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An investigation is made on the effect of Hall currents and suspended 
particles on the hydromagnetic stability of a compressible, 
electrically conducting Rivlin-Ericksen elastico-viscous fluid. The 
perturbation equations are analyzed in terms of normal modes after 
linearizing the relevant set of hydromagnetic equations. A dispersion 
relation governing the effects of viscoelasticity, magnetic field, Hall 
currents, compressibility and suspended particles is derived. For the 
stationary convection Rivlin-Ericksen fluid behaves like an ordinary 
Newtonian fluid due to the vanishing of the viscoelastic parameter. 
Compressibility and magnetic field are found to have a stabilizing 
effect on the system whereas Hall currents and suspended particles 
hasten the onset of thermal instability. These analytic results are 
confirmed numerically and the effects of various parameters on the 
stability parameter are depicted graphically. The critical Rayleigh 
numbers and the wavenumbers of the associated disturbances for the 
onset of instability as stationary convection are obtained and the 
behavior of various parameters on critical thermal Rayleigh numbers 
has been depicted graphically. It has been observed that oscillatory 
modes are introduced due to the presence of viscoelasticity, 
suspended particles and Hall currents  which were not existing  in the 
absence of these parameters.  
 
Key words: Rivlin-Ericksen fluid, suspended particles, compressibility, 
thermal instability, Hall currents.  

 
1. Introduction 
 

 Chandrasekhar [1] in his celebrated monograph discussed in detail the theoretical and 
experimental results of the onset of thermal instability (Bénard convection) under varying 
assumptions of hydrodynamics and hydromagnetics for viscous/inviscid fluids. If an electric 
field is applied at right angles to the magnetic field, the whole current will not flow along the 
electric field. This tendency of the electric current to flow across an electric field in the 
presence of magnetic field is called Hall effect. The Hall current is important in flows of 
laboratory plasmas as well as in geophysical and astrophysical situations. Sherman and Sutton 
[2] have considered the effect of Hall currents on the efficiency of a magneto-fluid dynamic 
(MHD) generator while Gupta [3] studied the effect of Hall currents on the thermal instability 
of electrically conducting fluid in the presence of uniform vertical magnetic field. In another 
study, Sharma and Gupta [4] discussed the effect of Hall currents and finite Larmor radius on 
thermosolutal instability of a rotating plasma and established the destabilizing influence of Hall 
currents. Chandra [5] observed a contradiction between the theory and experiment for the onset 
of convection in fluids heated from below. He performed the experiment in an air layer and 
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found that the instability depended on the depth of the layer. A Bénard-type cellular convection 
with the fluid descending at the cell centre was observed when the predicted gradients were 
imposed for layers deeper than 10 mm. A convection which was different in character from that 
in deeper layers occurred at much lower gradients than predicted if the layer depth was less 
than 7 mm, and called this motion, “Columnar instability”. Scanlon and Segel [6] investigated 
some of the continuum effects of particles on Bénard convection and found that a critical 
Rayleigh number was reduced solely because the heat capacity of the pure gas was 
supplemented by that of the particles. The effect of suspended particles was thus found to 
destabilize the layer. Sharma et al. [7] considered the effect of suspended particles on the onset 
of Bénard convection in hydromagnetics and confirmed its destabilizing role while 
Palaniswamy and Purushotham [8] studied the stability of shear flow of stratified fluids with 
fine dust and have found that the effect of fine dust is to increase the region of instability. Later 
on, Sharma and Gupta [9] investigated the effect of Hall currents and suspended particles on 
thermal instability of compressible fluids saturating a porous medium. 

For compressible fluids, the equations governing the system become quite complicated. 
Spiegel and Veronis [10] simplified the set of equations governing the flow of compressible 
fluids assuming that the depth of the fluid layer is much smaller than the scale height as defined 
by them and motions of infinitesimal amplitude are considered. Under these assumptions, the 
flow equations for compressible fluids are the same as for incompressible fluids except that the 
static temperature gradientβ  is replaced by its excess over the adiabatic 

( ) ,g C Cp pβ − being specific heat of the fluid at constant pressure. Thermal instability 

problem in the presence of compressibility for varying assumptions of rotation, magnetic field, 
finite Larmor radius and Hall currents for Newtonian fluids has been considered by Sharma 
[11], Sharma and Gupta [12] and Sharma and Sunil [13]. In all the above studies, fluid has been 
considered to be Newtonian. There is growing importance of non-Newtonian viscoelastic fluids 
in geophysical fluid dynamics, chemical technology and petroleum industry. Such flows have 
particular relevance in the extrusion of polymer sheets, glass blowing, manufacturing plastic 
films, crystal growing, hot rolling and many others. There are some viscoelastic fluids which 
are characterized by Maxwell’s constitutive relations and some by Oldroyd’s [14] constitutive 
relations. Bhatia and Steiner [15] studied the problem of thermal instability of a Maxwellian 
viscoelastic fluid in the presence of rotation while thermal instability of an Oldroydian 
viscoelastic fluid acted on by a uniform rotation has been studied by Sharma [16].Another 
important class of elastico-viscous fluids is given by Rivlin-Ericksen [17]. Rivlin and Ericksen 
[17] in mid fifties have proposed a theoretical model for such elastico-viscous fluids. Such 
polymers are used in agriculture, communication appliances and in biomedical applications. 
Some more investigations on thermal instability of Rivlin-Ericksen fluid in the presence of 
magnetic field, rotation, finite Larmor radius and variable gravity have been reported by 
Sharma and Kumar [18], [19], Prakash and Kumar [20] and Kumar et al. [21]. 

Recently, Gupta and Sharma [22], [23], Gupta and Kumar [24], Kolsi et al. [25] and Savić et 
al. [26] studied thermal/thermosolutal convection problems but for non-dusty viscoelastic fluids 
with rotation, magnetic field and Hall currents. Motivated by the fact that knowledge regarding 
fluid and dust particle mixture is not commensurate with their industrial and scientific 
importance and the importance of Hall currents in geophysical and astrophysical situations in 
addition to the flow of laboratory plasmas we have investigated the combined effect of Hall 
currents and suspended/dust particles on a compressible Rivlin-Ericksen fluid-layer. This 
problem may be considered as an extension of the earlier work of Gupta and Aggarwal [27] and 
has not been studied so far to the very best of our knowledge. 
    
2. Mathematical formulation of the problem 
 

 We have considered an infinite, horizontal, compressible electrically conducting Rivlin-
Ericksen fluid permeated with suspended/dust particles, bounded by the planes z = 0 and z = d, 
as shown in fig.1. This layer is heated from below so that temperature at bottom (at 0z = ) and 
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at the upper layer (atz d= ) is 0T  and dT  respectively and a uniform temperature 

gradient ( / )dT dzβ =  is maintained. A uniform vertical magnetic field intensity (0,0, )H H=
r

 

and gravity force (0,0, )g g= −r
pervade the system.  

 
    

  Let ( ), , , , , ,p v u v wρ µ µ′ =r denote, respectively, the density, viscosity, viscoelasticity, 

pressure and velocity of the pure fluid, ( ) ( ), , , x,dv l r s N t=r
denote the velocity and number 

density of the suspended particles, eµ  the magnetic permeability, ( )x x, ,y z= . The equations 

of motion and continuity relevant to the problem are (Chandrasekhar [1], Rivlin-Ericksen [17]) 
 

( ) ( )2. ' ( ) ,
4

e
d

v
v v p g v H H K N v v

t t

µρ ρ µ µ
π

∂ ∂    ′+ ∇ = −∇ + + + ∇ + ∇× × −  ∂ ∂   

r
r rr r r r r r

+
        (1) 

 

              ( ). 0,v
t

ρ ρ∂ + ∇ =
∂

r
                    (2) 

        
where 6 ,K πµη η′ ′ ′=  being the particle radius, is the Stokes’ drag coefficient. Assuming 
uniform particle size, spherical shape and small relative velocities between the fluid and 
particles, the presence of particles adds an extra force term, in the equations of motion (1), 
proportional to the velocity difference between particles and fluid. In the equations of motion 
for the particles there will also be an extra force term equal in magnitude but opposite in sign 
because the force exerted by the fluid on the particles is equal and opposite to that exerted by 
the particles on the fluid. Interparticle reactions are ignored because the distances between the 
particles are assumed to be quite large compared with their diameter. The effects due to 
pressure, gravity and magnetic field on the particles are small and so ignored. If  mN  is the 
mass of the particles per unit volume, then the equations of motion and continuity for the 
particles are 

                     
( ) ( ). ,d

d d d

v
mN v v = K N v v

t

∂  ′+ ∇ − ∂ 

r
r r r r

                    (3) 

  ( ). 0.d

N
Nv =

t

∂ + ∇
∂

r
               (4) 
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Let Cf , Cpt , T and q denote, respectively, the heat capacity of the pure fluid, the heat capacity  
of particles, the temperature and the “effective thermal conductivity” of the pure fluid. 
Assuming that the particles and the fluid are in thermal equilibrium, the equation of heat 
conduction gives 

                

2
f pt. . .dC v T mNC v T q T

t t
ρ ∂ ∂   + ∇ + + ∇ = ∇   ∂ ∂   

r r

                   (5) 
From Maxwell’s equations in the presence of Hall currents, we have 

 

( ) 2 1
+ ( ) ,

4

H
v H H H H

t N e
η

π
∂

 = ∇× × ∇ − ∇× ∇× × ′∂

r
r r r rr

                          (6) 

 

. 0,H∇ =
r

               (7) 
 

where η , N' and e denote, respectively, the resistivity, the electron number density and the 
charge of an electron. The state variables pressure, density and temperature are expressed in the 
form (Spiegel and Veronis [10])  

 
                    m 0(x, , , ) ( ) (x, , , ),f y z t f f z f y z t′= + +         (8) 

 
where 

mf  stands for constant space distribution of ,f  0f   is the variation in the absence of 

motion and (x, , , )f y z t′  is the fluctuation resulting from motion. For the basic state of the 
system with a uniform particle distribution, we have 

 

( ), ( ), ( ), (0,0,0)p p z z T T z vρ ρ= = = =r , (0,0, )H H=
r

, (0,0,0)dv =r
 and          (9) 

N = N0 = constant. 
 

Following Spiegel and Veronis [10], we have 

m m 0
0

( ) ( ) ,
z

p z p g dzρ ρ= − ∫ +  

 

[ ]m m 0 m m( ) 1 ( ) ( ) ,z T T K p pρ ρ α= − − + −  

 

0( ) ,T z z Tβ= − +  

 

m

m

1
( , ),say

T

ρα α
ρ

 ∂= − = ∂           

(10)

 

 m

m

1
,K

p

ρ
ρ

 ∂=  ∂ 
     

 
where mp  and mρ  stand for a constant space distribution of p andρ  ; and 0ρ and T0 stand for 

the density and temperature of the fluid at the lower boundary. 
 
3. Perturbation equations 
      Let us consider a small perturbation on steady state solution and let pδ ,δρ , ,θ  

( ), ,v u v w=r , ( ) ( ), , , , ,d x y zv l r s h h h h= =
rr

 and N denote the perturbations in fluid pressure, 
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density, temperature, fluid velocity, particle velocity, magnetic field intensityH
r

 and particle 
number density  N0  respectively. Then the linearized hydromagnetic perturbation equations of 
the fluid-particle layer are 

    

 

( )2 0

m m m

1
( ) ' ( ) ,

4
e

d
m

K Nv
p g v v v h H v v

t t

µρδ
ρ ρ πρ ρ

′∂ ∂ = − ∇ + + + ∇ + ∇× × − ∂ ∂ 

r
r rr r r r

+
   

  (11)  

 
. 0,v∇ =r                (12)   

 

( )0 0
d

d

v
mN = K N v v

t

∂ ′ −
∂

r
r r

,            (13) 

 

 0,d
d

M
v =

t

∂ ∇
∂

r
+ .                    (14)

  

      . 0h∇ =
r

,  (15) 
 

 

2 1
( . ) [( ) ]

4

h
H v h h H

t N e
η

π
∂ = ∇ + ∇ − ∇× ∇× ×

′∂

r
r rr rr

, (16) 

( ) ( ) 2
d d

p

1 ,
g

h w h s
t C

θ β κ θ
 ∂+ = − + + ∇  ∂  

                          (17) 

 

where m
m

1
,

T
α α= = say, 

m m m f

, ,
q

C

µ µν ν κ
ρ ρ ρ

′′= = =  and p , ,g C ν ν ′  and  κ stand for the 

adiabatic gradient, kinematic viscosity, kinematic viscoelasticity and thermal diffusivity 

respectively. Also, 0dM N N=  and  0 pt
d

m f

.
mN C

h
Cρ

=  In eq. (17), the static temperature gradient 

β  is replaced by its excess over the adiabatic ( )pg Cβ −  , Cp being specific heat of the fluid 

at constant pressure following assumptions and results for compressible fluids given by Spiegel 
and Veronis [10].   
Eliminating dv

r
 between eqs.  (11) - (13) and rewriting the above set of eqs., we have 

 
 

2 2
2 2e

z2 2
m

1
4

Hm
w g h

K t t x y z

µθ θα
πρ

  ∂ ∂ ∂ ∂ ∂ + ∇ + + − ∇ +   ′ ∂ ∂ ∂ ∂ ∂      

                                      (18)    

  

2 40

m

1 ' ,
mN m

w v v w
t K t tρ

∂ ∂ ∂  + ∇ = + + ∇  ′∂ ∂ ∂        

       
 

                       (19) 
 

                               (20) 2
z ,

4

w H
h H

t z N e z

ξη
π

∂ ∂ ∂ − ∇ = −  ′∂ ∂ ∂ 

2e 0

m m

1 1 1 ' ,
4

H K Nm m m m
v v

K t t K t z K t K t t

µ ςς ξ ς
πρ ρ

 ′∂ ∂ ∂ ∂ ∂ ∂ ∂      + = + − + + + ∇       ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂       
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 (21)        

 
           

(22)                
 

 

where 
v u

x y
ζ ∂ ∂= −

∂ ∂
 is the z-component of vorticity,  y x

h h

x y
ξ

∂ ∂= −
∂ ∂

 is the z-component of 

current density and p .
C

G
g

β
 

=  
 

 

 
4. Dispersion relation 
 
     Analyzing the disturbances into normal modes, we assume that the perturbation quantities 
are of the form

   
     (23)  

 
where xk and yk are the wavenumbers along x  and y  directions and resultant wavenumber is 

given by  ( )1 22 2
x yk k k= +  and n  is the growth rate.  

Using expression (23) and the following non-dimensionalized parameters  
 

,a kd=   
2ndσ

ν
= , 1Pr

v

κ
= , 2Pr

v

η
= ,  

2

'v
F

d
= , d d1 ,H h= + 0

2
m

, ,
mN m

f
K d

κτ
ρ

= =
′

 
                              (24) 

x
x*

d
= ,   *

y
y

d
= ,   *

z
z

d
= ,    ,

*

d
D

dz
=

 
 
eqs. (18)-(22) are modified to 
 

( ) 2 2 2 2 2 2
11 Pr ( ) (1 )( ) ( )D a F D a W f D a Wστ σ σ σ + − + − − − − + 

                  
(25)                                                        

 
                 

                 
( ) ( )2 2 e

1 1
m

1 Pr (1 )( ) 1 Pr ,
4

Hd
F D a Z f Z DX

µστ σ σ σ στ
πρ ν

 + + − − − = − + 
    (26) 

     

                
( ) ( )

2
2 2

1 d 1 d 1

1
1 Pr [ Pr ] Pr 0,

d G
D a H H W

G
στ σ Θ στ

κ
β − + − − + + = 

            (27) 

 
                       (28) 

 

( )2 2
z ,

4

H
H h

t z N e z

ςη ξ
π

∂ ∂ ∂ − ∇ = + ∇  ′∂ ∂ ∂ 

( ) 2
d d

1
1 1 ,

m G m
h H w

K t t G K t
κ θ β∂ ∂ − ∂      + + − ∇ = +     ′ ′∂ ∂ ∂      

z x y[ , , , , ] [ ( ), ( ), ( ), ( ), ( )]exp( ),w h W z K z z Z z X z ik x ik y ntθ ζ ξ = Θ + +

2 2
2 2e

1 1
m

(1 Pr ) ( ) (1 Pr ) ,
4

Hd ga d
D a DK

µ αστ στ
πρ ν ν

+ − = + Θ

2 2
2[ Pr ] 0

4

Hd Hd
D a K DW DX

N e
σ

η π η
 − − + − =  ′ 
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2 2 2 2
2[ Pr ] ( ) 0.

4

Hd H
D a X DZ D D a K

N e d
σ

η π η
 − − + + − =  ′ 

     (29) 

Considering the case of two free boundaries in which the medium adjoining the fluid is 
perfectly conducting and temperatures at the boundaries are kept fixed. The relevant boundary 
conditions are following (Chandrasekhar [1]) 
 

2 0W D W= = , 0DZ = ,   0Θ =    at 0z =  and 1, 
  (30) 

0K = ,         on perfectly conducting boundaries 
                                                            

and x y z, ,h h h  are continuous. Since the components of magnetic field intensity are continuous 

and the tangential components are zero outside the fluid, we have 
 

 0,DK =       on the boundaries.    (31) 
              

Using the above boundary conditions (30) and (31), it can be shown that all the even order 
derivatives of W must vanish for z = 0 and 1. Hence, the proper solution of W characterizing 
the lowest mode is 

                                                     (32)  

where 0W is a constant. Eliminating , ,X ZΘ and K  between eqs. (25)-(29), we obtain 

 

( )( ) ( ) ( )2 2
1 1 1 1 1 11 1 Pr 1 (1 ) 1

1

G
R x i x i F i i x f

G
σ π τ σ π σ σ   = + + + + + + + +   − 

( ){ ( ) ( ) ( )( ){ }2 2 2
1 1 1 1 2 1 1 1 1 11 Pr 1 (1 Pr ) 1 Pr 1 1Q i x x i i x iF i ifσ π τ σ σ π τ σ π σ σ  + + + + + + + + + + +  

                      

( ) } { } ( ){ ( )( )2 2 2 2
1 1 1 1 2 1 1 1 11 Pr (1 ) (1 Pr ) 1 Pr 1 1Q i M x x i i x iF iσ π τ σ σ π τ σ π σ   + + + + + + + + +   

  
} ( )( ) ( )

( )
1

d 1 12
1 1 1 1 1 2 2

d 1 1

1 Pr
1 Pr 1 Pr ,

Pr

x iH
if Q i x i

x H i

σ
σ σ π τ σ

σ π τ
− + +
+ + + + +  +     (33)

 

where  
4

1 4 ,
g d

R
αβ

νκπ
=

     

2 2
e

1 2
m

,
4

H d
Q

v

µ
πρ ηπ

=
  

2

,
4

H
M

N eπ η
 =  ′     

 
2

2

a
x

π
=  (square of the scaled wavenumber)   and  1 2

i
σσ
π

= . 

But for the sake of convenience, we will be using the term ‘wavenumber’ instead of ‘square of 
the scaled wavenumber’for x hereafter.  
Equation (33) is the required dispersion relation including the effects of Hall currents and 
compressibility on the thermal instability of Rivlin-Ericksen fluid permeated with dust 
particles. The dispersion relation can be reduced to the one derived by Sharma and Aggarwal 
[28] under the following conditions 
1. The factor corresponding to Hall currents (M = 0) is reduced to zero. 
2. The factor corresponding to viscoelasticity of the fluid F is negative as Walters’ (Model B′) 

fluid has been considered therein. 
 
5. Case of stationary convection 
 
    When the instability sets in the form of stationary convection, the marginal state will be 

0 sin ,W W zπ=
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characterized by1 0σ = . Putting 1 0σ = , the dispersion relation (33) reduces to 

 

( )
( ){ }

( ) ( )

2

1 12

1
1 d

1 1
1 ,

1 1 1

Q x QG x
R x

G x M x Q xH

 + +  +   = + +     − + + + +     

                    (34) 

which expresses the modified Rayleigh number 1R  as a function of dimensionless wave 

number x  and the parameters 1, ,Q G M and dH . We thus find that for stationary convection 

the viscoelastic parameter F  vanishes with 1σ  and the Rivlin-Ericksen fluid behaves like an 

ordinary Newtonian fluid. For incompressible 1
1

G

G
 = − 

, non-dusty fluid( )1 1 ,d dH h= + =  

the above expression for1R  reduces to  

  ( )
( ){ }

( )( )

2

1 12

1
1

11
1 ,

1 1

Q x Qx
R x

x x M x Q

 + ++   = + +   + + + + 
  

                                     (35) 

the one derived by Sharma et al. [29]. Further for M = 0, Rayleigh number 1R  reduces to  

 
                                                (36) 
 
 

the expression derived by Sharma and Aggarwal [28]. Let the non-dimensional number G 
accounting for compressibility effect is kept as fixed, then we get  

 
  (37) 

 

where cR  and cR  denote, respectively , the critical Rayleigh numbers in the absence and 

presence of compressibility. Thus, the effect of compressibility is to postpone the onset of 
thermal instability. The cases G <1 and G =1 correspond to negative and infinite value of 
Rayleigh number which are not relevant in the present study. Hence, compressibility has a 
stabilizing effect on the thermal convection problem under consideration. 

To investigate the effects of suspended particles, magnetic field and Hall currents, we 

examine the natures of 1

d

dR

dH
, 1

1

dR

dQ
 and 1dR

dM
 analytically. To investigate the effect of 

suspended particles, from eq. (34), we obtain 
 

                      

                     (38)          
 

the negative sign implies that the effect of suspended particles is to destabilize the system. 
Figure 2 confirms this result numerically as is clear from various curves since 1R decreases 

as dH increases for the permissible range of values of various parameters. This result is in 

agreement with the result of Sharma and Gupta [9] for Newtonian fluids.  
To analyze the effect of magnetic field, eq. (34) yields 

( ) ( ) ( ){ }
( ) ( ){ }

2 2
1 1

1
2

1 d 1

1 1 1 21
,

1 1 1

x M x x Q QdR G x

dQ G xH x M x Q

 + + + + + + +   =     −  + + + +          (39)
 

c c,1

G
R R

G
 =  − 

( )2

1 1
d

1
1 ,

1

G x
R x Q

G xH

 +   = + +     −   

( )
( ){ }

( )( )

2

1 121
2

d d 1

11
1 ,

1 1 1

Q x QdR G x
x

dH G xH x M x Q

 + + +   = − + +    − + + + +     
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which shows the usual stabilizing effect of magnetic field on thermal convection for Rivlin- 
Ericksen viscoelastic fluid in the presence of dust particles as well. Numerically, as shown in 
fig. 3, R1 is plotted against x for various values of Q1 = 100,150,200,250,300.This stabilizing 
effect of magnetic field is in good agreement with earlier works of Sharma et al. [29] and 
Kumar et al. [30].

  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Variation of Rayleigh number R1 with wavenumber x for fixed G=10, Q1=100, M=10 and 
for various values of Hd =10, 20 and 30. 
 
Expression for observing the effect of Hall currents is obtained as 

( ) ( ){ }
( )( ){ }

22
1 1

1
2

d 1

11
,

1 1 1

Q x QxdR G

dM G xH x M x Q

 + + +   = −      −  + + + +    

                         (40)                    

which reflects the destabilizing influence of Hall currents on thermal instability of Rivlin-
Ericksen fluid in the presence of compressibility and suspended particles. Also in fig. 4, R1 
decreases with the increase in M which confirms the result numerically.  
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
Figure 3. Variation of Rayleigh number R1 with wavenumber x for fixed G=10, Hd = 10, M=10  
and for various values of Q1 = 100,150,200,250 and 300.  
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Figure 4. Variation of Rayleigh number R1 with wavenumber x for fixed G=10, Q1=100, Hd =10  
and for various values of M=10, 30 and 50. 

 
As a function of x, R1 given by eq. (34) attains its extremal value when  

 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )4 2 2 32
1 11 2 1 1 1 3 2 2 1 4 1 1x x x M x x Q x x x M Q+ − + + + + − + + − + + −  

     ( ) ( ) ( ) ( )2 42
1 11 1 1 1 2 0.x x M Q x x M Q− + + − + + + =                   (41) 

 
This is to find out critical Rayleigh number Rc and the associated critical wavenumber xc for 
various values of the parameters Q1, M and Hd. However, rather than evaluating Rc from eq. 
(41), it is more convenient to evaluate R as a function of x in accordance with eq. (34) for 
various values of Hd, Q1 and M as depicted in figs. 2-4 and locate the minimum numerically. 
The critical numbers listed in Tables 1-3 and illustrated in figs. 5-7 are obtained in this fashion. 
It is clear from fig. 5 that the critical Rayleigh number Rc increases with the increase in 
magnetic field parameter Q1 for fixed value of suspended particle parameter Hd. Also, the 
various curves for different values of Hd indicate the destabilizing influence of suspended 
particles parameter as Rc decreases with the increase in Hd. Thus, magnetic field has a 
stabilizing effect on the system whereas the effect of suspended particles is destabilizing.  
 
Table 1. The critical Rayleigh numbers and the wavenumbers of the associated 
disturbances for the onset of instability as stationary convection for G =10, M = 10 and for 
various values of Q1 and Hd. 
 

 Hd =10 Hd =20 Hd =30 Hd =50 

Q1 xc Rc xc Rc xc Rc xc Rc 

100 3.5 13.29 3.5 6.64 3.5 4.43 3.5 2.66 

200 4.5 26.03 4.5 13.02 4.5 8.68 4.5 5.21 

300 5.0 38.74 5.0 19.37 5.0 12.91 5.0 7.75 

500 5.0 64.76 5.0 32.38 5.0 21.59 5.0 12.95 

1000 5.0 130.83 5.0 65.42 5.0 43.61 5.0 26.17 
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Figure 5. Variation of critical Rayleigh number Rc with magnetic field parameter  Q1 for fixed 
G=10, M=10 and for various values of Hd =10, 20, 30 and 50. 
 
Table 2. The critical Rayleigh numbers and the wavenumbers of the associated 
disturbances for the onset of instability as stationary convection for G =10, M = 10 and for 
various values of Q1 and Hd. 

 
 Q1=100 Q1=200 Q1=300 Q1=500 Q1=1000 

Hd xc Rc xc Rc xc Rc xc Rc xc Rc 

10 3.5 13.29 4.5 26.03 5.0 38.74 5.0 64.76 5.0 130.83 

20 3.5 6.64 4.5 13.02 5.0 19.37 5.0 32.38 5.0 65.42 

30 3.5 4.43 4.5 8.68 5.0 12.91 5.0 21.59 5.0 43.61 

50 3.5 2.66 4.5 5.21 5.0 7.75 5.0 12.95 5.0 26.17 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Variation of critical Rayleigh number Rc with suspended particle factor Hd for fixed 
G=10, M=10 and for various values of Q1 =100, 200, 300, 500 and 1000. 
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values of Q1). This confirms the destabilizing effect of suspended particles and stabilizing 
influence of magnetic field as obtained earlier. In fig. 7, variation of Rc with the Hall current 
parameter M is investigated for different values of Q1. The critical Rayleigh number Rc 
decreases with the increase in M confirming the destabilizing influence of Hall currents. The 
different curves for various values of Q1 confirm the stabilizing effect of magnetic field as Rc 

increases with the increase in Q1.  
 

Table 3. The critical Rayleigh numbers and the wavenumbers of the associated 
disturbances for the onset of instability as stationary convection for G =10, Hd = 10 and 
for various values of Q1 and M. 

 
 Q1=100 Q1=200 Q1=300 Q1=500 Q1=1000 

M xc Rc xc Rc xc Rc xc Rc xc Rc 

10 3.5 13.29 4.5 26.03 5.0 38.74 5.0 64.76 5.0 130.83 

30 3.5 9.62 5.0 19.93 5.0 30.85 5.0 54.71 5.0 118.4 

50 3.0 7.81 4.5 16.49 5.0 25.93 5.0 47.54 5.0 108.19 

100 2.5 5.68 4.0 12.09 5.0 19.16 5.0 36.26 5.0 89.23 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Figure 7. Variation of critical Rayleigh number Rc with Hall current parameter M for fixed G=10, 
Hd =10 and for various values of Q1 =100, 200, 300, 500 and 1000. 
 
6. Stability of the system and oscillatory modes 
 
    Here we examine the possibility of oscillatory modes, if any, on the Rivlin-Ericksen elastico-
viscous fluid. Multiplying eq. (25) by *,W the complex conjugate of W and making use of eqs.  
(26)-(29) together with the boundary conditions (30) and (31), we obtain 
 

( ) ( ) ( ) ( ) *e
1 1 1 2 1 3 2 4

m

1 Pr 1 1 Pr 1 Pr Pr
4

F I f I I I
µ ηστ σ στ σ στ σ
πρ ν

 + + + + + + + + + 
   

[ ] ( )
2

2 * * 2e
7 2 8 9 10*

m 1

Pr 1 1
4 1 Pr

d f
I I d F I d I

µ η σ σ σ
πρ ν σ τ

 
+ + + + + − +                                                               

 

( )( )
( )

*2
1 1 *

5 d 1 6*
d 1

1 Pr 1 Pr
Pr 0,

1 Pr

G g a
I H I

G H

στ σ τακ σ
νβ σ τ

+ +   + =   − +               (42) 
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where, 

( )1 2 2 22 2 4
1 0

2 ,I D W a DW a W dz= + +∫
 

 

( )1 2 22
2 0

,I DW a W dz= +∫
 

 

( )1 2 2 22 2 4
3 0

2 ,I D K a DK a K dz= + +∫
 

 

( )1 2 22
4 0

,I DK a K dz= +∫          
( )1 2 22

5 0
,I D a dz= Θ + Θ∫  

 

                
( )1 2

6 0
,I dz= Θ∫               

( )1 2 22
7 0

,I DX a X dz= +∫  

 

               
( )1 2

8 0
,I X dz= ∫    

( )1 2 22
9 0

,I DZ a Z dz= +∫   
( )1 2

10 0
,I Z dz= ∫  

where integrals 1, 2 10...I I I  are all positive definite.  

Putting r iiσ σ σ= +  and equating real and imaginary parts of eq. (42), we get 

 

( ) ( )2 2 2
1 1 1 1 1 1 21 Pr Pr Pr 1 Pr Prr r r i r r iF F F I f Iτσ σ τσ τσ σ τσ τσ + + + + + + + − +   

( ) ( ){ } [ ]
2

2
1 3 2 1 1 2 4 7 2 81 Pr Pr 1 Pr Pr Pr Pr

4 4
e e

r r r i r
m m

d
I I I I

µ η µ ητσ σ τσ τσ σ
πρ ν πρ ν

 + + + + + + +    

              

( ) ( )
( )

2 2
1 12 2

9 102 2 2 2
1 1

1 Pr Pr
1

11 Pr Pr

r r i

r r

r i

f f g a G
d F I d I

G

σ τσ τσ ακσ σ
νβτσ τ σ

  + +    + + + + − ×   − + +  

                        

                                       

( )
( )

( )( )
2 2 2 2

1 1 2 2
d 1 5 d 1 6 1 d 62 2 2 2

d 1 1

1 Pr Pr
Pr Pr Pr 0,

Pr Pr
r i

r r i

r i

H I H I H I
H

τσ τ σ
τσ σ τ σ

τσ τ σ

 + + 
 + + + =  + +  

     

(43) 

 

( ){ } ( ) { }1 1 1 1 1 2 1 3 2 4Pr Pr 1 Pr 1 2Pr Pr Pr
4

e
i r r r

m

i F F I f I I I
µ ησ τ τσ τσ τσ τ
πρ ν

 + + + + + + + − +

        

( )
( )

2
1 12 2

2 8 9 102 2 2 2
1 1

Pr 1 Pr
Pr 1

4 1 Pr Pr

r re

m r i

f fd
I d FI d I

τσ τσµ η
πρ ν τσ τ σ

 − +   + − − − + 
+ +                   

( )
( )

( )
2 2 2 22

1 1 2
1 5 1 d 62 2 2 2

d 1 1

1 Pr Pr
Pr Pr 0.

1 Pr Pr
r i

r i

g a G
I H I

G H

τσ τ σακ τ
νβ τσ τ σ

 + +   + − + =   −  + +                    (44) 
It implies from eq. (43) that rσ  may be positive or negative which means that the system may 

be unstable or stable. Also, from eq. (44)  iσ  may be zero or non-zero, meaning thereby that 

the modes may be non-oscillatory or oscillatory. In the absence of suspended particles, 
magnetic field and viscoelasticity, eq. (44) reduces to  
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[ ]
2

2 1 6Pr 0.
1i

g a G
i I I

G

ακσ
νβ

 + = − 
                                         (45) 

If G >1 or ( ) 1,pC gβ >  then the coefficient of iσ  in eq. (45) is positive definite and hence 

implies that 0.iσ = Thus oscillatory modes are not allowed and the principle of exchange of 

stabilities is satisfied in the absence of suspended particles, magnetic field and viscoelasticity. 
Therefore, oscillatory modes are introduced due to the presence of suspended particles 
alongwith viscoelasticity and magnetic field (hence Hall currents).  
 
7. Concluding remarks  

     Combined effect of various parameters that is magnetic field, compressibility, Hall currents 
and suspended particles has been investigated on thermal instability of a Rivlin-Ericksen fluid. 
The principal conclusions are the following:  
1. For stationary convection Rivlin-Ericksen fluid behaves like an ordinary Newtonian 
      fluid due to the vanishing of the viscoelastic parameter. 
2. From eq. (37), it is clear that the effect of compressibility is to postpone the onset of  
      instability.  
3.  To investigate the effects of suspended particles, magnetic field and Hall currents, we 
      examined the expressions 1 ddR dH , 1 1dR dQ  and 1dR dM  analytically. Magnetic field 

      postpones the onset of instability whereas suspended particles and Hall currents are found  
      to hasten the same. These analytic results are re-examined numerically for permissible 
      range of values of various parameters and figs. (2)-(4) support these results graphically. 

  4.   In Tables I – III, the critical thermal Rayleigh numbers and the associated wavenumbers are  
        listed for different values of  Q1, Hd and M  respectively. Figures (5)-(7) show that the 
        critical Rayleigh number Rc increases with the increase in Q1 and decreases with the  
        increase in Hd and M. Thus magnetic field stabilizes the system whereas the effect of  
        suspended particles and Hall currents is to destabilize the system.          
 5.    The oscillatory modes are introduced due to the presence of viscoelasticity, Hall 
  currents and suspended particles. In the absence of these effects, the principle of  
  exchange of stabilities is found to hold good. 

 

Nomenclature  

 Cp                         specific heat of the fluid at constant pressure, [J kg-1K-1] 

ptC       heat capacity of particles, [J kg-1K-1]  

Cf                          heat capacity of the fluid, [J kg-1K-1] 
 d      depth of fluid layer, [m] 
 e  charge of an electron, [C] 
 F      dimensionless kinematic viscoelasticity, [-] 

(0,0, )g g= −r
     acceleration due to gravity, [ms-2] 

x y z( , , )h h h h=
r

     perturbation in magnetic field (0,0, )H H
r

, [G] 

(0,0, )H H=
r

      magnetic field intensity vector having components (0,0, )H , [G] 

 ( )1/22 2
x yk k k= +    wavenumber of the disturbance, [m-1] 

6K πµη′ ′=           Stokes’ drag coefficient, [kgs-1] 

xk y,k        wavenumbers in x and y directions respectively, [m-1] 

 M       dimensionless Hall current parameter, [-] 
 n        growth rate of the disturbance, [s-1] 
 N0       particle number density, [m-3] 
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N        perturbation in suspended particle number density, [m-3] 
N′        electron number density, [m-3] 
p              fluid pressure, [Pa]  

 Pr1       thermal Prandtl number, [-] 
 Pr2       magnetic Prandtl number, [-] 
 q       effective thermal conductivity of the pure fluid, [Wm-1K-1]        
 Q1       dimensionless Chandrasekhar number, [-] 
 R1       dimensionless Rayleigh number, [-] 
 Rc                   critical Rayleigh number, [-] 
T                   temperature, [K] 

( , , )v u v w=r       fluid velocity vector having components ),,( wvu , [ms-1] 

( )d , ,v l r s=r
       velocity of suspended particles, [ms-1] 

(x, y, z)       x, y, z  directions 
x        square of scaled wavenumber, [-] 

cx        critical wavenumber, [-] 

 
Greek Letters 
α                thermal coefficient of expansion, [K-1] 

( )/dT dzβ =       temperature gradient, [Km-1] 

∂        curly operator, [-] 
∇        del operator, [-] 
δ        perturbation in the respective physical quantity, [-] 

η′                   particle radius, [m] 
η        resistivity, [m2s-1] 

θ        perturbation in temperature, [K] 
κ        thermal diffusivity, [m2s-1] 
µ        viscosity of the fluid, [kg m-1s-1] 

µ′                          viscoelasticity of the fluid, [kg m-1s-1] 

eµ        magnetic permeability, [H m-1] 

ν        kinematic viscosity, [m2s-1] 
'ν        kinematic viscoelasticity, [m2s-1] 

ρ               density of the fluid, [kgm-3] 
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