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In this paper, stagnation flow of a micropolar fluid towards a vertical permeable
surface with two cases, Newtonian fluid (K = 0) and non-Newtonian fluid (K = 1)
are studied in presence of suction and injection. The transformed non-linear equa-
tions are solved analytically by homotopy analysis method and some results are
compared with numerical solutions for validity. Analytical results for the velocity
profiles, the temperature profiles, the skin friction coefficient and the local Nusselt
number are presented for various values of the flow parameters and also these re-
sults demonstrate obvious effect of suction and injection on temperature profiles on
investigation of such flows, particularly for non-Newtonian fluid.
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Introduction

The theory of micropolar fluids which was originally formulated by Eringen [1] can be
used to explain the flow of crystals, animal blood, paints, polymers, etc. The theory introduces
new material parameters, an additional independent vector field — the microrotation — and new
constitutive equations which must be solved simultaneously with the usual equations for New-
tonian flow. Ramachandran et al. [2] studied laminar mixed convection in two-dimensional
stagnation flows around surfaces. He considered both cases of an arbitrary wall temperature and
arbitrary surface heat flux variations and found that a reversed flow developed in the buoyancy
opposing flow region, and dual solutions are found to certain range of the buoyancy parameter.
Hassanien et al. [3] extended Ramachandran’s work to micropolar fluid. They considered both
assisting and opposing flows, but the existence of dual solutions was not reported [4]. Devi et al.
extended the problem posed by Ramachandran et a/. [2] to the unsteady case, and they found
that dual solution exist for a certain range of the buoyancy parameter when the flow is opposing.
Similar problem for steady and unsteady cases, for a vertical surface immersed in a micropolar
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Figure 1. Physical model and co-ordinate system
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Problem formulation

fluid was investigated by Lok et al. [5, 6]. Exis-
tence of dual solutions was reported in [5] only
for the opposing flow regime. The present study
will show that dual solutions exist in the oppos-
ing flow regime and they continue into that of
the assisting flow regime, i. e. when the buoy-
ancy force acts in the same direction as the iner-
tia force. Sketch of the problem is depicted in
fig. 1. Recently, much effort put on constructing
an analytic solution of these equations. One of
these techniques is homotopy analysis method
(HAM), which was introduced by Liao [13-18].
This method has been successfully applied to
solve many types of non-linear problems
[19-21].

Consider a laminar two-dimensional stagnation flow of an incompressible
micropolar impinges normal to a vertical heated plate. It is assumed that the free stream veloc-
ity U and the temperature of the plate 7,,(x) vary linearly with the distance x from the stagna-
tion point, i. e. U=ax and T\(x) = T,, + bx, where a and b are positive constants. Under these
assumptions along with the Boussinesq approximation, the steady laminar boundary layer

equations governing the flow are as follows:
ou

ov

ox Oy o
2
Wy Oy AU prk Cu Ky gt @)
ox oy dx p 0y p
2
oli ua—N+va—N =;/6N—k 2N+@ 3)
Ox 10)% oy oy
2
Ox oy 0y?
subject to the boundary conditions:
u=0, v="r,, N:—l@, T=T,(x) at y=0 %)
2 Oy

u—->U(x), N—-0, T>T, as y—o>w (6)

where u and v are the velocity components along the x- and y-axes, respectively, 7'is the fluid tem-
perature, N —the component of the microrotation vector normal to the X-y plane, p — the density, j —
the micro-inertia density, m — the dynamic viscosity, k£ — the gyro-viscosity (or vortex viscosity), ¥
— the spin-gradient viscosity, and V,, — the uniform surface mass flux. The last term on the
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right-hand side of eq. (2) represents the influence of the thermal buoyancy force on the flow field,
with “+” and “—" signs pertaining, respectively, to the buoyancy assisting and the buoyancy op-
posing flow regions. For the assisting flow, the x-axis points vertically upwards, while it points
vertically downwards for the opposing flow. We assume that, y=(u + k/2) j=pu(1 + K/2)j, where
K = k/u is the material parameter. This assumption is invoked to allow the field of equations to
predict the correct behavior in the limiting case when the microstructure effects become negligible
and the total spin reduces to the angular velocity (see Ahmadi [7], Kline [8], or Gorla [9]). This as-
sumption has also been used by the present authors to study different problems in micropolar flu-
ids [10-12].

To seek similarity solutions for egs. (1)-(4) subject to the boundary conditions (5), we
introduce the following dimensionless similarity variables:

_ U _ Y
=n- J @) N ()
CO= 22N, 00 =——> ®)

where 7 is the independent similarity variable, f{n) — the dimensionless stream function, C(7)
— the dimensionless microrotation, 8(7) — the dimensionless temperature, and v — the kine-
matic viscosity of the fluid. Further, v is the stream function which is defined in the usual way
as u = Ow/dy and v = —0Oy/0x so as to identically satisfy eq. (1), using eq. (6), we get:

u=Ur'(), v=-vaf(n) )

where prime denotes differentiation with respect to 7. Using egs. (6) and (7), egs. (2)-(4) reduce
to the following ordinary differential equations or similarity equations:

A+K) "+ ff"+1-f'"2+KC'"+26=0 (10)
(1+§j€”+fC’—f'C—K(2C+f”)=O (11)
L9"+f9’—f’9=0 (12)
Pr
The boundary conditions (5) now become:
FO =7y, f(0)=0, C(0)=—%f”(0), 0(0)=1 (13)
-1, Cn)—>0, 8(n)—>0, as n— (14)

where Pr is the Prandtl number and f,, = {0) =V, /(va)'’? is a constant (suction/injection param-
eter) with £, > 0 corresponds to mass suction, f;, < 0 corresponds to mass injection, and f;, = 0 is
for an impermeable plate. Further, A (= constant) is the mixed convection or buoyancy parame-
ter which is defined as A = +Gr,/Re 2, where Gr, = g (T, — T..)x*/v? is the local Grashof number,
Re, —the local Reynolds number, and the “+” sign has the same meaning as in eq. (2). We no-
tice that when A =0, eqgs. (8) and (10) are decoupled and a purely forced convection situation re-
sults. In this case, the flow field is not affected by the thermal field. The sign of A characterizes
the nature of the departure from this situation. For A = Gr,/Re? > 0, buoyancy forces act in the
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direction of the mainstream and fluid is accelerated in the manner of a favorable pressure gradi-
ent (assisting flow). When A = — Gr,/Re2< 0, buoyancy forces oppose the motion, retarding the
fluid in the boundary layer, acting as an adverse pressure gradient (opposing low).We also no-
tice that when K = 0 (Newtonian fluid), egs. (8) and (10) reduce to those of Ramachandran et al.
[2], when f,, = 0 (impermeable plate), this problem reduces to those considered by Hassanien et
al. [3] or Lok et al. [5].

Homotopy analysis solution

In this section, HAM is employed to solve egs. (10)-(12) subject to boundary condi-
tions (13) and (14). We choose the initial guesses and auxiliary linear operators in the following
form:

Jom =fy=T+x—e7

(1) =¢" (15)
Cytm) =—5e7
As the initial guess approximation for fn7), (n), and C(n):
L(H)=f"+f" L(0)=0"+60", L, (C)=C"+C’ (16)
As the auxiliary linear operator which has the property:
L(c, T e,n +ce™M =0, Licy+cse™) =0, Licg+ce™=0 (17)

and c/(i = 1-7) are constants. Let p €[0, 1] denotes the embedding parameter and 7 indicates
non-zero auxiliary parameters. Then, we construct the following equations.

Zero-order deformation problems

(= pL[f (0, p) = fo(]= ph, N Lf (. P)]; (18)
(= p)L,[6(n, p) =0, (M]= ph, N, [0(n. p)]; (19)
(1= p)L;[C(n, p) = Co ()] = phs N5[C (1, p)]; (20)
JO.p) =71y f'O.p)=0 (> p)=1 1)
0(0, p) =1, 6(>, p)=0; (22)
CO.P==3/"0.p): C(=p)=0 (23)

3 2
Nl[f(n,p)]=(1+K)% +f(n,p)LZ’p)+
n dn

3
+1_(MJ +KM+/19(77,}7)=0 (24)
dn dn
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NL[C p)] :(1 +§)M _cm, p)df(dLT;P) + £ py 3P |

dn? dn
+K(2C(n, 12) +%]=o (25)
2
N0 = L o ) LBy gy P o (26
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For p=0and p =1, we have:

Fm0)=fo(); f(n.p)=rf);
0(n,0)=0,(); 0(n,1)=0(n); (27)
Cm.0)=Cy(m; Cn1)=Cm);

When p increases from 0 to 1 then f(n, p) vary from f(n) to fin), 6(n, p) vary from

6,(n) to 8(n) and C(n, p) vary from C(n) to C(17). By Taylor’s theorem and using eqs. (27), we
can write:

Fop) = fom+ 3 St f =~ LD (28)
J-1 7! op/

001.) =0, + £0,(p7. 0, =~ LD (29)
j-1 J! op/

Cop)=Com+ 5 Gmpl. €= LD (30)
j-1 J! op/

For simplicity, we suppose %, = i, = fi; = h, which 7 is chosen in such a way that these
three series are convergent at p = 1. Therefore we have through egs. (28)-(30):

fay=rym+ 3 £, 31
001) =0, (n)+ 20, () (32)
€ =Com+ 2.6 (33)

M™"-order deforrmation problems

LIS (D) = 2, f o (= RR ] (1) (34)

fi0)=f70)=f;(=)=0 (35)

RIM) =+ K) S + S (F = f )+ KC) L, 420, (36)
n=0

L6 (m) = 2,0 ()] =ARY (1) (37
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0,(0)=0,(<)=0

1 n J_l ’ !
R_?(U)Z—r@j_l + Z;O(_Qj—l + +fj—1—n o)

P

LIC; (m = x; €,y (M]=1RS ()

K n 171 ! ’ ”
RJC 0) :(1 +5jcj1 + Zo(_ Cioifu+/0,C)—KQC,, + 1

Convergence of the HAM solutions

C(0)= C(=) =0

0, j<l

j>1

(38)

(39)

(40)

(41)

(42)

As pointed by Liao, the convergence of the solution depends upon the value of the
auxiliary parameter 7. Figures 2-4 show the admissible value of 7, —1 <7 <-0.3 for0'and C’, and

—0.8<n<-0.2 for f".
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Figure 2. 71— curveof f"(0) at K=1,Pr=1,

A=-1,and f, =0

Results and discussion
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Figure 3.7 — curveof C'(0) at K=1,Pr=1,

A=-1,and f,,=0

Figure 5 illustrates the effects of suction and injection on velocity profile, as can be
seen the value of velocity increases with raise of f;, and microrotation profile also has a similar

trend as shown in fig. 6

Figure 7 depicts that the value of temperature decreases by increasing f;, and the tem-

perature profile moves closer to the wall.
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Figure 6. Microrotation profiles f” for various f,,
when K=1,Pr=1,and 1 =-1

Figure 8 displays the behavior of velocity
profile for two values of K, from the figure the
value of velocity for Newtonian fluid is more
than non-Newtonian case.

Figures 9 and 10 show the effect of £, on the
local Nusselt number and the skin friction coef-
ficient, respectively; by increasing the value of
A the values of f"(0) and 6'(0) increase and this
is more noticeable for Nusselt number.

The comparison of HAM results with nu-
merical ones has been made in figs.11 and 12
that are in excellent agreement which suggest
that the HAM could be a useful and effective
tool in solving systems of non-linear differential
equations of engineering problems.

Figure 5. Velocity profile /" for various f,, when
K=1,Pr=1,and A =-1
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Figure 7. Temperature profiles 0 for various f,,
when K=1,Pr=1,and 1 =-1
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Figure 8. Velocity profiles f” for various K when
Pr=1,and 1 =-1
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Figure 9. Variation with 4 of the skin friction
coefficient f”(0) for f,, = 0 and 0.5 when Pr =1
and K=1

Figure 10. Variation with 1 of the local Nusselt
number —0'(0) for f;, =0 and 0.5 when Pr=1 and
K=1
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Figure 11. Comparison between HAM (&, o)
and numerical solution (—, — ) for £, =—0.1 and
0.5whenPr=1,A=-1,and K=1

Conclusions

Figure 12. Comparison between HAM and
numcerical solution for £, = 0 when Pr =1,
=-l,and K=1

This communication deals with the stagnation flow of a micropolar fluid towards a

vertical permeable surface. HAM solution has been obtained for the problem. The results are
sketched and discussed for the fluid and flow parameters variations. It is found that HAM results
agree well with the numerical results. It is concluded that HAM provides a simple and easy way
to control and adjust the convergence region for strong nonlinearity and is applicable to highly
non-linear problems.

Nomenclature
a, b — positive constants, [-] fo — suction/injection parameter, [~]
f — dimensionless stream function, [—] g — acceleration due to gravity, [Ls ]
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Gr,  — local Grashof number B — thermal expansion coefficient, [K™']
(= gB8(T — TNV, [] y — spin gradient viscosity, [m’s™']
h — dimensionless angular velocity, [-] n — similarity variable, [m]
J — microinertia density, [kgL’] 0 — dimensionless temperature, [—]
K — material parameter, [—] K — vortex viscosity, [m’s ']
N — component of the microrotation vector A — buoyancy or mixed convection parameter,
normal to the x-y plane, [] [-]
Pr — Prandtl number (= —V,/va)'?), [-] u — dynamic viscosity, [m’s ']
Re,  — local Reynolds number (= UD/v), [-] % — kinematic viscosity, [m’s™']
T — fluid temperature, [K] P — fluid density, [kgm ]
T, — plate temperature, [K] v — stream function, [—]
T. — ambient temperature, [K] .
u, v — velocity components along the x- and Subscripts
y-directions, respectively, [Ls '] w — condition at the wall
U — free stream velocity, [Ls™'] 0 _ ambient condition
Ve — uniform surface mass flux, [kgm '] .
x,y  — Cartesian co-ordinates along the surface Superscript

and normal to it, respectively, [-] ! — differentiation with respect to 1

Greek letters

— thermal diffusivity, [m’s™']

fo4
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