

which expresses the modified Rayleigh number as a function of dimensionless wave

number X and the parametel®,, G, M and H,. We thus find that for stationary convection
the viscoelastic parametér vanishes withg, and the Rivlin-Ericksen fluid behaves like an

ordinary Newtonian fluid. For incompressiélgG—l =1j, non-dusty quic(Hd =1+h, = 1) ,

the above expression fB reduces to

+ X 2 Ql{(1+ X)2+ Q}
Rl:(lTj (1+%) +(1+x)(M+1+ X+Q | (35)

the one derived by Sharma et al. [29]. FurtheMor 0, Rayleigh numbeR, reduces to

o &)

the expression derived by Sharma and Aggarwal [P8.the non-dimensional numb&
accounting for compressibility effect is kept agefi, then we get

ﬁ{ ° jR:, (37)

G-1

where R, and § denote, respectively , the critical Rayleigh numsbm the absence and

presence of compressibility. Thus, the effect ainpressibility is to postpone the onset of
thermal instability. The casgs <1 andG =1 correspond to negative and infinite value of
Rayleigh number which are not relevant in the prestudy. Hence, compressibility has a
stabilizing effect on the thermal convection problender consideration.

To investigate the effects of suspended partiatesgnetic field and Hall currents, we

O:fd_R,d_R and d_R
dH, dQ
suspended particles, from eq. (34), we obtain

i :‘(G?J(iﬁij e X)2+(1+Q x{)?m)li)a } Q| (28)

the negative sign implies that the effect of sudpérparticles is to destabilize the system.
Figure 2 confirms this result numerically as isacl&#om various curves sinde decreases

examine the natures analytically. To investigate the effect of

asH  increases for the permissible range of values wbua parameters. This result is in

agreement with the result of Sharma and Guptaof9Newtonian fluids.
To analyze the effect of magnetic field, eq. (34)ds

Rl e

{(a+x)(M+1+x)+Q}’ (39)
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which shows the usual stabilizing effect of magnééld on thermal convection for Rivlin-
Ericksen viscoelastic fluid in the presence of cuticles as well. Numerically, as shown in
fig. 3, R is plotted againsk for various values of = 100,150,200,250,300.This stabilizing
effect of magnetic field is in good agreement wdthrlier works of Sharma et al. [29] and
Kumar et al. [30].

20 +
—— Hd:10
16 - —a— Hg&=20
. . Hy=30 —¢
12

Figure 2. Variation of Rayleigh number R; with wavenumber x for fixed G=10, Q;=100, M=10 and
for variousvalues of Hy =10, 20 and 30.

Expression for observing the effect of Hall cureeistobtained as
da—‘( . j R e G e
am— Le-L i e (m 2o+ QF |

which reflects the destabilizing influence of Halirrents on thermal instability of Rivlin-
Ericksen fluid in the presence of compressibilidauspended particles. Also in fig. R,
decreases with the increase in M which confirmgéselt numerically.

(40)
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Figure 3. Variation of Rayleigh number R, with wavenumber x for fixed G=10, Hy = 10, M=10
and for various values of Q; = 100,150,200,250 and 300.



Figure 4. Variation of Rayleigh number R, with wavenumber x for fixed G=10, Q;=100, Hq =10
and for various values of M=10, 30 and 50.

As a function ofk, R, given by eq. (34) attains its extremal value when

1+x)* (2x=D) (1 x+ M)*+(1+ X° (3 I Q@+ % Y (4 W ¢ M Q

(1-x)* (1+ x+ M) Q* —(1+ X" (1+ 2x+ M) Q= 0

(41)

This is to find out critical Rayleigh numb&; and the associated critical wavenumkgefor
various values of the paramet&ps M andHy. However, rather than evaluatifyy from eq.
(41), it is more convenient to evaludReas a function ok in accordance with eq. (34) for
various values oHg, Q; andM as depicted in figs. 2-4 and locate the minimurmauically.
The critical numbers listed in Tables 1-3 and tHated in figs. 5-7 are obtained in this fashion.
It is clear from fig. 5 that the critical RayleiglumberR; increases with the increase in
magnetic field parametd®; for fixed value of suspended particle paraméigr Also, the
various curves for different values bf; indicate the destabilizing influence of suspended
particles parameter aR. decreases with the increase l. Thus, magnetic field has a
stabilizing effect on the system whereas the efiéstispended particles is destabilizing.

Table 1. The critical Rayleigh numbers and the wavenumbers of the associated
disturbancesfor the onset of instability as stationary convection for G =10, M = 10 and for
variousvalues of Q; and Hy.

Q.
100

200
300
500
1000

Hq =10

X Re

3.5 13.29
45 26.03
5.0 38.74
5.0 64.76
5.0 130.83

Hq =20

X Re

3.5 6.64
4.5 13.02
5.0 19.37
5.0 32.38
5.0 65.42

10

Hq =30

X Re

3.5 4.43
4.5 8.68
5.0 12.91
5.0 21.59
5.0 43.61

Hg =50

X Re

3.5 2.66
45 521
5.0 7.75
5.0 12.95
5.0 26.17
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Figure 5. Variation of critical Rayleigh number R, with magnetic field parameter Q; for fixed
G=10, M=10 and for various values of Hy =10, 20, 30 and 50.

Table 2. The critical Rayleigh numbers and the wavenumbers of the associated
disturbancesfor the onset of instability as stationary convection for G =10, M = 10 and for
variousvalues of Q; and H.

Q,=100 Q,=200 Q,=300 Q,=500 Q,=1000
Hq X R X R X R X Re X R
10 3.5 13.29 45 26.03 5.0 38.74 5.0 64.76 5.0 130.83
20 3.5 6.64 45 13.02 5.0 19.37 5.0 32.38 5.0 65.42
30 3.5 4.43 4.5 8.68 5.0 12.91 5.0 21.59 5.0 43.61
50 3.5 2.66 45 521 5.0 7.75 5.0 12.95 5.0 26.17
140
120 —% Q=100
—=- (Q,=200
100 —&— Q,=300
—%- Q,=500
80 —e— Q,=1000

60

40

10

40

Figure6. Variation of critical Rayleigh number R, with suspended particle factor Hq for fixed
G=10, M=10 and for various values of Q; =100, 200, 300, 500 and 1000.

In fig. 6, R is plotted againsH, for various values of); For fixedQ; R. decreases
with increase iHgandR. increases with the increase@a(as is clear from curves for different

11



values ofQq). This confirms the destabilizing effect of susped particles and stabilizing
influence of magnetic field as obtained earlierfitn 7, variation ofR. with the Hall current
parameterM is investigated for different values &);. The critical Rayleigh numbeR;
decreases with the increaseNinhconfirming the destabilizing influence of Hall ceints. The
different curves for various values @i confirm the stabilizing effect of magnetic field B.
increases with the increaseQn,

Table 3. The critical Rayleigh numbers and the wavenumbers of the associated
disturbances for the onset of instability as stationary convection for G =10, Hy = 10 and
for various valuesof Q; and M.

Q=100 Q=200 Q=300 Q=500 Q;=1000
M X Re X R X Re X R X R
10 3.5 13.29 4.5 26.03 5.0 38.74 5.0 64.76 5.0 130.83
30 3.5 9.62 5.0 19.93 5.0 30.85 5.0 54.71 5.0 118.4
50 3.0 7.81 4.5 16.49 5.0 25.93 5.0 47.54 5.0 108.19
100 2.5 5.68 4.0 12.09 5.0 19.16 5.0 36.26 5.0 89.23
140
A —
120 \\A\+Ql‘loo
—e— Q;=200
100 - —a— Q;=300
A
80 - —m- Q:=500
Q;=1000
60 —A— Y1
€ 40
20 A
O I I I I I I I I I
10 20 30 40 50 60 70 80 90 100

Figure 7. Variation of critical Rayleigh number R, with Hall current parameter M for fixed G=10,
Hq =10 and for variousvalues of Q, =100, 200, 300, 500 and 1000.

6. Stability of the system and oscillatory modes

Here we examine the possibility of oscillatamgdes, if any, on the Rivlin-Ericksen elastico-
viscous fluid. Multiplying eq. (25) byV*, the complex conjugate 8 and making use of egs.
(26)-(29) together with the boundary conditions)(@60d (31), we obtain

(1+ Pyor)(1+ Fo) 1, +( 1+ f + P{or)o—|2+#i’7mv( ¥ Por)[l ,+ Pol ]+

2

%[I7+PQUI 8]+d2(1+J*F)I9+U*d2(1+
( G jgaKaZ (1+ Pgm)(1+ Pfa*r)

G-1

f
U l0—
1+Pro rj .

VB3 (H+Pro7) [ls+HsPra'l4]=0, )
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where,

3 :j:(‘DW‘Z +22%| DW* + a“|vxf) dz
1, = [ ([DW[ + 2 [Wf") dz
Iy =j:(\D2K\2 +2a%|DK [ +a4|K|2)dz,
L= [ (P +a?|k[)dz 1,=[(jpef +a[ef )dz
1o =].(ef oz, 1, = [[(|ox[* +a?| X[*) dz
o= [[(IXF)dz 1,=[(pz +a*|Zf) dz 1,0=[ (2 )z

where integrald, | ,..1 |, are all positive definite.
Putting o =0, +ig, and equating real and imaginary parts of eq. (42)get

(1+ Prro +Fo, +F Prg?+F Plrr0'i2)|1+[o—r (%f+ Prg)- Fgra,'z]l -+

d2
4%1./[(“ Pt70,)1,+{ Pyo, (¥ Prro, )+ Pr Prg?) | J*il;;mu[' POl

+d2(1+aF)Ig+{a +[f0r (1+Pyzo, )+ f PITOTZJ}dZIlO_gaKaZ( G jx

(1+ P70, ) + PP 1?02 vg \G-1

{ (1+ Py 70, )2 + PP r°c?
(

Hy+P I, +H Prol )+ PEH g = 0
Hd+Pr1TUr)2+PEZTZUi2}[( o +Pro)(Is+H, Prol o + PETH g7

(43)

i H
i [{Pyr+F Przo, +F (1 P 1+ (1 + 2Re )i+ 2 Rr - )+
2 f Prro, - f (1+ Prro,
N by g - - LfPere 2( (o)) d2l, +
P (1+Pyao; )+ P 07
+gaKa2( G j{ (1+Pr7o, )’ + PR %02
— 2
VB \G-1J|(H,+Prz0,) + PP r’g;’ (44)
It implies from eq. (43) that, may be positive or negative which means that ylséesn may

be unstable or stable. Also, from eq. (44) may be zero or non-zero, meaning thereby that

the modes may be non-oscillatory or oscillatory. the absence of suspended particles,
magnetic field and viscoelasticity, eq. (44) redute

}(—Pgrl5+ PEH (1) |= 0
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. gaka( G
ig[I,+ (—_jPrlle]=O.
v \G-1 (45)

If G>1 or (Cpﬁ/ g) >1, then the coefficient ot; in eq. (45) is positive definite and hence

implies thato; =0.Thus oscillatory modes are not allowed and thecipla of exchange of

stabilities is satisfied in the absence of suspémmaticles, magnetic field and viscoelasticity.
Therefore, oscillatory modes are introduced dueth®® presence of suspended particles
alongwith viscoelasticity and magnetic field (hemtadl currents).

7. Concluding remarks

Combined effect of various parameters thamagnetic field, compressibility, Hall currents
and suspended particles has been investigatedeamdhinstability of a Rivlin-Ericksen fluid.
The principal conclusions are the following:

1. For stationary convection Rivlin-Ericksen fllighaves like an ordinary Newtonian

fluid due to the vanishing of the viscoelagtarameter.

2. From eq. (37), it is clear that the effect ofmpwessibility is to postpone the onset of
instability.

3. To investigate the effects of suspended pagjchagnetic field and Hall currents, we
examined the expressiodR / dH,,dR/ dQ anddR/dM analytically. Magnetic field

postpones the onset of instability whereapended particles and Hall currents are found
to hasten the same. These analytic resuteeagxamined numerically for permissible
range of values of various parameters argd {)-(4) support these results graphically.

4. In Tables I — Ill, the critical thermal Raigh numbers and the associated wavenumbers are
listed for different values dp;, Hy andM respectively. Figures (5)-(7) show that the
critical Rayleigh numbdR.increases with the increase@aand decreases with the
increase iRy andM. Thusmagnetic field stabilizes the system whereas tfezebf
suspended particles and Hall currents degiabilize the system.

5. The oscillatory modes are introduced dutégoresence of viscoelasticity, Hall
currents and suspended particles. In the abs#ribese effects, the principle of
exchange of stabilities is found to hold good.

Nomenclature
C specific heat of the flaiiconstant pressure, [J¥¢G"]
heat capacity of particles, [J¥¢]

C

C heat capacity of the flJitlkg'K ]

d depth of fluid layer, [m]

e charge of an electron, [C]

F dimensionless kinematic viscoelasticity, [-]
g=(0,0,—g) acceleration due to gravity, [fs

h

=(h.,h,h) perturbation in magnetic fiel (0,0,H ), [G]

H =(0,0,H) magnetic field intensityector having componen(®,0,H ), [G]
k=(k+ K/Z) wavenumber of the disturbance,’Jm

K Stokes’ drag coefficient, [Kis

K, . K, wavenumbers in x and y directions respelgtjien™]

M

n

dimensionless Hall current parameter, [-]
growth rate of the disturbancel][s
Ny particle number density, [th
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N perturbation in suspended particle numbesitg [m°]
N’ electron number density, fin

p fluid pressure, [Pa]

Pr thermal Prandtl number, [-]

Pr magnetic Prandtl number, [-]

q effective thermal conductivity of the puheid, [Wm™K™]
Q dimensionless Chandrasekhar number, [-]

R, dimensionless Rayleigh number, [-]

R critical Rayleigh number, [-]

T temperature, [K]

v=(uv,w fluid velocity vector having componenfs,v,w) , [ms’]
v, =(l,r,s) velocity of suspended particles, [ths

x,v, 2) X, Y, Z directions

X square of scaled wavenumber, [-]

X, critical wavenumber, [-]

Greek Letters
a thermal coefficient of expansion;'JK

,8(=|dT/ dzf) temperature gradient, [Kih

0 curly operator, []

t del operator, [-]

o) perturbation in the respective physical ditygr-]
n' particle radius, [m]

n resistivity, [Ms’]

6 perturbation in temperature, [K]
K thermal diffusivity, [rfs”]

U viscosity of the fluid, [kg 5]

U viscoelasticity of theiflu[kg m's”]
U, magnetic permeability, [H

vV kinematic viscosity, [fg"]

V' kinematic viscoelasticity, [i5']

0 density of the fluid, [kgh
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