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Abstract 

The paper presents the numerical investigation of the convection heat and mass transfer 

in a hydromagnetic Carreau fluid past a vertical porous plate in presence of thermal 

radiation and thermal diffusion. The non – linear partial differential equations governing 

the flow are transformed into ordinary differential equations using the usual similarity 

method and the resulting similarity equations are solved numerically using Runge – Kutta 

shooting method. The results are presented as velocity, temperature and concentration 

profiles for different values of parameters entering into the problem. The effects of 

suction, magnetic field, thermal radiation and thermal diffusion on the skin friction, rate 

of heat transfer and mass transfer are presented numerically in tabular form. 

 Keywords: Carreau fluid, hydromagnetic, suction, convection heat, thermal radiation, 

thermal diffusion  

Introduction 

Recently, researchers in engineering and scientific field have shown great interest in the 

study of non – Newtonian fluids due to its importance in industrial processes. The 

development of the theory of non – Newtonian fluid mechanics arose from the 

inadequacy of the theory of Newtonian fluids in predicting the behaviours of many fluids 

especially those of high molecular weight. 

Many authors have examined the flow, heat and mass transfer in non – Newtonian fluid 

of different type, most especially in power law and higher order fluids. Abel et. al. [1] 

examined the effects of viscous dissipation and non-uniform heat source/sink on the 

boundary layer flow and heat transfer characteristics of a second grade, non-Newtonian 

fluid through a porous medium. Ahmad [2] carried out the mathematical analysis of heat 

transfer effects on the axisymmetric flow of a second grade fluid over a radially 



stretching sheet using the homotopy analysis method. Ahmed [3] presented Lie group 

analysis and the basic similarity reductions for the MHD aligned slowly flowing and heat 

transfer in second grade fluid with neglecting the inertial terms. 

Bikash [4] studied the numerical solution of the laminar flow and heat transfer of an 

incompressible, third grade, electrically conducting fluid impinging normal to a plane in 

the presence of a uniform magnetic field.  

Hayat and Sajid [5] examined the steady laminar flow and heat transfer in an 

axisymmetric flow of a second grade fluid is induced due to linear stretching of a sheet.  

Hayat et. al [6] considered the laminar flow problem of convective heat transfer for a 

second grade fluid over a semi-infinite plate in the presence of species concentration and 

chemical reaction, they gave the boundary layer analysis of the solution obtained by 

homotopy analysis method. Hayat et. al [7] obtained the series solutions for the flow and 

heat transfer problem of an incompressible and electrically conducting second grade fluid 

film over an unsteady stretching sheet using the homotopy analysis method. Hayat et. al 

[8] obtained the series solution and analyzed the convergences for  heat transfer on the 

flow of a fourth grade fluid past a porous plate using the homotopy analysis method. 

Hayat et. al. [9] examined the influences of the Hall parameter and porosity of the 

medium on the velocity and temperature profiles for the  heat transfer on a rotating flow 

of a second grade fluid past a porous plate with variable suction. Hayat et. al. [10] 

presented analytical solutions of the equations of motion and energy of a electrically 

conducting fluid second grade fluid for the developed flow over a semi-infinite porous 

stretching sheet with slip condition. 

Hayat et. al. [11] examined a two-dimensional mixed convection boundary layer 

magnetohydrodynamic (MHD) stagnation-point flow through a porous medium bounded 

by a stretching vertical plate with thermal radiation. They obtained exact solution using 

the method of the homotopy analysis. Kai-Long [12] studied the heat transfer on a 

stretching sheet cooled or heated by a high or low Prandtl number, the buoyancy 

parameter, the magnetic parameter, the radiation parameter, and conduction–convection 

coefficient for second-grade viscoelastic fluid.  



Khani [13] presented an analytic approximate solution for the natural convective 

dissipative heat transfer of an incompressible, third grade, non-Newtonian fluid flowing 

past an infinite porous plate embedded in a Darcy–Forchheimer porous medium.  

Olajuwon [14, 15, 16, 17, and 18] studied the convection heat and mass transfer in a non 

– Newtonian power law fluid with heat generation, thermal diffusion, thermo diffusion 

and thermal radiation past vertical plate. The analysis of results obtained showed that these 

parameters have significant influences on the flow, heat and mass transfer.  

 But little attention has been paid to the four-parameter Carreau inelastic model with the 

stress formulation; 
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frequently used in chemical engineering. It fits reasonably well with the suspensions of 

polymers behavior in many flow situations. This model describes the behavior of a purely 

viscous fluid whose viscosity changes with increasing rate of deformation. Unlike the 

power-law or Ostwald - De Waele model, it predicts a viscosity that remains finite as the 

shear rate approaches zero. For that reason, the Carreau constitutive equation suits well 

for free surface flows. Among the recent studies in the theory of Carreau fluid include 

peristaltic flow and heat transfer. 

Sobh [19] presented a theoretical study of a peristaltic transport of a Carreau fluid in an 

asymmetric channel under zero Reynolds number long – wavelength approximation for 

both slip and non slip flows. Sobh [20] studied the interaction of peristalsis with heat 

transfer for the flow of a viscous fluid through a porous medium in uniform and non – 

uniform channels in the presence of a constant transverse magnetic field. Mekheimer and 

Abdelmaboud [21] investigated the influence of heat transfer and magnetic field on the 

peristaltic flow of a Newtonian fluid in a vertical annulus under a zero Reynolds number 

and long wavelength approximation. The flow in investigated in a wave frame of 

reference moving with velocity of the wave. Ali and Hayat [22] presented the analytic 

solution of the mathematical modeling for the flow of incompressible Carreau fluid in an 

asymmetric channel with sinusoidal wall variations. Hayat et. al. [23] examined the 

magnetohydrodynamic (MHD) peristaltic flow of a Carreau fluid in a channel with 

different waveforms.  



Due to the non – linear dependence, the analysis of the behaviours of the non – 

Newtonian Carreau fluids tends to be more complicated and subtle in comparison with 

that of the non – Newtonian fluids. In general, the equations of motion for non – 

Newtonian fluids are of higher complexity than the Navier – Stokes equations and thus 

one needs some conditions in addition to the usual adherence boundary condition. Hence, 

there is a need for a method which provides a means of obtaining other conditions 

necessary for the solution. One of such methods is the Runge - kutta shooting method. In 

addition, to best of author’s  knowledge the combined effects of the suction, thermal 

radiation  and thermal diffusion on the convection heat and mass transfer flow in a 

Carreau fluid have to not been studied.  

Thus, the objective of this paper is to investigate numerically the convection heat and 

mass transfer in a hydromagnetic Carreau fluid past a vertical porous plate in presence of 

thermal radiation and thermal diffusion. The results are presented as velocity, 

temperature and concentration profiles for different values of parameters entering into the 

problem. The effects of suction, magnetic field, thermal radiation and thermal diffusion 

on the skin friction, rate of heat transfer and mass transfer are presented numerically in 

tabular form. 

Mathematical Formulation 

Consider an unsteady convection flow of a generalized Newtonian Carreau fluid past a 

moving porous plate. Let the x – axis be taken along the plate in the vertically upward 

direction and the y – axis be taken normal to it. Let u and v be the velocity component 

along the x and y directions, respectively. If  x- axis is chosen along the plate and y – axis 

perpendicular  to it, then the investigated flow does not depends on x. Hence, the 

continuity equation becomes 

 0
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The surface is maintained at a constant temperature Tw which is higher than the constant 

temperature T∞ of the surrounding and concentration Cw is greater than the constant 

concentration C∞. The fluid properties are assumed to be constant. Since the plate is 

vertically upward, the governing equations of continuity, momentum, energy and 

concentration for the unsteady flow can be written as; 



2

3

2

1

2

2

2

22

0

2

2

2

2

2

1
2

1
21



































































 












































nn

y

u

y

u

y

un

y

u

y

u

y

u
v

t

u


)()( *

2

00

  CCgTTg
u




                                                                (3) 

y

q

ky

T

y

T
v

t

T r


















 


2

2

                                                                                (4) 

2

22

y

T

T

KD

y

C
D

y

C
v

t

C

m

Tm
m


















                                                                     (5) 

Where, the radiative heat flux term is simplified by making use of the Rosseland 

approximation as 
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And the last term on the right-hand side of the concentration equation (5) signifies the 

thermal diffusion effect.  The appropriate boundary conditions are;  

Uu  ,       wTT  ,    wCC       at       0y                                                      (7) 

,0u       TT ,     CC   as      y ,  0t                                        (8) 

Where U (at the time t = 0 the plate is impulsively set into motion with the velocity U   ) 

is the plate characteristics velocity. 

 

Method of solution 

Introducing a dimensionless similarity variable, 
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Where A is constant and t is the time, such that,  
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Where, 0c  is the suction parameter. Using equations (6), (9), (10), (11) and (12) in 

equations (3), (4) and (5). The reduced governing equations read: 
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The new boundary conditions are:  

1)0( f , 1)0(  , 1)0(  , 0)( f , 0)(  , 0)(                                  (16) 

Where, Gr is the thermal Grashof number, Gc is the solutal Grashof number, Pr  is the 

Prandlt number, Sc is the Schmidt number, Sr is the Soret number, M is the magnetic 

field parameter, dR  is the radiation parameter, 
t

UA 222

1


   is the material parameter 

and the prime symbol denotes derivative with respect to . 

Reduce the boundary valued problems (12), (13) and (14) to an initial valued problem. 

Let, 1x , fx 2 , fx 3 , 4x ,  5x  , 6x  and 7x . Then, the following 

system is obtained; 
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with the initial conditions; 































































1

1

1

0

)0(

)0(

)0(

)0(

)0(

)0(

)0(

7

6

5

4

3

2

1



x

x

x

x

x

x

x

                                                                                                       (18) 

Equation (17) together with the initial condition (18) is solved using Runge – Kutta 

shooting method. The values of , and  are obtained such that the boundary 

conditions (16) are satisfied.  

In a shooting method, the missing (unspecified) initial condition at the initial point of the 

interval is assumed, and the differential equation is then integrated numerically as an 

initial valued problem to the terminal point. The accuracy of the assumed missing initial 

condition is then checked by comparing the calculated value of the dependent variable at 

the terminal point with its given value there. If a difference exists, another value of the 

missing initial condition must be assumed and the process is repeated. This process is 

continued until the agreement between the calculated and the given condition at the 

terminal point is within the specified degree of accuracy.  

Infact, the essence of this method is to reduce the boundary value problem to an initial 

value problem and then solved using the fourth order Runge – Kutta shooting technique 



to find  )0(f ,  )0(  and  )0( . It is observed from (15) that the velocity, 

temperature and concentration decrease with increase in the value of  .Theoretically, the 

width for the fluid flow is given as ],0[  , but it can be assumed that the flow width 

has a theoretical maximum. Using this approximation, the flow width of the fluid flow is 

taken as ]1,0[  

  The numerical results are presented in table 1 and graphically in figures 1- 7. 

Figure 1: Velocity profile for various values of the Suction parameter, C
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Figure 2: Temperature profile for different values of the suction parameter, C
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Figure 3: Concentration profile different values of the suction parameter, C
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Figure 4: Velocity profile for various values of the Magnetic field parameter, M
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Figure 5: Concentration profile flor different values of the thermal diffusion parameter (Soret number), Sr
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Figure 6: Concentration profile for different values of the Schmidt number, Sc
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Figure 7: Temperature profile for different values of the Radiation parameter, R
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Skin friction, rate of heat and mass transfer 

We will now calculate the physical quantities of engineering primary interest, which are 

the local wall shear stress, local surface heat flux and the local mass flux respectively 

from the following definitions  
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Where n is the flow index, k is the thermal conductivity and mD  is the diffusivity. And 

the dimensionless skin friction coefficient  ,fC  Nusselt number, Nu, and the Sherwood 

number, Sh, are given by; 
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is the modified  Reynolds number. 

These dimensionless values of the local skin friction coefficient, local Nusselt number 

and local Sherwood number are obtained from the process of numerical computations and 

are presented in tables 1 – 7. 

Discussion of result 

 

The combined effect of the suction, thermal radiation, thermal diffusion and the magnetic 

field parameter on the convection heat and mass transfer in a Carreau fluid is considered 

for a shear thinning case. The numerical results were obtained for values of the power 

index, suction, Grashof number, material parameter, Prandtl number, magnetic field 



parameter, Schmidt number, thermal diffusion (Soret number), thermal radiation 

parameter; 3.0,9.0,5.0,6.0  Gcn , ,75.0,75.0Pr  M ,5.0Sc 5.0Sr  5.0, dR .  

These values are then varied to observe their effects on the heat and mass transfer 

problem. The numerical results are presented as the figures 1 – 7 and in tables 1 – 8. 

 Figures 1 to3 show the effect of the suction parameter on the velocity, temperature and 

concentration profiles. It is clearly shown that the velocity of the fluid flow decreases 

with increase in the suction parameter, the temperature and concentration of the fluid 

decrease with increase in the suction parameter. Figure 4 shows that velocity of the fluid 

flow decreases as the magnetic field parameter increases, this is an indication that the 

force which tends to oppose the fluid flow increases with increase in the magnetic field 

parameter. Figures 5, shows that the concentration of the fluid decreases with increase in 

thermal diffusion parameter. Figure 6 shows that the concentration of the fluid increases 

with increase in the Schmidt number, and figure 7 shows that temperature of the fluid 

decreases with increase in the thermal radiation parameter.  

Table 1: Numerical result for different values of the power index 

n  Nu  Sh  RefC  

0.3 1.5672 1.2108 - 0.95678236 

0.6 1.5672 1.2108 - 0.99405718 

0.9 1.5672 1.2108 - 1.03260556 

 

From table 1, the skin friction decreases with increases in the power index, while the 

Nusselt and Sherwood number remain constant. The rate of the fluid flow increases with 

increase in the power index. Thus, a fluid with a higher power index flows faster. 

 

Table 2: Effect of the Material parameter 

  Nu  Sh  RefC  

0.3 1.5672 1.2108 - 0.99405718 

0.8 1.5672 1.2108 - 0.95477154 

1.5 1.5672 1.2108 - 0.87756947 

2.5 1.5672 1.2108 - 0.82378404 

It is clear from table 2 that as the Material parameter of the fluid increases the skin 

friction increases. The material parameter among other properties dictates the physical 

texture of the fluid, and it causes a slight increase in the rate of fluid flow. 

 



Table 3: Effect of the Suction parameter 
c  Nu  Sh  RefC  

0.5 1.5672 1.2108 - 0.99405718 

1.0 2.0941 1.3784 - 1.32621599 

1.5 2.6886 1.5588 - 1.69732102 

2.5 4.0117 1.9736 - 4.58123346 

 

Table 3 shows that the skin friction decreases with increase in the suction parameter 

while the Sherwood number and the Nusselt number increase with increase in suction 

parameter. Hence, rate of heat and mass transfer increases with increase in the suction 

parameter.  

Table 4: Effect of the Magnetic field parameter 

M  Nu  Sh  RefC  

0.75 1.5672 1.2108 - 0.99405718 

1.5 1.5672 1.2108 - 1.22144897 

3.0 1.5672 1.2108 - 1.61205399 

4.5 1.5672 1.2108 - 1.93926121 

From table 4, the skin friction decreases with increase in the Magnetic field parameter. 

The rate of heat and mass transfer are not affected by the Magnetic field parameter. 

Therefore, as the Magnetic field parameter increases the boundary layer thickness 

becomes thin. 

Table 5: Effect of the Radiation parameter 

R  Nu  Sh  RefC  

1.5 0.5812 1.4809 - 0.93100548 

2.0 0.7709 1.4271 - 0.94586424 

3.0 0.88055 1.3965 - 0.95361394 

5.0 0.9391 1.3803 - 0.95765410 

Table 5 shows that the skin friction decreases slightly with increases in the thermal 

Radiation parameter, the Nusselt increases with increases in the thermal Radiation 

parameter, while the Sherwood number decreases with increases in the thermal Radiation 

parameter. Thus, rate of heat transfer increases with the thermal Radiation parameter and 

mass transfer decreases with increase in the thermal Radiation parameter. 

Table 6: Effect of the Schimdt number 

Sc  Nu  Sh  RefC  

0.5 1.5672 1.2108 - 0.99405718 

1.25 1.5672 0.9817 - 0.97812542 



2.25 1.5672 0.6762 - 0.95670896 

3.0 1.5672 0.4470 - 0.94068815 

 

It is clear from table 6 that the skin friction increases with increase the Schmidt number, 

while the Sherwood number decreases with increase the Schmidt number. And this shows 

that the rate of mass transfer decreases with increase the Schmidt number. 

 

Table 7: Effect of the Soret number 

Sr  Nu  Sh  RefC  

0.5 1.5672 1.2108 - 0.99405718 

1.0 1.5672 1.0581 - 0.98341593 

1.5 1.5672 0.9053 - 0.97274111 

2.0 1.5672 0.7525 - 0.96203274 

In table 7, the skin friction increases with increase in the thermal diffusion parameter, 

while the Sherwood decreases with increase in the thermal diffusion parameter. Hence, 

the rate of mass transfer decreases with increase in the thermal diffusion parameter. 

Conclusion 

A numerical study of the convection heat and mass transfer in a hydromagnetic Carreau 

fluid past a vertical porous plate in presence of thermal radiation and thermal diffusion 

has been carried out. The results obtained clearly shown the effects of the suction, 

thermal radiation, thermal diffusion, thermo - diffusion and the magnetic field parameter 

on the flow, heat and mass transfer. The study finds application in many industrial 

processes such as sanitary fluid transport, transport of corrosive fluids and blood pumps 

in heart lung machines. And the following conclusions are drawn; 

 Increase in the power index, magnetic field and material parameters cause slight 

increase in the fluid flow rate. 

 The rate of heat and mass transfer increase with increase in the suction parameter. 

 The rate of heat transfer increases with the thermal Radiation parameter and mass 

transfer decreases with increase in the thermal Radiation parameter. 

 Increase in Schimdt number and thermal diffusion (Soret number) results in 

decrease in the rate of mass transfer. 
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Nomenclatures 

T is the temperature 

C is the fluid concentration 

mD  is the coefficient of mass diffusivity 

k is the thermal conductivity  

  is the kinematics viscosity 

n is the flow index,  

k is the thermal conductivity  

mD  is the diffusivity.  

,fC the dimensionless skin friction  

Coefficient  

Nu   Nusselt number  

Sh, Sherwood number,  

 

Gr is the thermal Grashof number, 

Gc is the solutal Grashof number,  

Pr  is the Prandlt number,  

Sc is the Schmidt number,  

Sr is the Soret number,  

M is the magnetic field parameter,  

dR  is the radiation parameter, 

TK  is the thermal diffusion ratio  

 mT is the mean fluid temperature  

 g is the acceleration due to gravity  

C is the uniform concentration of the 

fluid far away from the plate  

T  is the uniform temperature  of the 

fluid far away from the plate 

wC is the uniform concentration of the 

fluid at the plate surface 

 wT  is the uniform temperature  of the 

fluid at the plate 

Greek 

  is the thermal diffusivity 

*  is the Stefan Boltzmann constant  

  is the mean absorption coefficient. 

  is the density 

   is the electrical conductivity  

0   is the constant magnetic flux density  

  is the volumetric expansion – 

coefficient due to temperature 

*  is the volumetric expansion – 

coefficient due to concentration 

1  is the material parameter and the 

prime symbol denotes derivative with 

respect to . 
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