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A Lagrangian-Eulerian model for the dispersion of solid particles in 

sudden-expansion flows is reported and validated. The fluid was calculated 

based on the Eulerian approach by solving the Navier-Stokes equations. A 

Lagrangian model is also applied, using a Runge-Kutta method to obtain 

the particle trajectories. The effect of fluid turbulence upon particle 

dispersion is taken into consideration through a statistical model. The 

predicted axial mean velocity and turbulent kinetic energy of both phases 

agree well with experimental data reported by Sommerfield.  
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1. Introduction 
 

Two-phase flows can be found in several industrial processes involving e.g. transport 

conveying, separation of solid particles and pulverized-coal combustion.  

Nowadays, two categorical approaches for predicting tow-phase flows are Eulerian and Lagrangian. In 

the Eulerian approach the two phases are considered to be separate interpenetrating continua, and 

separate equations of motion are solved for each phase. Recent models of this type are those of 

Elghobashi et al. [1], Lun [2], Simonin [3]. This method may be preferably used for dense two-phase 

flows, for example, in fluidized beds or two-phase flows with phase transition, e.g. from bubbly flow 

to mist flow. In the Lagrangian approach the dispersed phase is treated by solving Lagrangian 

equations for the trajectories of a statistically significant sample of individual particles, while the 

liquid phase is treated as a continuum in the Eulerian approach. The two-way coupling between both 

phases is also accounted, Berlemeont et al. [4,5], Sommerfeld [6,7]. The Eulerian-Lagrangian 

approach allows an easy implementation of physical effects occurring on the scale of the particle size 



as, for example, particle-particle interactions and particle-wall collisions. The key element of the 

Eulerian-Lagrangian approach is how it takes account of the effects of turbulent fluctuations on 

particle, as well as the effects of particles on turbulence properties of the liquid phase.  

Historically, turbulent two-phase free jets have been the subject of many studies but, until very 

recently it has been difficult to find in the literature a well-documented numerical study of a two-phase 

turbulent sudden expansion jet. For an improved understanding of the characteristics of sudden 

expansion particle-laden flows are necessary. 

A Eulerian-Lagrangian model was used to solve the governing equations of particle and liquid phase. 

The Eulerian framework was used for the liquid phase, whereas the Lagrangian approach was used for 

the particle phase. The steady-state equations of conservation of mass and momentum were used for 

the liquid phase, and the effect of turbulence on the flow-field was included via the standard k- ε  

model. The particle equation of motion included the drag force. Turbulence dispersion effect on the 

particles was simulated by statistical model. The effects of particles on the flow were modelled by 

appropriate source terms in the momentum equation.  

This paper is organized as follows. In section 2, the mathematical model is discussed. In section 3, the 

numerical procedure and boundary conditions are presented. Finally, the numerical results which the 

predicted axial mean velocity and turbulent kinetic energy of both phases are compared with 

experimental data of Sommerfield [8]. 

2. Mathematical model 

This section describes the mathematical model for turbulent liquid-particle flows 

assuming that the particulate phase is diluted, so that inter-particle effects are neglected. It is also 

assumed that the mean flow is steady and the material properties of the phases are constant.  

The liquid phase has been calculated based on the Euler approach. The particle phase was treated 

following the Lagrangian approach, which means that the parameters of every particle are functions of 

time. For the coupling of phases, the PSI-CELL method of Crowe et al. [9] was chosen. By this 

method all influences of the dispersed phases on the continuous phase are accounted for through 

source terms in momentum equation.  

2.1. Gas-phase flow model 

The motion of the fluid is described by the continuity and the Navier-Stokes equations. 

Turbulence is modelled by the standard model Patanakar [10]. According to the experiment, the 

sudden-expansion particle-laden flows are considered to be steady axisymmetrical turbulent liquid-

particle flows, with these assumptions, the corresponding governing equations for the liquid phase 

then are: 
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In these equations  denotes the Cartesian velocity components, P represent the fluid pressure, iU ρ  

and  the density and viscosity of the fluid, respectively.  μ

The turbulence was represented here by the k-ε  model, which implies the need to solve two additional 

equations, namely.  

 

turbulent kinetic energy 

 

ρε
σ

μ
ρ −=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

−
∂
∂

kP
jx

k

k

eff
kjU

jx
                                         (3) 

 

turbulent dissipation 
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where  the turbulent viscosity is given by tμ ε

ρμμ
2kC

t =  

For the k- ε  model, the following standard coefficients are used see table I. 

The interaction between particles and the liquid phase yields source terms in the governing equation 

for conservation of momentum is considered. The standard expression for the momentum equation 

source terms due to the particles has been used. It is obtained by time and ensemble averaging for each 

control volume in the form :  



    t
p

ig
n

in
iuout

iunm
cvV

p
uS

i
Δ
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−−⎟

⎠
⎞⎜

⎝
⎛ −= ∑

ρ
ρ11                                            (5) 

Here  is the control volume, is the mass of an individual particle and is the number of 

real particles. 

cvV m n

2.2. Particle equation of motion 

The equation of particle motion than can be written as follows: 
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here  are the co-ordinates of the particle position,  are the velocity components, is the 

particle diameter and 

ipx , ipu , pD

pρ is the particle density.  

The term on the right-hand side of eq. (6) is the drag force. Drag force is always present and is 

generally the dominating force for particle motion in most regions of the flow. Here is the drag 

coefficient, which varies with particle Reynolds number, the drag coefficient for the solid particles is 

given as: 
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The particle Reynolds number is defined as:   
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The effect of turbulence on the particle motion is modelled in the present work by a statistical model. 

The instantaneous liquid velocity along the particle trajectory is sampled from a Gaussian velocity 

distribution, with the equal RMS value u’=v’=2/3k in all two Cartesian co-ordinate directions to 

simulate isotropic turbulence. The instantaneous fluid velocity is assumed to influence the particle 



motion during a given time period, called the interaction time, before a new fluctuation component is 

sampled from the Gaussian distribution function.  

In the present model, the simulation of the interaction time of a particle with the individual turbulent 

eddies is limited by the lifetime of the turbulent eddy, , or the transit time, ,  for the particle to 

traverse the eddy, i.e. 

eT rT
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where 
ε

=
k2.0eT and the eddy length scale εκμ= 5.175.0Cel . The transit time can be determined 

from the linearized form of the particle momentum equation, given by Gosman and Ioannides [11]: 
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where Pτ  is the particle relaxation time, defined as:  
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The Lagrangian approach can follow only a moderate a number of particles. The real number of 

particles in the flow domain, however, is very large. For this reason, the special term parcel of 

particles was defined. Parcels represent a large bulk of particles with the same size, mass, velocity and 

position. The model is arranged such that every parcel represents the same mass of a disperse phase.  

3. Numerical procedure and boundary conditions  

The boundary conditions of the liquid phase are specified as table 2. for the particle phase, 

velocity and turbulent kinetic energy at the inlet are given as the same as the liquid phase. Particles are 

introduced into the flow at 25 different inlet positions between r=0 m and r=12.75 10-3m. The resulting 

set of equations is solved by using a finite volume discretisation scheme and applying an iterative 

solution procedure based on the SIMPLE algorithm. This code was extended by introducing the 

additional source terms to account for the presence of particles. 

A solution for the liquid field assuming no particles is initially obtained, and the prediction of the 

particle motion is carried out. Therefore Eq. (6) and (7) are solved by using a standard 4th order 

Runge-Kutta scheme. The source terms are predicted simultaneously during trajectory calculation. The 

liquid field is then recomputed with the contribution of particle source terms. The detail of numerical 

scheme sees Mergheni et al. [12, 13]. 



4.  Results and discussion   

In this section, this simulations result for liquid and particle velocities and turbulence 

kinetic energy are presented. This simulations were performed for a 2D downward fully developed 

sudden-expansion, which is D1= 25.5 10-3m diameter, D2=51 10-3m diameter large and 1.0 m long.  In 

order to obtain a better definition and, possibly a deeper physical understanding of the flow field of a 

sudden-expansion jet configuration, the radial profiles at various axial stations (x=9, 50, 100, 150, 200, 

and 300 mm) are presented one at the inlet of the sudden expansion geometry, three within the 

recirculation zone and two in the re-development zone.  

Figure (2.a) and (3.a) show the presence of recalculating flow regions in the first two calculation 

sections for both phases. Comparing the experimental and numerical results at x=9mm of the mean 

velocities of fluid and particle, it can be observed the mean velocities are not well predicted. But 

figure (2.b) and (3.b) show that the simulated mean particle and fluid velocities are in favourable 

agreement with the experimental data. 

For the turbulent kinetic energy of both phases is shown in figures 4 and 5. For the near exit region 

figures (4.a) and (5.a) the turbulent kinetic increase radially towards the shear layer at r=0.125 10-3m , 

whereas the other stations (x=100, 150 and 200 mm) in the centre of the initial region the gas 

turbulence increases with increasing distances to the nozzle for the fluid and particles. The reason for 

increased turbulence is high radial diffusive turbulence from the shear layer into the centre of the flow.  

In general, the numerical predictions of both phases are in good agreement with Sommerfield 

measurements especially for axial mean velocities of both phases. The difference between the 

measurement and prediction of radial velocity is caused by the turbulent model of liquid phase. Also, 

the small magnitude of the radial velocity in the experimental results may carry some error. There 

could be two reasons for the difference between measurements and prediction of turbulent kinetic 

energy of both phases. One is due to the assumed inlet conditions, as there are no experimental data 

available. The other is due to the prediction ability of the k- ε  model for liquid phase in sudden 

expansion flow.  Figures 4 and 5 show that, despite these two factors, numerical results of turbulent 

kinetic energy of both phases are in good agreement with measurements in the downstream region 

where the effect of the inlet conditions become weak and the k-ε  is suitable for a channel flow. 

5. Conclusion  

 Using the Eulerian-Lagrangian model, predicted results of velocity and turbulent 

kinetic energy of fluid and solid particles of sudden-expansion in a downward fully developed channel 

flow is represented. A Eulerian-Lagrangian model was used to solve the coupled governing equations 

of particle-laden flows. The steady-state equations of conservation of mass and momentum were used 

for the fluid, and the effect of turbulence on the flow-field was included via the standard k-  model. 

The particle equation of motion included the drag force. Turbulence dispersion effect on the particles 

ε



was simulated as a continuous Gaussian random field. The effect of particles on the fluid was 

considered by inclusion of appropriate source terms in the momentum equation. The predicted axial 

mean velocity and turbulent kinetic energy of both phases agree well with experimental of 

Sommerfield, it is concluded that the Eulerian-Lagrangian model has been successfully applied in 

predicting sudden-expansion particles-laden flows.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Nomenclature 

 

21 C,C,Cμ    coefficients of the turbulence model 

DC     drag coefficient  

D     center jet diameter (mm) 

PD     particle diameter (µm) 

κ       kinetic energy of turbulence (m2s-2) 

el      eddy size (m) 

r       coordinate radial (m) 

mp        particle mass  

PRe  particle Reynolds number 

S      source term 

rt     residence time of the particle (s) 

et     turbulent eddy lifetime (s) 

u    axial mean velocity (ms-1) 

x      coordinate axial (m) 

V     control volume (m3) 

tΔ     interaction time of particle  (s) 

Greek letters 

Φ      particle-loading ratio 

ρ     gas density (kgm-3) 

pρ     particle density (kgm-3) 

pτ     particle time (s) 

ε       kinetic energy dissipation rate (m2s-3) 

μ      dynamic viscosity (kgm-1 s-1) 
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CAPTIONS 

 

TABLE CAPTIONS 

 

Table. I. Turbulence model constants 

Table II.  Flow parameters 

Table III.  Boundary conditions for the liquid phase 

 

FIGURE CAPTIONS 

 

     Figure 1. The jet flow configuration  

Figure 2. axial mean velocity of the liquid phase 

Figure 3. axial mean velocity of the particle phase 

Figure 4. turbulent kinetic energy of the liquid phase. 

Figure 5. turbulent kinetic energy of the particle phase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Constant μC  1C  2C  κσ  εσ  

value 0.09 1.44 1.92 1.0 1.3 

 

Table I : Turbulence model constants 

 

liquid phase particle phase 

density  =830kg/.m3ρ

kinetic viscosity ν =5.205 

cst 

inlet velocity  Uin=6.021 

m/s 

mass flux f =2.29 kg/s 

diameter Dp=450 µm 

density  

2500kg/m3 
pρ

mass flux fp=0.213 

kg/s 

 

Table II. Flow parameters 

 

 

at the inlet uin=6.021; vin=0;  

kin=0.006(u2+v2); 
2/D
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at the wall no-slip conditions for velocity and 

the wall-function approximations for 

near-wall grid nodes 

along the 
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at the exit full developed flow conditions 

 

Table III:  Boundary conditions for the liquid phase 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: The jet flow configuration of  Sommerfield. 
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Figure 2. Axial mean velocity of the liquid phase 
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Figure 3. Axial mean velocity of the particle phase 

 

 

 

 

 

 

 



 

 

 

 

-1

-0,5

0

0,5

1

1,5

0 5 10 15 20 25r(mm)

K
(m

2/
s2

)

x=9mm (Exp.) x=9mm (Num.)
x=50mm (Exp.) x=50mm (Num.)
x=100mm (Exp.) x=100mm (Num.)

-1

-0,5

0

0,5

1

1,5

0 5 10 15 20 25
r(mm)

K
(m

2/
s2

)

x=150mm (Exp.) x=150mm (Num.)
x=200mm (Exp.) x=200mm (Num.)
x=300mm (Exp.) x=300mm (Num.)

(c) 
(a) 

 

      

Figure 4. Turbulent kinetic energy of the liquid phase. 
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Figure 5. Turbulent kinetic energy of the particle phase. 
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