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The control of fluid dynamics and mass transfer in separated and reattaching 
flow over a backward-facing step by a local forcing, is numerically studied using 
large eddy simulation.The control is realized by a sinusoidal oscillating jet at the 
step edge. The Reynolds number is varied in the range of 10000 ≤ Re ≤ 50000 
and the Schmidt number is fixed at 1.The obtained results show that the flow 
structure is modified and the local mass transfer is enhanced by the applied forc-
ing. The observed changes depend on the Reynolds number and vary with the 
frequency and amplitude of the local forcing. For all Reynolds numbers, the 
largest reduction of the recirculation zone size is obtained at the optimum forcing 
frequency St = 0.25. At this frequency the local mass transfer enhancement at-
tains the maximum. 
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Introduction 

The phenomena of separation and reattachment, involving heat and mass transfer, 

appear under a variety of flow condition and occur commonly in many engineering systems 

like gas turbine engines, heat exchangers, combustors, chemical reactors, electronic equip-

ment, and many others applications. So, to control flow separation, many investigations by 

numerous authors have been conducted in fluids engineering. A widely known case is the 

backward facing step flow problem which continues to draw interest from CFD community 

because of its rich flow physics in spite of its simple geometry. As a result, it has emerged as 

one of the benchmark problems. 

Separated flows show positive and negative effects depending on the application. A 

desired recirculation region as result of a separation is needed in combustion chambers to 

keep the fuel mixture in reaction zone for a complete combustion. By influencing a 

recirculation zone, the residence time behaviour in general mixing problem is altered. In 

contrast to that, negative consequences could be a loss in efficiency and noise production in 

turbo-machines or process plants such as diffusors. Thus, the suppression or desired control of 
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separation phenomena has been addressed in the mechanics community for many decades. 

There has been much research interest on the periodically perturbed turbulent separated flow. 

Singurdson [1], Chun et al. [2] are interested to the active control of the reattachment process, 

in which the enhancement of momentum transport across the separated shear layer plays a 

major role. Several authors are interested to the excitation of the instability and vortex 

formation inherent to the separated shear layer [3-7]. 

Other authors extended their research to study the effect of control on the thermal 

and mass transfers in the separated and reattaching flows. Among them, Oyakama et al. [8] 

showed an overall increase of heat transfer by introduction of a jet discharge from a slit 

located in the duct wall opposite a step. Velazquez et al. [9] are interested to influence of 

frequency and amplitude of pulsating flow behind the backward facing step. They showed 

that the heat transfer augment with pulsating amplitude. By application of a local periodic 

perturbation in the flow behind a backward facing step Mehrez et al. [10] demonstrated that 

the local heat transfer enhances. The largest enhancement is observed at the optimum Strouhal 

number of perturbation St = 0.25. Hwang et al. [11], showed that the mass transfer enhances 

by introduction pulsating components into the free stream over a blunt flat plate of finite 

thickness. Younsi et al. [12] showed that the application of a transverse magnetic field normal 

to the flow direction decreases the heat and mass transfer double diffusive flow in a 

trapezoidal porous cavity. Xu et al. [13] has performed a numerical investigation on a two 

dimensional pulsed turbulent impinging jet under large temperature differences between the 

jet flow and the impinging surface to examine the effect of temperature-dependent thermo-

physical properties along with pulsation of the jet on the local Nusselt number distribution on 

the target surface. 

The main objective of the present study is to simulate the fluid mechanics and mass 

transfer enhancement in separated and reattaching flow over a backward-facing step with 

local forcing. The large eddy simulation (LES) is employed to determine the characteristics of 

flow and mass transfer processes with local forcing. 

Mathematical formulation 

The calculations have been performed using a Navier-Stokes equations solver, 

which was developed between LETTM (Laboratoire d’Energétique et des Transferts Thermi-

ques et Massiques, Tunisie) and LIMSI (Laboratoire d’Informatique pour la Mécanique et les 

Sciences de l’Ingénieur, Orsay Paris, France) for the simulation of complex flows.  

The reasons of the choice of a 2-D approach are: 
 the studied configuration is not a boundary layer situation, since the production of kinetic 

energy and turbulent momentum transfers take place starting from the outside and not 

from the wall; this will modify the exchange process, 

 in their initial development from the point of separation, the shear layer and the recircula-

tion are supposed to be dominated, by transverse structures that remain coherent, and 

 it is supposed that if the transverse instabilities develop, the transverse component of vor-

ticity wz is always stronger than wx and wy. Furthermore, has the example of the vortices 

of Görtler, even the instabilities are present, there is an effect of compensation on the pa-

rietal transfer type upwash-downwash due to ascents and descents of fluid described by 

Liu [14].  
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These approximations were used by [15]. In addition, in our work, the depth step is 

greater than 10h, where h is the height of the step (see fig. 1), which allows us to consider, 

according to Dumoulin [16], that the flow is 2-D. 

Governing equations 

The conservation equations describing the flow are the time-dependent, 2-D Navier-

-Stokes equations and the conservation equation for a constant-property incompressible fluid. 

The principle of LES is to explicitly simulate the large scales of a turbulent flow 

while parameterizing the small scales. Therefore, one begins by filtering the Navier-Stokes 

equations to obtain an equation for the large-scale motion. As usual, the non-linearity of the 

Navier-Stokes equations makes it impossible to obtain an exact closed equation for any 

filtered quantity, meaning that a term analogous to the Reynolds-averaged Navier-Stokes 

(RANS) equations is produced and must be modelled. 

For the flows considered here, the basic governing equations are written in 

dimensionless form as: 
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The governing dimensionless parameter appearing in the above equations are the 

Reynolds number (Re = U0H/n) and the Schmidt number (Sc = n/D) based on the inlet 

average velocity (U0) and the domain height (H). n and D are, respectively, the kinetics 

viscosity and the mass diffusivity. S0 represents the source term. In these equations, iu and C 

are the filtered part, respectively, of the velocity and the concentration of mass substance. The 

modified pressure is given by p = p +1/3tkk. 

Subgrid scale model 

The subgrid scale Reynolds stress is estimated by means of the eddy viscosity model 

tij and the concentration turbulent flux qj are based on the eddy-viscosity model approach, tij 

= 2nt ijS  and qj = Dt( C / xj) where: 
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is the strain rate tensor of the filtered flow field. The eddy diffusivity is generally related to 

eddy viscosity nt with the help of the turbulent Prandtl number (Prt = nt/Dt = 0.6).  

Closure will be done when a model for the subgrid-scale (SGS) is chosen. 

Throughout this paper, we have chosen a mixed SGS model, which is a part of one parameter 
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(a) family of models proposed by Ta Phuoc [17] and Sagaut [18], and also used by Leonard et 
al. [19]. These models take into account both the large and the small scales.  

The turbulent eddy viscosity is given by a non-linear combination of the second 

invariant of the shear stress tensor S , the characteristic length scale L and the kinetic 

energy 2
cq of the highest resolved frequencies: 

 
 2 (1 )/2 (1 )

t m c( )c S q   
 

This can be viewed as a non-linear combination of the Smagorinsky [20] and the 

mixing-length model [21]. For a = 0 and 1, the mixing length and the Smagorinsky models 

are retrieved, respectively.  

When considering homogeneous isotropic turbulence and a = 0.5 (the value retained 

throughout this work), the theoretical value of the parameter cm is found equal to 0.04 on the 

basis of an equilibrium assumption between the dissipation and energy-transfer rates. The 

characteristic length scale is usually chosen to be L = (DxDy)
1/2

, where x and y are mesh 

sizes in the x- and y-directions, respectively. The second invariant of the shear stress tensor is 

given by: 
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and the kinetic energy 2

cq  is obtained by the scale similarity assumption and by means of a 

double-filtering technique: 2
cq  = (1/2)( i i

ˆu u )
2
, where (^) represents a filter with a cut-off 

length of 2L. The explicit filter used here is a local weighted-average iû  = (1/4) 1iu + (1/2) iu  + 

+ (1/4) 1iu . 

The mixed SGS model is a self-adapted model, because the eddy viscosity vanishes 

automatically at the wall and in the regions of the flow where all the structures are well 

resolved. 

Numerical procedure 

The time integration is performed using a time-splitting algorithm, also known as a 

prediction-projection algorithm, which allows one to decouple pressure from velocity. 

Assuming all quantities known at time n t, the solution at time (n + 1) t is obtained as 

follows. 

An intermediate velocity field U
*
 is first computed using a second-order time 

scheme. This time stepping combines a second order backward Euler scheme for the diffusion 

terms, with an explicit second-order Adams-Bashforth extrapolation for the non-linear terms, 

taking into account known pressure field. This step reads: 
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 In the second step, this intermediate velocity field is projected on to the subspace of di-

vergence free vector field using the Helmholtz decomposition theorem. This step reads: 
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 It is accomplished by taking the divergence of equation giving rise to a Poisson’s type 

equation for the incremental pressure: Dj = (3/2Dt)U*. 

 This equation is solved with a multigrid algorithm, in which the presence of internal 

blockings is automatically taken into account. 

 Once the pressure field is obtained, the new quantities at n + 1 are given by: 
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The space discretization uses a centred scheme for the diffusive fluxes and a second 

order upwind finite difference method by means of a quadratic upstream interpolation convective 

kinematics (QUICK) scheme for the convective terms, as proposed by Leonard [19]. 

Physical problem 

Two-dimensional flow behind a backward-facing step subjected to a sinusoidal 

forcing is simulated. The computational domain and the co-ordinates system are represented 

in fig. 1. Channel expansion ratio is fixed at H/h = 3 in all the study, where H and h are the 

heights of the domain and the step, respectively. The Reynolds number is varied in the range 

of 10000 ≤ Re ≤ 50000 and the Schmidt number is fixed at 1. To control the flow, Chun et al. 

[5], and Yoshioka et al. [6], experimentally introduced a periodic forcing by pulsating jet 

(blowing and suction of the fluid) at the edge of the step. In this work, we have simulated 

such a forcing by introducing a local velocity u = Asin(2πft) (fig. 1), where A and f are the 

amplitude and the frequency forcing, respectively. The mass source S is placed in the 

upstream of the step with a dimensionless concentration C = 1. At the channel inlet, a fully 

developed parabolic profile for the velocity is deployed. At the exit, convective boundary 

conditions for all variables ( u/ x = n/ x = C/ x = 0) are set. No-slip conditions are pre-

scribed at the body surfaces (u = v = 0). At the upper boundaries, symmetry conditions simu-

lating a frictionless wall are used u/ y = n = C/ y = 0. C is given as C = (c – cf)/(cs – cf) 

where cs is the concentration of mass source and cf is that of the fluid.  
 

 
Figure 1. Geometric configuration and boundary layer 
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Results and discussion 

Grid and time-step refinement 

In this work, all refinement tests are undertaken on non-forcing flow. 

The grid refinement tests have been performed using three uniform fine grids: 66 × 

× 33, 104 × 66, and 130 × 75 for Re = 33000. Results showed that when we pass from the 

first grid to the second, the reattachment length Xr/h undergoes an increase of 7.1%. When we 

pass from the second grid to the third, the reattachment length undergoes an increase of only 

1.12%. We conclude that the grid of 104 × 66 gives a good compromise between precision 

and calculation time and is sufficient to carry out a numerical study of this flow. 

The time-step Δt is conditioned by the Courant-Friedrich-Lewy (CFL) criterion. The 

adjustment of its value is undergone using the optimal 104 × 66 grid. Some preliminary runs 

showed that the dimensionless time interval tUo/H = 400 is large enough to reach the 

asymptotic regime considered in the current study. Accordingly, we have done three 

simulations with Δt equal to 8·10
–3

, 4·10
–3

, and 10
–3

. Obtained reattachment length values are 

Xr/h = 6.7, 7.2 (i. e an increase of 6.94% with respect to the previous value), and 7.28 (i. e an 

increase of only 1.1%), respectively. Basing on these data, and calculation-time consuming 

considerations, the time-step value is finally set to 4·10
–3

. It’s worth to remind here, that for 

Δt = 10
–3

, 400000 time steps are necessary to reach the asymptotic regime. This number falls 

down to 100000 for Δt = 4·10
–3

. 

Structure of non-controlled flow and test validation 

Structure of the non-controlled flow 

Figure 2 represents the average streamlines map of the mean flow for Re = 33000. 

We can clearly observe the development of a recirculation bubble formed by two vortical 

structures. The smaller vortex is located close to the lower step corner, and the main adjacent 

vortex is located immediately downstream. The large main vortex is limited above by the 

separating streamline which runs from the step edge down to the reattachment point (indicated 

in fig. 2. by a triangle). The same flow pattern was observed by Scharm et al. [22] and Bouda 

et al. [23]. The contours of the normal velocity component v are represented in the fig. 3. The 

negative contours are plotted using dashed lines and the positive contours using solid lines. 

The existence of negative v contours in the outer and downstream regions of the reattachment 

all around the recirculation bubble indicates that most of the flow is directed downward. This 

must be essentially due to the turbulent activity of the external big eddies towards the wall. In 

the reattachment region, we can observe also high values in the normal gradient of the v 

velocity component. Also, we can notice the presence of two counter-rotating vortexes in the 

recirculation bubble. This is in good agreement with the references [22, 23].  

 
Figure 2. Average streamlines of the non-forcing 
mean flow, Re = 33000 

 
Figure 3. Contours of the longitudinal velocity 
component, Re = 33000 
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Test validation  

For the purpose of validation of the present computational results, the flow without 

applied local forcing was validated, for different Reynolds number, against the benchmarked 

results of the recirculation region. In our simulations, the reattachment length for Re = 23000 

and Re = 33000 are Xr/h = 7 and Xr/h = 7.2, respectively. Experimental results of Chun et al., 
[2] are Xr/h = 7.2 and Xr/h=7.4. Errors committed are then 2.77% and 2.7% for Re = 23000 

and Re = 33000, respectively. This shows a good agreement between the results.   

Structure of controlled flow 

The variation of the normalized reattach-

ment length Xr/Xro (Xro is the reattachment 

length of non-controlled flow) is plotted in 

fig. 4. as a function of the forcing frequency 

(presented by a Strouhal number of the 

forcing, St = fh/Uo, based on the step height 

(h) and the inlet average velocity, U0) for 

various Reynolds number at the forcing 

amplitude A = 0.3Uo. In all Re cases, the 

reattachment length first decreases with 

increasing St before it reaches a minimum at 

the optimum forcing frequency (in term of 

reduces the reattachment length) St = 0.25, 

and then increases again. It is known that the 

shear layer above the recirculation bubble is 

the seat of formation of coherent vortical 

structures. These vortices that are convecting downstream are responsible for the entrainment 

out of the recirculation bubble. By stimulating their growth through applying a local forcing, 

the increased shear layer growth rate leads to a significant reduction of the recirculation 

bubble size and, hence, a reduction in residence time. The maximum  reduction is obtained at 

the optimum  forcing  frequency St = 0.25. This frequency is related to the shedding-type 

instability in the separated shear layer and is associated with the momentum exchange 

induced by the modulation of the separated shear layer [24]. We can observe also, for all 

forcing frequency, that the reduction ratio of the reattachment length increases with 

decreasing the Reynolds number. This shows that the control of reattachment length becomes 

more difficult by increasing the Reynolds number, because the energy brought by local 

forcing has a less significant effect by increasing this dimensionless number.  

Table 1 enables us to compare the value of the optimum forcing frequency simulated 

in the present work by those of experimental and numerical investigations. This table shows 

an excellent agreement with these works. 

The instantaneous isovalues of transversal velocity u and isovorticity are displayed 

for St = 0 (without control), St = 0.05, St = 0.25 (optimum forcing frequency), and St = 1 in 

fig. 5 at Re = 33000. We can observe clearly that the number of the vortical structures (dark 

zones for u-contours and clear zones for isovorticity) in the channel downstream of the step 

increases by local forcing. This is due to the change of the structure of recirculation bubble 

and  the  shedding  process  following  the  modification of  the separation phenomenon of the  

 
Figure 4. Normalized reattachment length 
Xr/Xro against St for various Reynolds number, 

A = 0.3Uo 
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Figure 5. Isovalues of transversal velocity u (on the top) and isovorticity (on 
the bottom) at tUo/H = 400 and Re = 33000. (a) St = 0 (non-controlled flow), 
(b) St = 0.05, (c) St = 0.25 (optimum), and (d) St = 1 

 

boundary layer at the step edge. It is noted that the quantity of energy added to the flow by the 

local forcing makes the flow more active but that varies with the forcing frequency. The tab. 2 

confirms the last idea, indeed the convection velocity uc of the vortical structures downstream 

the step increases by control and reaches a maximum value at the optimum forcing frequency. 

According to Yoshioka et al. [6], the additional of the momentum transfer by the activated 

turbulent motion achieved by the induced periodic local forcing is responsible to the 

modifications observed in the flow structure.   

 

 

 

 

Table 2. Convection velocity of vortical structures downstream the step  

Forcing frequency (St) 0 (n. c.) 0.05 0.25 (o. f.) 1 

Convection velocity (uc) 0.25Uo 0.44Uo 0.47Uo 0.4Uo 

n. c. – non-controlled; o. f. – optimum frequency 

 

Table 1. Optimum forcing frequency for separated and reattaching flow 

Authors Re Expansion ratio Optimum St 

Battacharjee et al. [3] 2.6-7.6·104 1.1 0.2-0.4 

Honami et al. [25] 3.85·104 1.5 0.2 

Chun et al. [2] 1.3-3.3·104 1.5 0.25-0.275 

Yoshioka et al. [6] 1.8-5.5·103 1.5 0.18-0.22 

Dejoan et al.* [26] 1.8-5.5·103 1.5 0.2 

Present work* 104-5·104 1.5 0.25 

* Numerical works 
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Mass transfer characteristics 

Effect of forcing frequency 

The  simulated  mass  transfer rate,  expressed by the local Sherwood number, Sh = 

= –h( C/ y)y=0, is plotted against the dimensionless longitudinal distance x/h for varying 

forcing frequency St in fig. 6 at A = 0.3U0 and Re = 33000. The earlier studies [10, 11] 

established that the mass (or heat) transfer coefficient attains a maximum around the 

reattachment point, and decreases after this point. The overall profiles the Sherwood number 

fits the above general description. A closer inspection of the plots of fig. 6 that, for the forcing 

amplitude A fixed, the location of the maximum Sherwood number Shm moves upstream by 

control. The minimum location observed at optimum local forcing St = 0.25. This is 

compatible with the observation that the size of recirculation bubble is reduced. We can note 

also, the augmentation of the Sherwood number in the recirculation bubble by application of 

local forcing. The maximum enhancement of Sh is observed with the optimum forcing 

frequency. This can be explained by the modification of the shear layer in the vicinity of the 

sharp separation edge by the local forcing. This modification gives rise to a large increase in 

the entrainment close to the separation edge, which increases the shear layer growth rate. As a 

consequence, the size of recirculation decreases and the mass transfer, between the flow from 

the inlet and the wall, enhances. 

 

 

 
Figure 6. Profiles of Sherwood number Sh for 

various forcing frequency St, A = 0.3Uo and  
Re = 33000 

 

 

Figure 7. Normalized maximum Sherwood 
number Shm/Shm0 against St for various Reynolds 
number, A = 0.3U0 

 

The normalized maximum Sherwood number Shm/Shm0 (Shm0 is the Sherwood 

number for non-controlled flow) against St for various Reynolds number at A = 0.3U0 are 

represented in fig. 7. For all Reynolds number Shm increases by application of local forcing. 

The maximum is obtained at the optimum forcing frequency St = 0.25. It is noted also that the 

ratio Shm/Shm0, for all forcing frequency, becomes more important by decreasing the 

Reynolds number. This shows, for A fixed, that the enhancement of the mass transfer, by the 

local forcing downstream of backward step becomes less important by augmentation of 

Reynolds number.  
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Effect of forcing amplitude 

The profiles of Sherwood number Sh are represented in fig. 8 for various forcing 

amplitude A while fixing the forcing frequency in the optimal value (St = 0.25) and the 

Reynolds number at 33000. With increasing the forcing amplitude, the augmentation of Sh, 

within the separation bubble, becomes discernible. The enhancement of Sh is more 

pronounced in the vicinity of reattachment point. After the reattachment point is passed, Sh 

decreases faster with increasing the forcing amplitude. It is noted also that the location of the 

maximum mass transfer shifts toward the step and the maximum Sherwood number Shm 

enhances by increasing the forcing amplitude. Physically, as the forcing effect increases, the 

entrainment of the high-energy fluid outside of the recirculation bubble becomes more 

vigorous by the action of the intensified recirculating flow driven by the motion of the large-

scale vortex. This causes a substantial augmentation of mass transfer, especially around the 

reattachment point [11].  

 

 
Figure 8. Sherwood number profiles for various 
forcing amplitude at St = 0.25 and Re = 33000 

Figure 9. Normalized Sherwood number Shm/Shm0 
against Re for different forcing amplitude A 

 

For testing the effectiveness of the control on the mass transfer, the ratio Shm/Shm0 

against the Reynolds number is plotted in fig. 9 for various forcing amplitude at St = 0.25. For 

all A Shm/Shm0 decreases by increasing the Reynolds number. It is seen also, for all Re, that 

the ratio Shm/Shm0 increases by increasing the forcing amplitude. These results suggest that 

the enhancement of the mass transfer observed at the optimum forcing frequency can be 

improved by augmentation of the forcing amplitude or/and by reduction of Reynolds number.  

To sum up, the overall convective mass transfer rate is found to increase when the 

local forcing is imposed. It is worth pointing out that this finding is analogous to the case of 

heat transfer [10, 27]. 

Conclusions 

Large eddy simulation was performed to portray the flow and mass transfer 

characteristics in the separated and reattaching flow. By introduction of periodic local forcing 

on the separation point, principal changes in flow characteristics are observed. The number 

and the convection velocity, of the vortical structures downstream the step, are enhanced. The 

reattachment length, for all Reynolds number, is reduced measurably. The largest reduction is 
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observed at the optimum forcing frequency, St = 0.25. The general pattern of Sherwood 

number profiles indicates that the mass transfer reaches a maximum around the reattachment 

point. The location of maximum Sherwood number is shifted upstream and the mass transfer 

in the recirculation bubble enhanced by the imposed forcing. These effects are noticeable as 

the forcing amplitude increases at the optimum forcing frequency. The influence of the 

periodic local forcing weakens by increasing the Reynolds number. 

Nomenclature 

A –  forcing amplitude, [ms-1] 
C –  dimensionless concentration  
 –  [= (c – cf /cs – cf)] 
c –  concentration, [molL–1]   
D –  mass diffusivity, [m2s–1] 
Dt –  eddy diffusivity, [m2s–1] 
f –  forcing frequency, [Hz]     
H –  computational domain width, [m]  
h –  step height, [m]  
Prt –  turbulent Prandtl number, [–] 
p –  pressure, [Pa]  
qc

2 –  kinetic energy, [J] 
qj –  concentration turbulent flux, [molm–2s–1] 
Re –  Reynolds number (= UoH/ ), [–] 
S  –  shear stress tensor 

ijS  –  strain rate tensor 
Sc –  Schmidt number (n/D), [–] 
Sh –  Sherwood  number [= (–h(∂C/∂y)y=0], [–]   
Shm –  maximum Sherwood number, [–] 
St –  Strouhal number (= fh/Uo), [–] 

 

Uo –  inlet average velocity, [ms–1] 
u –  longitudinal velocity, [ms–1] 
uc –  convection velocity, [ms–1] 
ui –  velocity vector, [ms–1] 
v –  transversal velocity, [ms–1] 
Xm  –  maximum mass transfer abscissa, [m] 
Xr –  reattachment length, [m] 
x, y –  Cartesian co-ordinates  

Greek symbols  

Λ –  characteristic length scale 
 –  kinematic viscosity, [m2s–1] 

t –  turbulent viscosity, [m2s–1] 
π –  modified pressure, [Pa] 
tij –  subgrid tensor 

Subscripts 

f –  fluid 
s –  source 
o –  non-controlled case  
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