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A new algorithm based on the lattice Boltzmann method and the control volume 
finite element method is proposed as an hybrid solver for two dimensional tran-
sient conduction and radiation heat transfer problems in an optically emitting, 
absorbing and scattering medium. The lattice Boltzman method was used to solve 
the energy equation and the control volume finite element method was used to 
compute the radiative information. The advantages of the proposed methodology 
is to avoid problems that confronted when previous techniques are used to pre-
dict radiative heat transfer, essentially, in complex geometries and when there is 
scattering and/or non-black boundaries surfaces. This method combination, 
which is applied for the first time to  solve this unsteady combined mode of heat 
transfer, has been found to accurately predict the effects of various thermo-
physical parameters such as the scattering albedo, the conduction-radiation pa-
rameter and the extinction coefficient on temperature distribution. The results of 
this method combination were found to be in excellent agreement with the lattice 
Boltzmann/collapsed dimension method this proposed numerical approach in-
clude, among others, simple implementation on a computer, accurate CPU time, 
and capability of stable simulation. 

Keywords:  lattice Boltzman method, control volume finite element method,  
         participating medium, coupled conduction-radiation 

Introduction 

Over the last decay, the lattice Boltzmann method (LBM) has met with significant 

success for the numerical simulation of a large variety of problems in science and engineering 

[1-7]. Traditional computational fluid dynamics (CFD) techniques solve the macroscopic 

transport equations of fluid flow, mass and heat transfer by directly discretizing them. 

Common numerical methods for solving the Navier-Stokes equations and the energy equation 

involve discretization of these non-linear partial differential equations by finite difference 

methods (FDM), finite volume methods (FVM), etc. LBM uses, on the other hand, kinetic 

equation models and corresponding relations between the actually simulated statistical 

dynamics at a microscopic level and the transport equations at the macroscopic level. This 

bottom-up approach of the LBM assures by construction the conservation of the relevant 
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macroscopic quantities such as mass and momentum [1-5]. LBM inherits many of the 

advantages of molecular dynamics and kinetic theories, due to its microscopic origin. But it 

does not use complicated kinetic equations. In comparison with the conventional CFD 

methods, the advantages of LBM include simple calculation procedure, simple and efficient 

implementation for parallel computation, easy and robust handling of complex geometries, 

and others [1-13]. The LBM is second-order accurate in time and space, which is sufficient 

for most engineering applications and, provided that boundaries are appropriately treated, 

makes LBM competitive for complex domain geometries. Literature deals with many 

applications to the conduction-radiation heat transfer problems, the LBM was found to 

provide accurate results and compatibilities of the LBM for solution of energy equation and 

the discrete transfer method (DTM) [14], the collapsed dimension method (CDM) [15], the 

discrete ordinate method (DOM) [16] and the finite volume method (FVM) [17] for the 

determination of radiative information were established.  

The aim of present study is to establish the compatibility and the performance of the 

LBM for the solution of the energy equation and the control volume finite element method 

(CVFEM) [18-20] for the determination of radiative information. To that end, a benchmark 

problem dealing with transient conduction radiation heat transfer in a 2-D enclosure is 

considered. The effects of the scattering albedo, the conduction-radiation parameter and the 

grid size are studied. Results of the LBM-CVFEM and the LBM-CDM are compared against 

each other. Effects of the spatial and angular resolutions on the results are also reported. 

Governing equations 

In the absence of convection and heat generation, for a homogeneous medium, the 

energy equation is given by: 
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where r

 
is the density, cp – the specific heat, k – the thermal conductivity, and Rq  represents 

the radiative heat flux. 

For the RTE, an absorbing, emitting and scattering grey medium can be written as: 
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where ( , )I s  is the radiative intensity, which is a function of position s and direction  , ka 

and kd 
are absorption and scattering coefficients, respectively; Ib(s) – the blackbody radiative 

intensity at the temperature of the medium; and F – the scattering phase function from the 

incoming  direction to the outgoing direction  . The term on the left-hand side represents 

the gradient of the intensity in the direction  . The three terms on the right-hand side 

represent the changes in intensity due to absorption and out-scattering, emission, and in-

scattering, respectively.  

The radiative boundary condition for eq. (2), when the wall bounding the physical 

domain is assumed grey and emits and reflects diffusely, can be expressed as: 
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where wn  is the unit normal vector on the wall and ew represents the wall emissivity. 

Numerical resolution of the radiative information 

Angular and spatial discretization 

In the CVFEM, the spatial and angular domains are divided into a finite number of 

control volumes and control solid angles, respectively. For angular discretization, the direc-

tion of propagation  is defined by the couple (q, j) where q and j arethe polar and 

azimuthal angles, respectively.The total solid angle is subdivided into  NN  control solid 

angles as depicted in fig. 1, where Dj = (j
+
 – j

–
) = 2p/Nj and Dq = p/Nq. The Nj and Nq, 

represent numbers of control angles in the polar and azimuthal directions, respectively. These 

NjNq 
control solid angles are non-overlapping, and their sum is 4p. The control solid angle 

DW
mn

 is given by fig. 1(a): 

 

 

 
Figure 1. (a) Angular discretization, (b) Spatial discretization in ( x ye e,  ) plan, (c) Control volume DVij, 

(d) Subvolume cross-section in ( x ye e,  ) plan 
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For spatial domain is subdivided into three-node triangular elements. As shown in 

fig. 1(b), a control volume DVij is created around each node N by enjoining the controids Gl 
of 

the elements to midpoints Ml and Ml+1 of the corresponding sides. Each element has two 

faces, MlGl and GlMl+1; bounding the sub-control volume around N; and each control volume 

is constructed by adding all subvolumes NMlGlMl+1N, fig. 1(c). The obtained mesh is 

composed of NxNy 
control volumes DVij. The Nx and Ny represent numbers of nodes in x and y 

direction, respectively. Dx and Dy represent the regular steps in x and y-direction, fig. 1(b). 

Discretized RTE 

Integrating eq. (3) over the control volume DVij, fig. 1(c), and the control solid angle 

DW
mn

 fig. 1(a), we obtain: 
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where A
N
 represents the surface of the control volume DVij. 

In order to approximate the integrals that represents the extinction; emission and in-

scattering contributions, the radiation intensity is considered constant within DVij and DW
mn

 an 

is evaluated at the centroid of the control volume and at the centre direction of the control 

solide angle. Then, extinction; emission and in-scattering terms in eq. (5) are, respectively, 

expressed by the following expressions: 
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where F
mnm¢n ¢ is the averaged scattering phase function from the control solid angle DW

m¢n¢ to  

the control solid angle DW
mn

. The term on the left-hand side in eq. (5) can be written as: 
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The surface N

lA of a subvolume dVlij is formed by four faces, fig 1(d). 

To approximate the integral of the radiative intensity over each of the control 

volume surfaces (panels) within an element fig. 1(d), the intensity is evaluated at the centroid 

of the panel and it is assumed to prevail over it. Then eq. (8) becomes: 
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For an internal grid, the integral on faces N

lA4  and N
lA5  annul themselves since the 

normals of these surfaces are browsed in the inverse senses for two neighboring elements. 

Then, 1R is set as zero. To evaluate the quantity 1R , the radiative intensity is evaluated at the 

centre direction of the control solide angle mn and at the middle of faces. 
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In order to calculate radiative intensities mn

pilI , the skew positive coefficient upwind 

(SPCU) interpolation scheme [19] is used. For example, the value of the intensity on lp1 , fig. 

1(d), is expressed as: 
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Using the following functions: 
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p lI can be written in the following form: 
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These equations can be expressed as the following matrix form: 
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So the amount 1R can be expressed as 
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Replacing N by the superscript ij indicated in fig. 1, eq. (19-a) can be written as: 
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Replacing the different terms of eq. (5) by their developed expressions given by eqs. 

(6 a)-(6c) and (20), we obtain: 
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The integration of the RTE, eq. (2), over a boundary control volume ijV and a 

control solid angle mn  is calculated using the same strategy adopted for an interior control 

volume and with taking into account the boundaries wall contribution given by eq. (3). It is 

clear that in the discretized RTE obtained by CVFEM (eq. (20)), six nodes are used for each 

calculation point instead of four nodes when FVM is used, and therefore, the accuracy of the 

numerical resolution process is improved. To solve the algebraic system by a direct method or 

an iterative method in which all the intensities ( )mn
jiI are calculated simultaneously after each 

iteration, the establishment of a matrix system is required. 

Matrix formulation 

In order to formulate the matrix system of the discretized equations, the radiation 

intensity mn
ijI on point N defined by (i,j) and in direction of propagation (m,n) will be 

represented by I(l) where l is expressed in terms of i, j, m and n as follow: 
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The term which appears in eq. (24) represents the vector that contains the medium 

and the boundaries emission contributions. The coefficients of this vector are given by: 
 

 
( ) mn

ijl   (26) 
 

This matrix formulation of the discretized RTE permits the use of many iterative 

method employed in CFD such as Conjugate Gradient methods, Lanczos method, Jaccobi 

method.In the present work, the obtained matrix system is solved using the conditioned 

conjugate gradient squared method (CCGS). Once the intensity distributions are known, 

radiative information qR required for the energy equation is computed from 
 

 4
a

4

q (4 ( , )dR k T I s





      (27) 

LBM for energy equation 

In order to solve the energy equation, the BGK (for Bhatnagar, Gross and Krook, 

[1-13]) lattice Boltzmann scheme is used. The lattice Boltzmann method solves the 

continuous BGK equation on a regular grid in two steps which are applied iteratively to the 

whole domain at each time step. So, the starting point of the LBM is the kinetic equation 

which for a 2-D geometry is given by: 
 

 (0)(r, ) (r, )
c (r, ) ( (r, ) (r, )), 0,1,..,i i

i i i i

f t f tF
f t f t f t i b

m


 

 
     

 
 (28a) 

 
 

2

1 3

2
p

k t

c c


 


    (28b) 

 
(0)

if is the equilibrium distribution function, t is the relaxation time, fi is the particle 

distribution function denoting the number of particles at the lattice node r( , )x y and time t 

(25) 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TGV-511G1R4-1&_user=4873709&_coverDate=12%2F31%2F2010&_alid=1627679358&_rdoc=1&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5264&_sort=r&_st=13&_docanchor=&view=c&_ct=36664&_acct=C000053505&_version=1&_urlVersion=0&_userid=4873709&md5=400784f910d36e07f46a582fdc0ef047&searchtype=a#bib35
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moving in direction i with velocity ic along the lattice link r ci t   connecting the nearest 

neighbours and b is the number of directions in a lattice through which the information 

propagates. In the absence of force term and using the single time relaxation model of the 

BGK approximation, the discrete Boltzmann equation is given by [1-13] 
 

 (0)(r, ) 1
c (r, ) [ (r, ) (r, )], 1,2,...i

i i i i

f t
f t f t f t i b

t 


     


 (29) 

 
After discretization, eq. (29) can be written as [1-13] 

 
 (0)(r c , ) (r, ) [ (r, ) (r, )]i i i i i

t
f t t t f t f t f t




       (30) 

 

 
Figure 2. (a) Diagram of the D2Q9 lattice, (b) arrangement of lattices 
in a 2-D rectangular geometry 

 

The nine velocities ic
 
and their corresponding weights wi in the D2Q9 lattice are the 

following: 

 
0 (0,0)c   (31a) 
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In case of heat transfer problems, the temperature is obtained after summing fi over 

all direction [14], i. e., 
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 (0) (r, ) (r, )i if t T t  (32b) 

 
Equation (30), with definitions of temperature (r, )T t and equilibrium function 

(0) (r, )if t given in eqs. (32a) and (32b) provide solution of a transient heat conduction 

problem without source term and within a Cartesian configuration in the LBM. To incorporate 

the volumetric radiation, eq. (30) gets modified to: 
 

 (0)(r c , ) (r, ) [ (r, ) (r, )] ( ) q (r, )i i i i i i R

p

t t
f t t t f t f t f t w t

c 

 
         (33) 

 
The bounce-back scheme [14] is used in the current study for treating boundary 

conditions. 

Results 

Transient conduction and radiation heat transfer in a 2-D square enclosure is 

considered. In this, initially the entire system is at temperature Ti = TN = TW = TE. For t > 0 the 

south boundary temperature is raised to TS = 2T. The enclosed grey-homogeneous medium is 

absorbing, emitting and isotropically 

scattering. In the LBM-CVFEM, non-

dimensional  time step Dx = 10
–4

(x = 

= ab2t) was considered and steady-

state condition was assumed to have 

been achieved when the maximum 

variation in temperature at any location 

between two consecutive time levels 

did not exceed 10
–5

. We investigate 

first the effect of LBM grid size on 

non-dimensional temperature T/Ts by 

comparing the steady-state (SS) results 

along the centreline x/X = 0.5 of the enclosure. Results obtained for aspect ratio X/Y = 1, 

extinction coefficient b = 1.0, scattering albedo w = 0.5, and conduction-radiation parameter 

N = 0.1, are listed in tab. 1. 

It is seen that on grids 2020 and larger, the maximum variation in temperature is 

less than 5·10
–3

. The trend observed with other sets of parameters was similar, and need not be 

reproduced here. It was decided to use 20 20 grids as basis for the subsequent computations. 

To facilitate the comparison of results, all further reported data were taken only at x/X = 0.5. 

They represent the normalized temperature T/Ts to the “south” wall, which is kept at 

temperature Ts as function of the normalized distance y/Y. Comparison of the LBM-CVFEM 

and  the  LBM-CDM [14]  temperature results for the conduction-radiation parameter values 

N = 0.01, 0.1 and 1.0, is shown in fig. 3(a)-3(f). Results are obtained for an extinction 

coefficient b = 1.0, a scattering albedo w = 0.0 and black boundaries. It is seen from these 

figures that at all instants x, LBM-CVFEM and reference’s results are in a good agreement. It 

can also be seen that at certain times, there is mismatch in the transient results of the two 

methods. This is in agreement with a general observation (tab. 2) that the LBM-CDM 

converges faster than the LBM-CVFEM to a steady-state (SS). In figs. 3(d)-3(f), extinction 

coefficient b = 1.0 and conduction radiation parameter N = 0.01, transient temperature 

Table 1. Effect of grid size in the LBM-CVFEM on 
steady state non-dimensional temperature at three  
locations, along the centerline x/X = 0.5 

Resolution y/Y = 0.25 y/Y = 0.5 y/Y = 0.75 

8  8 0.88068 0.65539 0.61657 

12  12 0.85569 0.67419 0.58855 

16  16 0.82747 0.67315 0.58472 

20  20 0.81809 0.66915 0.58130 

25  25 0.81716 0.67275 0.58652 
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Figure. 3 Comparison of non-dimensional centerline temperature in a 2-D square enclosure at different 

instants   for (a) N = 0.01, (b) N = 0.1, (c) N = 1.0, (d)  = 0.0, (e)  = 0.5 and (f)  = 0.9 
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results of the LBM-CVFEM and the LBM-CDM are compared for two values of the 

scattering albedo w = 0.5 (scattering comparable to absorption fig. 3(e) and w = 0.9 – strong 

scattering fig. 3(f)). For the two cases, it can be seen that the results of the two methods agree 

very well. The LBM-CVFEM and the LBM-CDM numerical approaches are, also, compared 

in the case of a weakly participating medium (b = 0.1) and a good agreement is obtained (fig. 

4). 

The effect of the aspect ratio is illustrated in 

figs. 5(a)-5(b). In order to present it along with 

the effect of N and w, only steady state results 

are presented. Two values of the aspect ratio are 

considered X/Y = 1.0 and X/Y = 10.0. For each 

value scattering and non scattering medium are 

tested and the calculation results show that the 

developed numerical approach predicts correctly 

the coupled conduction-radiation problems. 

 
Figure 4. Comparison of steady state  
non-dimensional centerline temperature in 

a 2-D square enclosure for extinction 
coefficient b = 0.1 
 

 
Figure 5. Steady state 2D LBM-CVFEM results for the non-dimensional centerline temperature (a) at 
aspect ratio X/Y = 1.0 and X/Y = 10.0 for different N, (b) at aspect ratio X/Y = 1.0 and X/Y = 10.0 for 
different w 

Table 2. Comparison of the number of iterations  
required to obtain steady-state solutions with  

the LBM-CDM and the LBM-CVFEM for 20 20 
control volumes/lattices 

N w LBM-CDM LBM-CVFEM 

0.01 0 642 670 

0.01 0.5 823 886 

0.01 0.9 1449 1593 

0.1 0 1682 1772 

1 0 1894 2078 
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Conclusions 

The lattice Boltzmann method (LBM) was used to solve the energy equation of 

transient conduction-radiation heat transfer problem in a 2-D square geometry containing an 

absorbing, emitting and scattering medium. Radiative source term in the energy equation was 

computed using the control volume finite element method (CVFEM). At our knowledge, the 

combination LBM-CVFEM is used for the first time to solve the conduction-radiation 

problems. In order to examine the accuracy and the computational efficiency of the proposed 

method, several test cases were investigated and obtained results were compared with those of 

the LBM-CDM (lattice Boltzmann method-Collapsed Dimension Method). For all cases, a 

good agreement was obtained and the two methods have a comparable number of iterations. 

On the other hand, the results presented here and the efficiency and robustness of LBM and 

CVFEM, allow the expectation that LBM-CVFEM will have advantages over conventional 

energy equation solvers, especially for problems with complex geometry. 

 

Nomenclature 

NA    –  surface of the control volume DVij 
b    –  number of directions in a lattice  

ic    –  velocity, [ms–1] 

pc     –  specific heat capacity, [m2s–1K–1] 

if     –  particle distribution function, [K] 
(0) ( , )if r t  –  equilibrium function, [K] 

G        –  incident radiation, [Wm–2] 

lG     –  controids  
I     –  radiative intensity, [Wm–2sr–1] 

( )bI s     –  blackbody radiative intensity  
i     –  direction  
k      –  thermal conductivity, [Wm–1K–1] 

ak     –  absorption coefficient, [m–1]  

dk     –  scattering coefficients, [m–1] 
N     –  conduction radiation parameter, [–] 

wn     –  unit normal vector on the wall  

Rq    –  radiative heat [Wm–2] 
r    –  lattice node  

r    –  lattice link  
s     –  position, [m]  

(r, )T t    –  temperature, [K] 
t    –  time, [s] 

t   –  time step [s] 

ijV     –  control volume, [m3] 

lijV    –  subvolume, [m3] 
,x y    –  Cartesian co-ordinates 

 

x , y   –  regular steps  

Greek symbols 

  –  extinction coefficient, [m–1] 

w  –  wall emissivity  
  –  polar angle, [rad] 
  –  dimensionless time, [–] 
  –  density, [kgm–3] 
  –  Stefan-Boltzmanconstant, [Wm–2K–4] 
  –  relaxation time, [s] 
  –  scattering phase function ( )    

mnm n  
 –  averaged scattering phase function 

  –  azimuthal angle, [rad] 

  –  outgoing direction of propagation  
  –  incoming direction  

mn   –  control solid angle, [sr]  
  –  scattering albedo, [–] 

i  –  weights in D2Q9 lattice  

Subscripts 

b –  black body  
W –  wall index  
ref –  reference value  

Superscripts 

m,n,m¢,n¢ –  indices for directions 
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