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Abstract  

An analysis is presented for the steady thermal convection 
heat and mass transfer in a micropolar-fluid-saturated 
non-Darcian porous medium in the presence of radiation  
and thermophoresis effects. The governing boundary layer 
equations for momentum, energy, species transfer and 
angular momentum (micro-rotation) are transformed from 
an ( )yx, , coordinate system into ( )η , coordinate system. 

The influence of Darcy number ( )aD , Forchheimmer 

number ( )sF , local Grashof number ( )rG , Prandtl number 

( )rP , Schmidt number ( )cS , radiation ( )R  and 

thermophoresis ( )κ , surface parameter ( )s , on the 
velocity, temperature,  concentration profiles and angular 
velocity (micro-rotation)  are studied graphically. 
Applications for the problem arise in chemical engineering 
systems  and geothermal energy systems.  
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Introduction 
Micropolar fluids are a subset of the micromorphic fluid theory introduced in a 
pioneering paper by Eringen in [1]. They constitute an important branch of non-
Newtonian fluid dynamics where microrotation effects as well as microinertia are 
exhibited. Such fluids have been shown to accurately simulate the flow characteristics 
of polymeric additives, geomorphological sediments, colloidal suspensions, 
haematological suspensions, liquid crystals, lubricants etc. In the context of chemical 
engineering, aerospace engineering and also industrial manufacturing processes, heat 
and mass transfer in micropolar fluids is also important. Ramachandran and Mathur 
[2] investigated the heat transfer in the stagnation point flow of a micropolar fluid. 
Vidyanidhi and Murty [3] examined the dispersion of a chemically non-reacting and 
chemically reacting solute in a micropolar fluid, for a circular pipe geometry. 
Soundalgekar and Takhar [4] analyzed numerically the micropolar thermo-convection 



past a wedge, showing that micropolarity reduces drag (skin friction) and also heat 
transfer rates. Viscous dissipation effects in micropolar thermo-fluid  dynamics have 
also attracted some attention. Important studies in this regard were reported by Migun 
and Prokhorenko [5] who studied the Couette channel convection flow of a 
micropolar liquid with viscous energy dissipation. The effects of  viscous heating on 
micropolar lubrication flows was considered by Khonsari and Brewe [6] who 
demonstrated that the heat generation due to viscous dissipation exerts a marked 
effect on the load-carrying of a journal bearing lubricated with micropolar fluid.  
Hassanien et al. [7] analyzed the natural convection in micropolar boundary layer 
flow.   Hassanien and Al-arabi [8] they studied unsteady mixed convection boundary 
layer flow near the stagnation point on a heated vertical plate embedded in a fluid 
saturated porous medium.  Ching  [ 9 ]  extend the work of Nazar et al. [10] further to 
analyze the heat and mass  transfer by natural convection along a sphere with constant 
wall  temperature and concentration in a microplar fluid. Thermophoresis particle 
deposition in a non-Darcy porous  medium under the influence of Soret, Dufour 
effects by Partha[11].           

 An excellent summary of Darcian convection heat transfer flows and also certain 
non-Darcian Newtonian flows is available in the monograph by Ingham and Pop [12]. 
The so-called Darcy-Brinkman model for boundary vorticity has been examined by  
Vafai and Tien [13] and later by Bég et al [14], the latter study also incorporating the 
influence of Eckert number on the heat transfer in a porous medium. Bég et al[15] 
study  the Darcy– Forchheimer porous drag force model to study thermal convection 
from a continuously moving surface immersed in a Newtonian fluid-saturated porous 
medium. Inertial effects on porous media transport have been generally studied using 
the Darcy-Forchheimer model which uses a quadratic impedance term for inertial 
drag. Micropolar transport in porous media has also received some consideration in 
the literature, owing to applications in polymeric filtration dynamics. Takhar et al[16] 
study finite element biomagnetic hydrodynamics in a  two dimensional non-Darcian 
porous medium. 
Thermophoresis is a phenomenon by which submicron sized particles suspended in a 
non-isothermal gas acquire a velocity relative to the gas in the direction of decreasing 
temperature. The velocity acquired by the particles is called thermophoretic velocity 
and the force experienced by the suspended particles due to the temperature gradient 
is known as thermophoretic force.  Recently, Chamkha and Pop [17] studied the 
effect of thermophoretic particle deposition in free convection boundary layer from a 
vertical flat plate embedded in a porous medium.  Bakier and Mansour [18] deals with 
heat and mass transfer by steady laminar boundary layer flow of Newtonian, viscous fluid 
over a vertical flat plate embedded in a fluid-saturated porous medium in the presence of 
thermophoretic and magnetic field. Motivated by the above investigations and possible 
applications, it is  interest in the present work to study  combination of 
Thermophoresis, radiation effects, Darcian resistance, Forchheimer quadratic 
(inertial) drag, buoyancy, micropolarity and surface mass flux on the coupled heat 
and mass transfer of a micropolar liquid in a Darcy- Forchheimer  saturated porous 
medium [figure 1]. The study has applications in chromatography, polymeric 
filtration, electronic fabrication and geophysical transport.             

Analysis 

We consider the coupled convective heat and mass transfer of a viscous, 
incompressible, non-conducting, micropolar fluid through a non-Darcy, isotropic, 



homogenous porous medium. The x-axis is directed along the vertical surface and the 
y-axis is transverse to this. Both the vertical surface and the fluid are maintained 
initially at the same temperature and concentration.  Incorporating viscous heating 
effects, wall mass flux and buoyancy, under the Boussinesq approximation, the 
boundary layer equations may be presented as follows: 

The governing conservation equations for the flow regime can be shown to be as 
follows:  
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Where, the quantity rq on the right hand side of Eq. (3) represents the radiative 
heat flux in the directionsy − . The radiative heat flux term is simplified by the 
Rosseland  approximation  as follows[see [19]]:                                                                                                           
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where 0σ  is the Stefan–Boltzmann constant and *k  is  the mean absorption 

coefficient. 

We now expand 4T  in a Taylor series about ∞T  as follows: 

( ) ( ) −−−−−+−+−+= ∞∞∞∞∞
22344 64 TTTTTTTT  

Neglecting higher-order terms in the above equation beyond the first degree in 
( )∞−TT , we get 

TTTT 344 43 ∞∞ +−≅                                                                                                                  

As a consequence, the thermophoretic velocity TV , which appears in Eq. (4), may be 
expressed in the following form[see [20]]: 
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The corresponding boundary conditions on the vertical surface and in the free stream 
can be defined now as follows: 
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Where,  ( )xV0  transpiration (lateral mass flux) velocity at the wall (vertical surface), K 

is permeability of porous medium (hydraulic conductivity), b is Forchheimer constant 
(geometrical). We note that 0<oV  represents suction (removal of micropolar fluid 

from the regime via the perforated wall) while 0>oV  represents mass injection 

(blowing) into the flow regime. 

To simplify a numerical solution, while still retaining the essential physics of the flow 
regime, we introduce a set of pseudo-similarity transformations, viz:  
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where  η is dimensionless transverse  coordinate,  f  is dimensionless stream 
function, θ  is dimensionless temperature function, φ  is dimenionless concentration 
function, h  is dimensionless micro-rotation (angular velocity), 

∞∞ +=∆+=∆ CCCTTT ww , .  The  conservation equations are now transformed to the 

following system of coupled, non-linear ordinary differential equations,  in terms of 
hff ,,,, ' φθ  viz: 

The  transformed governing equations for bonundary layer flows become: 
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are the Coupling constant parameters.  

The transformed boundary conditions are given by : 
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Where a  prime denotes ordinary differentiation with respect to  

 

 

Results and Discussion 
The system of ordinary differential equations (10) along with the boundary conditions 
(11), are integrated numerically by means of the fourth-order Runge-Kutta method,  
with  shooting  technique. In order to get a clear insight of the physical problem, 
numerical results are  displayed with the help of graphical illustrations. We have 
computed solutions for translational velocity, dimensionless temperature, 
dimensionless species (mass transfer) function  and dimensionless micro-rotation   for  
the following general values:         ( ) 2.0,,7.0,5.0 === cr SairPs  (hydrogen at 25 

Celsius and 1 atmosphere pressure, (see Gebhart and Pera [21]) 
, 1,1,01.0,5.0,1,5.0,5,5 0 ======== λGGBFRVGG semr . In the present analysis 

we have excluded plots (for conservation of space) for the effects of 
λandGGBRV e ,,,0  , which are fixed in the computations. Figures 2 and 3 illustrate 

variation of velocity function, temperature function, mass transfer function,  micro-
rotation function and versus η  for various thermophoresis 100,70,50,10,5,1,0=κ . In 
figure 2 as κ   rises the velocity profiles are increased substantially. The lowest 
velocity corresponds to the case for no thermophoresis effect i.e. 0=κ . All profiles 
then decay monotonically towards zero  as ∞→η , and the profiles are 
asymptotically very smooth, indicating that convergence has been achieved 
comfortably by 5.3≈η .  A rise in κ  causes a distinct fall in the temperature profiles. 
Higher κ   values imply more heat is convicted away from the plate so that 
temperatures decrease rapidly near the plate surface.  All profiles decay 
asymptotically to zero as ∞→η  (11). In figure 3 illustrates the variation of 
dimensionless concentration function, dimensionless angular velocity  versus η . as κ   
rises the concentration parameters are increased substantially.  As noted earlier, at 

0=η ,  i.e. at the wall (vertical bounding surface), all h profiles have different values 

since the condition at the wall is defined by ( ) ( )00 ''sfh −= .  Figure 4 illustrates the 

non-dimensional temperature function  distribution with η for various R  values. 
Temperatures decrease markedly as R   increases from 0 to 20.  Figures 5 and 6, 
illustrate the influence of the porous hydrodynamical parameters, aD   on the velocity, 

species concentration fields, and micro-rotation respectively. Figure 5 indicates that 



translational velocity profiles clearly increase as aD  rises from 0.1  to 10 . A rise in  

aD  implies a rise in porous media matrix permeability (k) which corresponds to a 

reduction in the Darcian drag force, embodied in the following term in the 
transformed translational momentum equation (10). In all cases, the velocity decays 
systematically to  zero as ∞→η .   Figure 6  shows that concentrations and micro-
rotation fall with rising Da values. All profiles descend gradually from a maximum of 
1 at the wall to zero far away from the wall. The graphs show that concentration 
profiles  in Darcy- Forchheimer media may be boosted with less porous materials 
(lower permeability). This can be exploited in enhancing energy and mass transfer in 
various specialized applications in industry, where the permeability of a system, 
unlike geophysical systems, can be varied.  Also,  depicts the variation of 
dimensionless angular velocity  with η   for various aD  values. As noted earlier, at 

0=η  i.e. at the wall (vertical bounding surface), all h profiles have different values 

since the condition at the wall is defined by ( ) ( )00 ''sfh −= . ( )0h  is always non-zero 

since 0=s  and ( ) 00'' ≠f . For aD  up to 0.1, all profiles descend smoothly to zero as 

∞→η , never crossing. It would appear therefore that larger permeability materials 
can be used to reduce micro-rotational effects in suspension fluids. Figure 7 shows 
the influence of Prandtl number on the dimensionless temperature  function. A rise in 

rP  from 0.7 (air) and 1, corresponds to a decrease in thermal conductivity of the  fluid  
(i.e. an increase in Prandtl number for constant values of dynamic viscosity and 
specific heat capacity. Temperatures are therefore dramatically enhanced throughout 
the domain i.e. 10 ppη  . This is consistent with the well-known behaviour 
associated with lower thermal conductivity fluids (high Prandtl numbers) compared 
with higher thermal conductivity fluids (low Prandtl numbers), which is verified by 
many experiments described in the classical exposition by Schlichting [20].  Figure 8 
illustrates the variation of dimensionless concentration function φ versus  η with 

various Schmidt numbers ( )cS . Smaller cS  values correspond to hydrogen gas as the 

species diffusing ( )0.2=cS   and larger values to Methanol diffusing in air ( )0.1=cS   

and Ethylbenzene in air ( )0.2=cS , as indicated by Gebhart and Pera [21]. Our 

numerical calculations are executed for ( )0.2=cS  rP = 0.7, so that cr SP ≠ , and 

physically this implies that the thermal and species  diffusion regions are of different  
extents. cS  measures the relative effectiveness of momentum  and mass transport  by 

diffusion. As cS  is increased, φ   values consistently decrease, a phenomenon which 

has been reported in a number of other studies on coupled heat and mass transfer in 
porous media, as discussed for example by Kim [22].  
Figures 9 -12 illustrate variation of velocity function, temperature function, micro-
rotation function and mass transfer function versus η for various Grashof numbers 

rG  and modified  Grashof numbers mG .  In figure 9 as rG  rises the velocity 

profiles are increased substantially. The lowest velocity corresponds to the case for 
forced convection i.e. 0=rG . In the zone near to the plate surface, peak velocities 

arise at 5.0≈η , for all profiles.  On the other hand, a rise in rG  causes a distinct 

fall in the temperature profiles. Higher  rG  values imply more heat is convected 

away from the plate so that temperatures decrease rapidly near the plate surface (in 
the range 5.35.0 ppη  approximately).  Figure 10 illustrates the variation of 



dimensionless concentration function and micro-rotation profiles  versus  η . Again 

we notice a strong decrease with increase in rG  values, so that the lowest  species 

concentrations correspond to the highest rG  values i.e. buoyancy reduces 

concentration values. Monotonic decay of all profiles is observed as  ∞→η  (8).  
While no buoyancy term arises in the dimensionless angular momentum equation we 
note that the strong coupling  of the translational velocity  fields and micro-rotation 
fields exists. A micro-rotation terms also occurs in the second  function in equation 
(17),  which further serves to couple the angular and translational velocity fields. 
Buoyancy  therefore indirectly, but strongly, affects the micro-rotation profile.  We 
observe that for forced convection ( 0=rG ) and weaker free convection regimes 

( 10,5=rG ), the micro-rotation profiles are always positive.  At η = 0 i.e. at the wall, 
all profiles have different values as this initial condition is dictated by equation  (11) 
where ( ) ( )00 ''sfh −=  which is always non-zero since 5.0=s  and ( ) 00'' ≠f . Figures 
11 and 12 Same behavior like Figs. 9 and 10. 

In Figure 13 we observe that as s increases from zero to 1.0, the micro-rotation is 
increased substantially especially in the region near the wall i.e. 20 ppη   All 
profiles converge at  2=η , and descend steadily to zero as ∞→η .We note that the 
parameter s only occurs in the boundary conditions and that it physically relates to the 
concentration of micro-elements at the wall. We note that this initial boundary 
condition for micro-rotation corresponds to the vanishing of the anti-symmetric part 
of the stress tensor and corresponds to weak concentrations of the micro-elements of 
the micropolar fluid. The particle spin is equal to the fluid vorticity at the boundary 
for fine particle suspensions. 0=s  implies zero spin i.e. the particle stagnate in a 
rotational sense at the wall. 1,5.0,25.0=s   implies greater concentrations of micro-
elements respectively.  Clearly we see that greater s values imply greater micro-
rotation, as reflected in our graph. 

Conclusions 
A mathematical model has been presented for the viscous, incompressible heat and 
mass transfer of a micropolar fluid through a non-Darcian porous medium with 
buoyancy, Thermophoresis  and radiation effects, viscous heating and wall 
transpiration  present. The model has been transformed and rendered into 
dimensionless form. Our numerical results indicate that  generally: 

-a) Increasing κ  increases the dimensionless translational velocities ( 'f  and mass 
transfer function (φ ), but decreases temperature function (θ ) and angular velocity 
(h). 

-b) Increasing R  increases the dimensionless temperature function (θ ).  

-c) Increasing aD  increases dimensionless translational velocities ('f ), but decreases  

mass transfer function (φ ) and angular velocity (h ). 

-d) Increasing rP  decreases the dimensionless  temperature function (θ ). 

-f) Increasing cS  decreases dimensionless mass transfer function (φ ) values.  



-g) Increasing mr GandG  (buoyancy parameter) increases dimensionless translational   

velocity ( 'f ), but decreases  temperature function (θ ), mass transfer function (φ  ) 
and angular velocity (h ) (micro-rotation). 

-h) Increasing s increases the dimensionless micro-rotation (h ) 

The model presented has applications in plastic processing  technologies  and is 
currently being extended to incorporate the effects thermal stratification of the porous 
medium, an important feature in geophysical systems.  
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Nomenclature 
C    species concentration in the boundary layer... 

∞C    Species concentration of the ambient fluid 

pC     specific heat due to constant pressure 

D      chemical molecular diffusivity 

f      dimensionless stream function                           

g      acceleration due to gravity 

h   dimensionless microrotation component 

N    micropolar of the fluid in the boundary layer 

κ     thermophoretic coefficient  

rP      Prandtl number 

cS      Schmidt number 



T      temperature of the fluid in the boundary layer                         

∞T    temperature of the ambient fluid                                              

wT     temperature at the surface                                                       

( )xV  transpiration velocity 

u, v,       the x- and y-components of the velocity field..  

0U     velocity at the wall (vertical surface) 

s         the surface parameter 

TV    thermophoretic velocity 

 x, y  axis in direction along and normal to the plate.....  

 Greek symbols 

α     thermal diffusivity…………… 

β   volumetric expansion coefficient of temperature 

ρ    is micropolar fluid density 

ψ    stream function..................  

  γ      spin-gradient viscosity         

η    non-dimensional pseudo-similarity variable 

ν    kinematic coefficient of viscosity . 

λ    fluid viscosity. .......................                                             

θ     dimensionless temperature function 

ϕ   dimensionless species concentration  



 

 

Figure 1: Physical Model and Coordinate System  
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Fig 4: θ versus η for various R values
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Fig 5: f' versus η for various D
a
 values
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Fig 7: θ versus η for various P
r
 values
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Fig 9: f' and θ versus η for various G
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 values
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