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A novel algorithm for solving the classic Stefan problem is proposed in the 
paper. Instead of front tracking, we preset the moving interface locations and 
use these location coordinates as the grid points to find out the arrival time of 
moving interface respectively. Through this approach, the difficulty in mesh 
generation can be avoided completely. The simulation shows the numerical result 
is well coincident with the exact solution, implying the new approach performes 
well in solving this problem. 
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Introduction 

Classical Stefan problems involving melting or solidification, and generally referred 

to as ‘phase-change’ or ‘moving-boundary’ problem are important in many engineering 

applications [1-12], i. e., in the freezing of food, the solidification or the melting of metals in 

the casting. Since the solid-liquid interface is time-dependent and must be determined as a 

part of the solution, the problems are highly nonlinear and become complicated. Therefore, 

these problems in the most cases are required to be solved numerically. 

In the last decades various numerical techniques have been developed to solve 
moving boundary problem. In these methods the unknown interface position is mostly 
taken as part of the solution, to cause the difficulty in mesh generation to the numerical 
process. In the paper by presetting the positions where the moving interface will reach at 
different time and using these position coordinates as the grid nodes, we calculate the 
arrival time of the moving interface respectively. Through this approach, the difficulty in 
the mesh generation can be avoided completely. The algorithm is also very 
straightforward and efficient for its finite difference formulation.  
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Governing equations and numerical scheme  

Melting in a half-space (one-region problem) will be used as an example to 

demonstrate the numerical scheme. 

 

A solid at the solidification temperature 

Tm is confined to a half-space x > 0. At time 

t = 0, the temperature of the boundary 

surface at x = 0 is raised to T0 which is 

higher than Tm and maintained at that 

temperature for times t > 0. As a result 

melting starts at the surface x = 0 and the 

solid-liquid interface moves in the positive 

x-direction. Figure 1 shows the coordinates 

and the temperature profiles. The solid 

phase is assumed to be at a constant 

temperature Tm throughout, the temperature 

is unknown only in the liquid phase and 

then the problem becomes a one-region problem. At time t > 0 the task is to calculate the 

temperature distribution in the liquid phase and to obtain the location of the moving interface. 

The mathematical formulation for this problem is given as: 
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where Tl is the temperature of liquid phase, kl and al are thermal conductivity and diffusivity 

of liquid respectively, r is the density at solid-liquid interface, and r is the latent heat. 

Suppose the positions where the moving interface will reach at different times are 

known and are at equally spaced intervals (or non-uniform spaced intervals). As shown in 

figs. 2-4, these positions are denoted by s2, s3, … , sn+1, corresponding to the arrival time t1 = 

= Dt1, t2 = Dt2, … , tn = Dtn, but the arrival times are unknown, i. e., time variables t1, t2, …, tn, 

are to be determined. Then, these position coordinates will be used as the mesh grids. Let s1 = 

= x1 = 0, xi = si and Dx = xi – xi–1 = si – si–1 (i = 2, 3, 4…n) denote space step. 

For one-region problem, we just need to add the position of moving interface at 

different time, step by step on the melting side at an equal space interval, and use these 

position coordinates as the mesh grids to calculate the arrival time respectively. The 

numerical procedure for several of time steps is illustrated as below: 

(1) Determination of time step 1t  

In the paper throughout, forward or backward difference formulation and central 

difference formulation are used for the first and second-order derivatives, respectively.  

 
Figure 1. The melting in a half-space (one-region 
problem) 
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As shown in fig. 2, star mark denotes the position where the moving interface 

reaches at time step t1. The finite difference form of eq. (4) is: 
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Here 12 ssx . The superscript and 

subscript denote the time step and grid 

numbers, respectively. We note that 1
01T T  and 1

2 mT T  are known, so the temperatures of 

the nodes on the melting side are already known. Introducing 
2

l r x /kl and solving eq. 

(5) we have: 
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(2) Determination of time step t2 

Taking similar steps above, the discrete form for eq. (4) is (see fig. 3): 
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Since 0
2

1 TT and mTT 2
3  are known, 

so only the temperature of node 2 is to be 

determined 

The discrete form of eq. (1) at node 2 is:  
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It can be rewritten as: 
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where

2 /l lR x a , then we have the following equations: 
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Eqs. (8-9) are nonlinear. The algorithm for solving above equations will be 

discussed later. 

(3) Determination of time step kt  

Similarly, the following equations can be 

obtained (see fig. 4): 
 
 
 
 

 
Figure 2. The mesh sketch to determine time 
step t1 

 
Figure 3. The mesh sketch to determine time 
step t2 

 
Figure 4. The mesh sketch to determine time 
step tk 
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It should be noted that the matrix in eq. (11) is a tridiagonal matrix, which is 

characterized by predominantly main diagonal elements, so eq. (11) can be readily solved. 

The solution procedure involves 

(1) Using a guessing value kt  to calculate the matrix [D] and [C], respectively. 

(2) Solving eq. (11) with Thomas algorithm to obtain the node temperatures. 

(3) Taking eq. (10) as the convergence criterion:  
 

                                                        *Ref /k
m l kkT T t                                           (12) 

(4) If eq. (12) is not satisfied, a new kt  is assumed again. Repeat the above steps until 

convergence is reached. In the paper the dichotomizing search technique is used to obtain 

the ultimate value tk. 

The example of melting process of aluminum is considered. The melting 

temperature of aluminum is Tm = 931 K. 0.005x s  m and T0 = 1073 K are used and the 

other  physical  parameters  are  given  as follow [13]: r = 396·10
3
 J/kg, rl = 2380 kg/m

3
, kl = 

= 215 Wm/K, cl = 1130.44 Jkg/K. The convergence criterion is  e = 1·10
–3

. 

According to the exact solution of half-space (one-region problem) [14], the location 

of the moving interface is given by: 

                                                                tats l2)(                                                        (13) 

where the parameter  is determined by the following transcendental equation: 
 

        02
( )

exp( )erf ( ) l mc T T
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             (14) 

 
Through solving eq. (14), we can obtain l = 

= 0.4237. To further indentify the model 

performance, the comparison of the numerical 

results with the exact ones is shown in fig. 5.  

From the fig. 5, it can be found that the 

numerical result is well coincident with the 

exact solution, implying the new approach 

 
Figure 5. The comparison of numerical results 
with the exact solution 
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performed well in solving this problem. The absolute error and relative error of the numerical 

result in 20 time steps is 7.35 seconds and 4.22%, respectively (elapsed time is 174.2 

seconds). 

The temperature distribution is shown in fig. 6. Due to the high thermal conductivity 

of aluminum, the temperature distribution in liquid region is almost in linear profile. 

 

 

Figure 6. The calculated temperature distribution in liquid region 

Conclusion 

A novel algorithm for solving the classic Stefan problem is presented in the paper. 

The algorithm is also verified to be straightforward and efficient for its finite difference 

formulation. The numerical scheme for two-region problem will be further discussed in 

another paper. 
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