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An idealized reversible Otto cycle working with a single quantum mechanical parti-
cle contained in a potential well is investigated based on the Schrodinger equation
in this paper. The model of a reversible quantum Otto cycle, which consists of two
reversible adiabatic and two constant-well widen branches, is established. As an
example, we calculate a particularly simple case in which only two of the
eigenstates of the potential well contribute to the wave-function in the well. The re-
lationship between the optimal dimensionless work output W* vs. the efficiency n
for the two-eigenstate system is derived. The efficiency of this quantum cycle is
shown to equal that of a classical reversible Otto cycle because quantum dynamics
is reversible.
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Introduction

A heat engine is an important energy conversion device. A classical heat engine con-
verts heat energy into mechanical work by means of a gas that expands and pushes a piston in a
cylinder. For a classical thermodynamic heat engine the energy required is generally from a
high-temperature heat reservoir. Its work output and efficiency may be obtained by the first law
of thermodynamics and the classical ideal gas equation of state. However, a quantum heat en-
gine [1-20] obeys the laws of quantum mechanics. The influence of the quantum characteristics
of the working fluid on the performance of the cycle must be considered.

The quantum heat engine attracts much attention due to its special features. Present
technology now allows for the probing and/or realization of quantum mechanical systems of mi-
croscopic and even macroscopic sizes (like those of superconductors, Bose-Einstein conden-
sates, efc.) which can also be restricted to a relatively small number of energy states. It is inter-
esting that the quantum cycles analyzed can be similar to various aspects of classical
thermodynamic cycles such as Carnot [18, 20], Stirling [5, 7, 21], Otto [22-24], Brayton [16, 17,
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25], and Ericsson [19, 26] cycles. To investigate the characteristics of a quantum cycle certain
methods such as the quantum degeneracy theory [21-23], the semi-group approach [1, 2], the
Schrodinger equation [17-18], and the quantum master equation [4-5] have be adopted.

The Otto cycle is one of the typical thermodynamic cycles. Much work has been per-
formed for the performance analysis and optimization of either the classical [27-29 ] or quantum
[22-24] Otto engine. In this paper we construct an idealized reversible Otto heat engine that con-
sists of a single quantum mechanical particle contained in a potential well. We allow the walls of
the confining potential to play the role of the piston by moving in and out. The system we dis-
cuss here is a single quantum particle in a potential well. The working fluid of a real Otto engine
consists of an infinite number of copies of such particles, each in its own potential well. Explic-
itly, the only principles we need are those of the Schrodinger equation, the Born probability in-
terpretation of the wave functions.

The work out was found for a reversible quantum Carnot heat engine by solving the
Schrodinger equation in reference [ 18], but the maximum work out was not derived. In this pa-
per, the work out and the efficiency are derived for a reversible quantum Otto heat engine that
consists of two reversible adiabatic and two constant-well widen branches by solving the
Schrodinger equation. The maximum work output and the relationship between the optimal
dimensionless work output W* vs. the efficiency for the two-eigenstate system is obtained.

Quantum dynamics of the engine system

Let us consider a particle of mass m confined to a one-dimensional infinite square well
of width L. The time-independent Schrédinger equation for this system is [30]:
d2y N 2mE
dxz A2
where m and E are the mass and the energy of a particle, respectively, the w(x) is wave-func-

tion required to satisfy the boundary conditions w(0) =0 and w(L) = 0. Planck’s constant n =
=6.63-107* [Js] and 2 = n/2n = 1.05-1073* [Js] in the system solving eq. (1) gives:

v =0 (1)

w(x)=§la,,¢n(x) 2)
with
é,(x) = %sin[%xj 3)

where ¢, (x) are the normalized eigenstates of this system and the coefficients a, satisfy the nor-
malization condition:

o 2 o
Lfdu| = XPn = 1 4
wherep, = | a, E (n=1,2, , ) are the corresponding occupation probabilities of the system.
The eigenvalues £, corresponding to the eigenstates ¢, (x) is:
n?mn2h?
n = )
2ml?

The expectation value of the Hamiltonian of the system E = (y | H| w) is:
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E=3la,| B, = 3p.E, (©)

where H is the Hamiltonian of the system. Let us now suppose that one of the infinite walls of the
potential well, say the wall at x = L, can move like the piston in a one-dimensional cylinder for a
classical thermodynamic system [18]. If this wall is allowed to move an infinitesimal amount
dL, then the wave-function y(x), the eigenstates ¢,(x), and energy levels all vary infinitesimally
as functions of L. As a consequence, the expectation value of the Hamiltonian £ also changes in-
finitesimally.

Quantum Otto cycle

It is well know that the Otto cycle is made of two
isochoric branches connected by two adiabatic branches. We £
consider the following cyclic process as shown in fig. 1. We
start from state 1 with a wave-function in a well of width L.

In process 1-2, keeping the widen L, constant, the system
gains some energy by some kind of contact with a heat bath.

The system jumps up from the lower energy level £, to the
upper energy level £,. Only energy is pumped into the sys-
tem in this stage to yield a change in the occupation probabil-
ities. In process 2-3, we allow the system to expand adiabati-
cally from L = L, until L = L,. In an adiabatic process, the size -
of the potential well changes as the wall moves. The system L L, L
is isolated from the heat bath and undergoes a quantum adia-
batic expansion to reduce the energy from £, to a smaller e
. consisting of four steps, two

value E5. An amount of work is thus performed by the SYS- isothermal processes and two
tem, but no heat is transferred. In process 3-4, keeping the  agiabatic processes. The cycle is
widen L, constant, the system releases some energy to the en-  shown as a closed loop in the E-L
vironment by some kind of contact with another heat bath.  plane
The system evolves from the upper energy level E; to the
lower energy level E, by the energy transition. Only energy is released into the environment in
this stage to yield a change in the occupation probabilities. In process 4-1, we compress the sys-
tem adiabatically from L = L, until we return to the starting point L = L. In this stage, the system
is removed from the heat bath and undergoes a quantum adiabatic contraction to increase the en-
ergy level from E, back to the larger value £,. An amount of work is performed on the system.

The cycle 1-2-3-4 is a reversible quantum Otto cycle. Note that we need not and have
not assigned temperature to a single quantum mechanical particle. The temperatures are proper-
ties of the energy which are assumed to be in the Gibbs state.

4

Figure 1. A quantum Otto cycle

Output work and efficiency

From eq. (6) these expectation values of the Hamiltonian at state 1, state 2, state 3, and
state 4 may be written as:

S n’n2h?  mlhia
E, —;Pln —2mL12 _ZmLf n;n Py (7
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n?n’h?  m2h?

E, = 8

2 ;Pzn m L2 2mL2 Z Pon 3
n?n’h?  m2h?

E 9

3= ;I%n > L2 2mL2 Z P3n ©)
n’n2h? _ m2h?

E, = 10

4 ;PM 2ml2 2mL2 Z Pan (10)

where E,, E,, E5, and E, are the expectation values of the Hamiltonian at state 1, state 2, state 3,
and state 4, respectively, and p,,,, p,,, P3,» and py,, are the transition probabilities of the system
from state » to state 1, state 2, state 3, and state 4, respectively. In process 1-2, the energy sup-
plied by the environment is:

n2h2 &
=E,-E, = n? - 11
o 2 1 2mL12 nZ:l: (P2n = P1a) (11)
In process 3-4, the energy released to the environment is:
2
=E,-E, = n? - 12
0, = 4= 2mL2 nZl: (P30 = Pan) (12)

Based on the first law of thermodynamics, combining eqs. (11) and (12) gives the net
work output of our quantum heat engine:

n2h? Doy — Pin P3n— P
W: _ — nz 2n In _ F3n 4n 13
0, -0, M%; ( - z (13)

The efficiency of the engine cycle n = W/Q, is:
le inz(phz - p4n)
n=1-—= (14)
L% ;nz(pZn - pln)

Equations (13) and (14) give the work output and the efficiency. It is the main result of
this paper.

Two-state quantum heat engine

In this paragraph we consider a particularly simple case for convenience in which only
two of the eigenstates of the potential well contribute to the wave-function described blow in the
well. From eq. (2) the wave-function of the two-eigenstate system can be written as:

y/(x)zal‘Esin(%xjmz\gsm(z%xj (15)

|‘11|2"‘|“2|2:pl"‘172:1 (16)

In the quantum adiabatic expansion process 2-3 and the quantum adiabatic compres-
sion process 4-1, since the expansion/compression rate is sufficiently slow the system remains

with
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in equilibrium at all times. The absolute values of the occupation probabilities must remain con-
stant according to the quantum adiabatic theorem [17-18, 30]. The cycle of the heat engines then
puts a constraint on the probabilities:

P3n = Pow Pay =P (17)

From egs. (13), (14), (16), and (17) the work output and the efficiency for a two-state
quantum heat engine may be written as:

3n2h2( 11 J
W=—— ——— |(Pss — P21) (18)
2m le Lg
L7
77=1—L—2 (19)

If the two-eigenstates system is allowed to couple to the heat baths in process 1-2 and
process 3-4, the thermal equilibrium probabilities with the thermal equilibrium Gibbs distribu-
tions may be written as [17]:

Py =[1+exp(n?h?/2mL2)/kT, ]! (20)
Pay =[1+exp(n2h2/2mL2) /KT, T 20

where p, |, and p,, are transition probabilities of the system from state 1 to state 2, and state 4, re-
spectively. T, and T, are the temperature of the gas, which consists of an infinite number of cop-
ies of such particles each in its own potential well, at state 2 and at state 4, respectively. These
probabilities are definitely non-zero. Thus, eq. (18) can be rewritten as:

-1 -1
252 (2 — 242 2§22
W=—37T r® —1) 1+exp _mehE —|1+exp mERxT (22)
2ml2 2kmT, L2 2kmT, 13

with x = L,/L,. Substituting eq. (19) into eq. (22) yields:

-1
o 30 lp(_hj : Hexp(ﬂ;J 3)
2mlL%(1-1n) 2kmT, L2 2kmT,L13 1-1
where £ is the Boltzmann’s constant.
The eq. (23) gives the fundamental relationship between the work output /¥ and effi-
ciency 7 of a two-state quantum heat engine for the given parameters L,, 7,, and 7.
It is clearly seen from eq. (23) that work output }¥ of the engine is function of L, for

given parameters 7, 75, and 7. Taking the derivatives of W with respect to L, and setting it equal
zero, one can find that when L, = L, satisfies the equation:

2
n’h? n2h? n’h? 1
1+(1- > |exp 5 1 +exp T =
2kmT, L3, 2kmT, L3, 2kmT,L5, 1—n (24)

2
n2h? 1 n2h? n2h?
= | T —— lexp| —————— ||| +exp| ————
2kmT,L5, 1—-1n 2kmT, L3, 2kmT, L3,

-1
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The work output approaches optimal value:

-1 -1
242 242 242
Wo:M 1+exp _mht ~[1+exp _mht 1 (25)
2mL3, (1-m) 2kmT, 13, 2kmT, 13, 1-n

1 The W* vs. L, characteristic with p?#%/2kmT, = 0.1 and
) T,/(1 —=n)T, =12 is shown in fig. 2, where W" = W/W, is
08 the dimensionless work output and L, = L,/L,, is the
dimensionless potential well width. From fig. 2 one can
L see clearly that there exist the maximum work output ¥ =
= W, corresponding to L, = L,,. Obviously, for different
0:4, given parameters the maximum work output will be dif-
ferent.
02 The W vs.n characteristic with p*#?/2kmT,[2 =
=1.278 and T,/T,=0.75 is shown in fig. 3, where "=
e 2 2 s - 2mI2W/3n*h?. It may be seen from fig. 3 that the work
2 output increases with the increase in the efficiency 7.
Figure 2. The Dimensionless work The reason is that our quantum heat engine is a reversible
output W* ys. the dimensionless one.
potential well with L
_— Discussion
W: . .
55 The force F’ exerted on the wall of the well is given by:
dr
0.15 T (26)
i Combining egs. (5), (6), and (26) yields:
S ninlh?
0.05 F :;pn PE (27)
From eqgs. (17) and (27), the forces in processes 2-3

0 . .
0z 03 04 05 085 07 and4-1 can be written, respectively, as:

oo n2mn2h?
Figure 3. The dimensionless work F,y = Z Doy ——— (28)
output Wl* vs. the efficiency 7 =1 mL?
oo n2m2h2
Fy =2 P ——— (29)
n=1 mL3
Based on egs. (28) and (29) , we can now obtain the output work, too:
L L 242 & — —
W= _[ZFZSdL+_[F41dL:7[ n an Py Pin _p3n Pan (30)
L] Lz n=1 le L%

As our expectation, eq. (30) is in agreement on eq. (13).
Because our quantum Otto engine consisting of a single quantum mechanical particle
is reversible, the influence of the potential well width L would be important. It is seen from eqs.
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(13) and (14) that both the work output and the W efficiency n of the reversible quantum Otto
cycle increase with the increase in L,/L,.

It is well known that the efficiency of the reversible Otto engine whose working fluid
is composed classical idea gases is: v, y-1

n=1-

(€1)
-1
vy

where y is the ratio of specific heats, and V; and V, are, respectively, the minimum volume and
the maximum volume of the gas in the cylinder.

For a particle confined to a one-dimensional infinite square well as mentioned above,
its number of freedom 7 equates 1. We have:

y="—""=3 (32)

Substituting y = 3 into eq. (31) yields n = 1 — (2/V?). It shows that the efficiency of a
reversible two-eigenstate quantum Otto cycle is the same as that of a classical reversible Otto cy-
cle.

Conclusion

In this paper, we proposed the model of a reversible quantum Otto cycle, which con-
sists of two reversible adiabatic and two constant-well widen branches. The work output and the
efficiency of the cycle are investigated by solving the Schrédinger equation. The two-eigenstate
system is calculated as an example. The relationship between the optimal dimensionless work
output W* vs. the efficiency 7 is derived for a two-eigenstate heat engine. The efficiency of this
quantum cycle is shown to equal that of the reversible Otto engine whose working fluid is com-
posed classical idea gases because quantum dynamics is reversible.

Acknowledgments

This paper is supported by the National Natural Science Fund of People’s Republic of
China (Project No. 50846040). The authors wish to thank the reviewers for their careful, unbi-
ased and constructive suggestions, which led to this revised manuscript.

References

[1] Geva, E., Kosloff, R., On the Classical Limit of Quantum Thermodynamics in Finite Time, J. Chem.
Phys., 97 (1992), 6 pp. 4393-4412

[2] Geva, E., Kosloff, R., Three-Level Quantum Amplifier as a Heat Engine: A Study in Finite-Time Thermo-
dynamics, Phys. Rev. E., 49 (1994), 5, pp. 3903-3918

[3] Chen,J., Lin, B., Hua, B., The Performance Analysis of a Quantum Heat Engine Working with Spin Sys-
tems, J. Phys. D: Appl Phys, 35 (2002), 10, pp. 2051-2065

[4] Feldmann, T., Geva, E., Kosloff, R., Heat Engines in Finite Time Governed by Master Equations, Am. J.
Phys., 64 (1996), 4, pp. 485-492

[5] Wu, F., et al., Performance and Optimization Criteria for Forward and Reverse Quantum Stirling Cycles,
Energy Convers Manage, 39 (1998), 8, pp. 733-739

[6] Feldmann, T., Kosloff, R., Performance of Discrete Heat Engines and Heat Pumps in Finite Time, Phys.
Rev. E, 61 (2000), 5, pp. 4774-4790



886

Wu, F., et al.: Work Output and Efficiency of a Reversible Quantum Otto Cycle
THERMAL SCIENCE: Year 2010, Vol. 14, No. 4, pp. 879-886

[7]
[8]

[9]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]

(30]

Wu, F., et al., Finite-Time Exergoeconomic Performance Bound for a Quantum Stirling Engine, Int. J.
Eng. Sci., 38 (2000), 2, pp. 239-247

Feldmann, T., Kosloff, R., Quantum Four-Stroke Heat Engine: Thermodynamic Observables in a Model
with Intrinsic Friction, Phys. Rev. E, 68 (2003), 5, pp. 016101

Lin, B., Chen, J., Optimal Analysis of the Performance of an Irreversible Quantum Heat Engine with Spin
Systems, J. Phys. A: Math Gen, 38 (2005), 1, pp. 69-79

He, J., Xin, Y., He, X., Performance Optimization of Quantum Brayton Refrigeration Cycle Working with
Spin System, Applied Energy, 84 (2007), 2, pp. 176-186

Wang, J., He, J., Xin, Y., Performance Analysis of a Spin Quantum Heat Engine Cycle with Internal Fric-
tion, Physica Scripta, 75 (2007), 2, pp. 227-234

Quan, H. T., et al., Quantum Thermodynamic Cycles and Quantum Heat Engines, Phys. Rev. E, 76 (2007),
3, pp- 031105

Kim, I., Mahler, G., The Second Law of Thermodynamics in the Quantum Brownian Oscillator at an Arbi-
trary Temperature, Eur. Phys. J. B, 60 (2007), 3, pp. 401-408

Allahverdyan, A. E, Johal, R. S., Mahler, G., Work Extremum Principle: Structure and Function of Quan-
tum Heat Engines, Phys. Rev. E, 77 (2008), 4, pp. 041118

Arnaud, J., Chusseau, L., Philippe, F., Mechanical Equivalent of Quantum Heat Engines, Physical Review
E, 77 (2008), 6, pp. 061102

Wang, H., Liu, S., He, J., Optimum Criteria of an Irreversible Quantum Brayton Refrigeration Cycle with
an Ideal Bose Gas, Physica B: Condensed Matter, 403 (2008), 21-22, pp. 3867-3878

Tien, D., Kieu, The Second Law, Maxwell’s Demon, and Work Derivable from Quantum Heat Engines,
Physical Review Letters, 93 (2004), 14, pp. 140403

Bender, C. M., Brody, D. C., Meister, B. K., Quantum Mechanical Carnot Engine, J. Phys. A: Math. Gen.,
33 (2000), 24, pp. 4427-4436

Wu, F., et al., Performance of an Irreversible Quantum Ericsson Cooler at low Temperature Limit, Journal
of Physics D: Applied Physics, 39 (2006), 21, pp. 4731- 4737

Wu, F., et al., Performance of an Irreversible Quantum Carnot Engine with Spin-1/2, Journal of Chemical
Physics, 124 (2006), 21, pp. 4702-4708

Sisman, A., Saygin, H., Efficiency Analysis of a Stirling Power Cycle Under Quantum Degeneracy Condi-
tions, Phys. Scr., 63 (2001), 4, pp. 263-267

Wu, F., Chen, L., Wu, S., Quantum Degeneracy Effect on Performance of Irreversible Otto Cycle with
Ideal Bose Gas, Energy Conversion and Management, 47 (2006), 18-19, pp. 3008-3018

Sisman, A., Saygin, H., Re-Optimization of Otto Power Cycles Working with Ideal Quantum Gases, Phys.
Scripta, 64 (2001), 2, pp. 108-1012

Wu, F., Chen, L., Wu, S., Ecological Optimization Performance of an Irreversible Quantum Otto Cycle
Working with an Ideal Fermi Gas, Open System and Information Dynamics, 13 (2006), 1, pp. 55-66
Wu, F., Chen, L., Wu, S., Optimization Criteria for an Irreversible Quantum Brayton Engine with an Ideal
Bose Gas, Journal of Applied Physics, 99 (2006), 5, pp. 54904-54909

Chen, J., He, J., Hua, B., The Influence of Regenerative Losses on the Performance of a Femi Ericsson Re-
frigeration Cycle, J. Phys. A: Math. Gen., 35 (2002), 38, pp. 7995-8004

Ge, Y., et al., The Effects of Variable Specific Heats of Working Fluid on the Performance of an Irrevers-
ible Otto Cycle, Int. J. Exergy, 2 (2005), 3, pp. 274-283

Chen, L., Heat Transfer Effects on the Net Work Output and Efficiency Characteristics for an Air Standard
Otto Cycle, Energy Convers Manage, 39 (1998), 7, pp. 643-648

Wu, C., Blank, D. A., The Effects of Combustion on a Work Optimized Endoreversible Otto Cycle, J. Inst.
Energy, 65 (1992), 1, pp. 86-89

Messiah, A., Quantum Mechanics, Dover Publications, New York, USA, 1999

Paper submitted: November 11, 2009
Paper revised: December 12, 2009
Paper accepted: February 18, 2010



