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A 3-D original numerical study of entropy generation in the case of liquid metal
laminar natural convection in a differentially heated cubic cavity and in the pres-
ence of an external magnetic field orthogonal to the isothermal walls is carried out.
The effect of this field on the various types of irreversibilities is analyzed. It was ob-
served that in the presence of a magnetic field the generated entropy is distributed
on the entire cavity and that the magnetic field limits the 3-D character of the distri-
bution of the generated entropy.
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Introduction

Many thermodynamic systems like the heat exchangers, turboshaft engines,
electrothermics, and porous media are the subject of the irreversibility phenomena due to heat
gradients, friction effects, diffusion, and Joule effect ezc... The analysis of the second law of
thermodynamic has recently gained an important attention in order to minimize these
irreversibilties. However, there are few works concerning entropy generation in confined natu-
ral convection situations.

Magherbi et al. [1] studied numerically the entropy generation for the non-stationary
natural convection in square cavity. The results prove that the total generation of entropy
reaches a maximum value at the beginning, which increases with the Rayleigh number and the
ratio of irreversibility distribution. They noted that the generation of entropy tends asymptoti-
cally towards a constant value for low Rayleigh numbers; while an oscillation of the entropy
generation was observed for higher Rayleigh numbers, before reaching the balance state. The
results evince that by increasing the Rayleigh number, the effect of the viscous irreversibility
starts to dominate the irreversibility due to the thermal transfer. In the stationary state, the gener-
ation of entropy is distributed on the whole field for small Rayleigh numbers, but it is confined
in the vicinity of the active walls for high Rayleigh numbers.
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Erbay et al. [2] studied the same problem for partially or completely heated cavity. In
the case of the completely heated walls, the active zones of the generated entropy due to the ther-
mal transfer are in the low corner of the hot wall and the top corner of the cold wall. For the se-
lective heating, the active zones are localized in the higher part of the heated section.

Various geometric and thermal boundary configurations are considered in literature.
Especially the effect of inclination is considered by Baytas [3] and Magherbi et al. [4]. Indeed,
the aim of Baytas [3] research is to study the entropy generation in a tilted 2-D saturated porous
cavity during the thermal transfer of laminar natural convection. These results prove that when
the Rayleigh number falls, the thermal transfer irreversibility starts to dominate the friction one.
The number of Bejan is quickly changed for inclination between the angles 150° and 270°.

Magherbi et al. [4] carried out a numerical study relating to the generation of entropy
due to the thermal transfer, the mass transfer, and the friction. This study is done in the case of
the doubles diffusive laminar convection, in an inclined cavity with diffusive walls of heat and
mass transfer. The influences of inclination, the number of Grashof, and the ratio of buoyancy
on the total generation of entropy were studied. The localization of irreversibilities due to the
thermal transfer, the mass transfer, and the friction of the fluid is discussed for three angles of in-
clination for a fixed Grashof number. The results prove that for moderate Lewis numbers, the to-
tal generation of entropy rises when increasing the Grashof number or the buoyancy ratio. Lo-
cally, the irreversibility due to heat and mass transfer are almost identical and are localized at the
bottom and the top of the heated and cooled walls, respectively.

The impact of the aspect ratio is also considered. Recently, Ilis et al. [5] demonstrate
that for high Rayleigh number, the total entropy generation raises with increasing aspect ratio,
reach a maximum and then decreases. The authors present in addition a complete bibliography
on this subject.

It figures also the works of Varol et al. [6] concerning a triangular enclosure and
Dagtekin et al. [ 7] for I'-shaped enclosure. The first cited work showed that the sloping wall an-
gle can be used as a parameter to control entropy generation. In fact, the entropy production rises
with increasing the sloping wall inclination angle of the triangular enclosure. The second cited
work concluded that the height of step is more effective than top face of the heated step in en-
tropy generation. Also the effect of the aspect ratio is not significant for weak Rayleigh num-
bers.

To end with special configurations it is important to mention the recent study of
Famouri et al. [8] concerning the effect of vertical position of heated obstacle placed in square
enclosure on the local and average entropy generation.

Among a small number of works relating to entropy generation in the case of
magnetohydrodynamic natural convection in confined enclosure, it figures the study effectuated
by Mahmud and Fraser [9] in the case of saturated porous cavity. The magnetic force is assumed
along the direction of the force of gravity. The effect of Rayleigh and Hartmann numbers on the
average Nusselt number, the entropy generation number, and Bejan number is examined. The
increase in the Hartmann number tends to delay the movement of the fluid inside the cavity. The
Nusselt number falls with the increase of Hartmann number. In the absence of the magnetic
force, the rate of entropy generation is relatively higher close to the two vertical walls while this
rate falls according to Hartmann number.

Entropy generation in magnetohydrodynamic problems is more developed for flow in
channels. Ibafiez et al. [10] applied the method of minimization of entropy generation to opti-
mize a magnetohydrodynamic flow between two infinite parallel walls having a finished elec-
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tric conductivity. The authors showed that the generation of entropy reaches a minimum when
the walls are cooled in an asymmetrical way. Also Mahmud et al. [11], Tasnim et al. [12], and
Aiboud-Saouli [13] carried out an analysis to study the first and the second laws of thermody-
namics of a flow of mixed laminar convection inside a vertical channel under the action of a
transverse magnetic field.

Several studies [14-22] were undertaken on the effect of external magnetic field on the
natural convection, these studies showed that this field reduces thermal transfer and organizes
the flow. These effects are very required in several engineering applications like foundry, solidi-
fication and especially in the processes of crystalline growths. However there are few works
concerning entropy generation in presence of magnetic field.

Within this framework we study the effect of a magnetic field on these losses of energy
in the case of the 3-D natural convection by highlighting the effect of Hartmann number and the
irreversibility coefficient. The Prandtl number is fixed at 0.026 and two Rayleigh number are
used (Ra = 10* and Ra = 10°). A foremost attention is given to the 3-D character of irreversi-
bilities.

Mathematical formulation and numerical model

Figure 1 schematizes the configuration considered:
the left and right walls are differentially heated, the other
walls are considered adiabatic, and a homogeneous mag-
netic field expressed by B ¢ is imposed perpendicular to
the heated walls. All the walls of the cavity are considered
insulating electrically. Under the effect of this field, elec-
trical currents will be induced in the melt and the flow be-
comes controlled by, in addition to Rayleigh and Prandtl
numbers, two new dimensionless parameters, which are
the magnetic Reynolds number:

R, =uovyl

Figure 1. Description of the cavity

and the Hartman number:

BO2120'
Ha =
pVv

The magnetic Reynolds number represents the ratio between the magnetic field in-
duced by the movement of the fluid and the applied magnetic field. The Hartmann number rep-
resents the ratio between Lorentz forces produced by the interaction of the current density J’
with the applied magnetic field B', and the viscosity forces.

In fact the movement of the fluid is induced by the variations of the density caused by
the gradients of temperature. The presence of the magnetic field will cause in its turn a Lorentz
force, given by: [22]

F'=pE+J]xB (1)
with E' = -V’
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In addition, for a moving medium, the density of electrical current is governed by the
Ohm law which is written [22]:

J=p V' +0,(-VO' +V'xB) (2)

In the case of a molten metal p,, is usually very small compare to o, the terms ch’ and
pcV’ in the egs. (1) and (2) are negligible, B' is composed by the applied magnetic field BOeB and
the induced magnetic field produced by the electrical currents. For molten metal R, < 1073 [23]
and we can neglect the induced field so the Hartmann number becomes the only additional pa-
rameter related to the external applied magnetic field. In addition to Ohm’s law, the density of
electrical current J' is governed by the conservation law:

VJ'=0 (3)
Thus by adding the relations relating to the presence of the external magnetic field to

those of an ordinary hydrodynamic laminar flow, the equations describing the problem of
magnetohydrodynamic natural convection arise in the following way:

VV' =0 4)
av’ ' l s ' 1 S TRV 1 7 ' -
—+(VV)V ——VP' +—('xB)Y+VvAV' + B(T' -T,)8 (5)
or' P p

O 9T VT (6)
ot'
V=0, (-VO'+V'xB) (7)

V]'=0 (8)

As numerical method we had recourse to the vorticity-vector potential formalism
(7 — @) which allows, in a 3-D configuration, the elimination of the pressure, which is a delicate
term to treat. To eliminate this term one applies the rotational to the equation of momentum. The
vector potential and the vorticity are, respectively, defined by the two following relations:

@' =VxV' and V' =Vxy'

The setting in equation is described with more details in the article of Kolsi ez al. [14].

After non-dimensionalization of ', V', 7", &', ', B, @' by Pla, a/l, a, Pla, 6By, By,
AvyB,, respectively, the system of equations controlhng the phenomenon becomes:

~&=V?y ©)
a—w+(VV)a) (a)V)V PrvV2@ + RaPr ﬂ 0; — or + RaPrHa? [Vx(JxeB)](IO)
ot o0z’ ax
O 9T =vor (11)
ot
J=-V& +Vx&, (12)
V20 =V(VxB)=-8,0 (13)

with Pr = v/o and Ra = (gB8ATI3)/va; AT=T, - T"..
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The boundary conditions are given as:

— temperature
T=1latx=1,T=0atx=0
Q =0 on other walls
o on
— vorticity
ov.
0.0, o, =—6VZ, o, =—>~ at x=0 and 1
Ox Ox

0] :8 , w,=0, wz—aV at y=0 and 1
0 0

y y
V
wX:_aVZ’ wy:a X, w,=0 at z=0 and 1
ay 0z
— vector potential
oy
X — =y,=0 at x=0 and 1
o Yy =V,
0
oy
0
Y, =y, = al/;Z =0 at z=0 and 1

— velocity
Vy=V,=V,=0onall walls

— electric potential
0®/0n = 0 on all walls

— current density -
Jn =0 on all walls

where 1 is the unit vector normal to the wall.

In the presence of a magnetic field the generated entropy is written in the following
form [11]:

r 1 A s all Moy 1 T "VIAY4 1A VLAVE o
Sgen——ﬁqVT +F¢ +F(J -p.V)E' +V'xB) (14)

where pcV' is negligible and q' = —kVT"'. The first term represents the generated entropy due to
temperature gradient, the second that due to the friction effects, and the last that due to the pres-
ence of the magnetic field.

The dissipation function in incompressible flow is written as:

' \2 12 1\2
¢ =2 LI vy NN
ox' oy oz'

2 2
oV, av! oV, oV ov: oY
+ + + + + + (15)
ox' oy oy oz oz ox'




Kolsi, L., et al.: The Effect of an External Magnetic Field on the Entropy Generation ...
346 THERMAL SCIENCE: Year 2010, Vol. 14, No. 2, pp. 341-352

from where the generated entropy is written:
’ \2
.k ( or' JZ or' Y’ ( or' jz wl(ov:Y (o, v,V
Sen ===l — | | == | t|=— | |*= + + +
T'2 |\ ox' 0y’ oz' T\ ox' oy oz

2 2 2
ov! ! ! ov'! ’ ’
L AL ) L T B (L L i P B (J2+J2+J,2) (16)
7" ox" 0y oy o0z oz ox' T'o

c

After a dimensionalisation one obtains generated entropy number (dimensionless lo-
cal generated entropy) which is written in the following way:

2
1(IT
Ne=S! — —2 17

S gen k(AT) ( )
from where:

2 2 2 2 2 2
oV
N =[ L) o[ L) (2L Lol x| Do o[ 2
Ox oy oz Ox oy oz

2 2 2

ov. oV 18

NSNS BN A BN SRS +@Ha?(J2 +J2 +J2) (18)
Ox oy oy 0Oz 0z  Ox

With ¢ is the irreversibility coefficient:

o=t T,
PEAT?
The first term of Ng represents the local irreversibility due to the temperatures gradi-
ents (it is noted Ng 4,). The second term represents the contribution of the viscous effects in the
irreversibility (it is noted Ny 4,), and the third term represents the generated local entropy due to
the Joule effect (it is noted Ng ;). Ng give a good idea on the profile and the distribution of the

generated local dimensionless entropy. The total dimensionless generated entropy is written:

St =[Ngdv=[(Ngy, + Ngp + Ngj)dv=S8y +S4 +5, (20)
14 v

(19)

Equations governing the problem are discretized using the finite volume method with
a central difference scheme. The order of resolution of the equations is successively equation of
continuity, energy, momentum, Ohm’s law, and conservation of electric charge. More informa-
tion on the numerical method is in the work of Borjini ez al. [15].

Results and discussion

In this study, the Prandtl number is fixed at Pr = 0.026 relating to mercury, two Rayleigh
number are used — Ra =10* and Ra = 10°, and the Hartmann number lies between 0 and 150. The
irreversibility coefficient lies between 10 and 10°!. A particular interest is given to the study of
the 3-D distribution of the generated entropy and to the effect of the magnetic field on different
types of the irreversibilities. A uniform spatial grid of 51° nodes and a dimensionless time step
equal to 10~* are used. The solution is considered acceptable when the following convergence cri-
terion is satisfied for each step of time and for each dependent variable:
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max|A m— Am-l1 |
— 1 <10 (21)
maX|A’”|

where the superscript m designates the iteration number.
Flow structure
Figure 2 presents the flow structure for various Hartmann numbers (on half of the cav-

ity), one notices for Ha = 0, a one vortex flow structure and a spiraling transversal disordered
flow. By increasing Ha, the transversal flow becomes more and more ordered, such is the case

Figure 2. Some particle tracks for Ra = 10*
and different Hartmann numbers

for Ha = 50. For Ha = 60, the flow structure presents Sot| - —_p=10
two vortices, a more detailed description is reported in S~
[14]. 100 T~
g =10 \\_
Various types of irreversibilities \\\\ T
) o 10 | =10 \\_\

Figure 3 represents the variation of the total gener- ~ —
ated entropy as function of Hartmann number for dif- ez10 T
ferent irreversibility coefficient. It is noticed that for ! i ——
@=10",0=10"2 and ¢ = 1073, the generated entropy
increase then decrease by increasing Ha. For o = 10 .

0

the growing zone does not exist any more. This atten- 0 20 40 60 80 100 120
uation is explained by the magnetic damping of the

flow. It is also noticed that the maximum of S, occurs ~ Figure 3. Variation of the total generated
entropy as function of Ha; Ra =10

141
Ha

for 15 <Ha <20 for all considered values of ¢.
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Figure 4. Variation of generated entropy as Figure 5. Variation of generated entropy as
function of Ha; ¢ = 107", Ra=10* function of Ha; ¢ = 102 Ra=10*
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Figure 6. Variation of generated entropy as Figure 7. Variation of generated entropy as
function of Ha; ¢ = 103 Ra=10* function of Ha; ¢ = 10, Ra=10*

Figures 4, 5, 6, and 7 present, for various irreversibility coefficients, the variation of
S Si Sy and S, according to Ha. One notices that Sy, and Sj;, decrease according to Ha, but S,
presents a maximum. From where the maximum in the variation of the total generated entropy
according to Ha is due to the dissipation by Joule effect. This result is also met in the 2-D chan-
nel flow [10].

By analyzing these figures, one notices that for ¢ = 10~ and ¢ = 102 the generated en-
tropy due to the thermal transfer is negligible compared to that due to the viscous effects and the
Joule effect. For ¢ = 1073, one notices that S, becomes of the same order of magnitude as S;, and
S;. For ¢ = 107 the generated entropy due to the variation in temperature becomes dominant.

Figures 4, 5, 6 and 7 also show that the effect of the magnetic field is more consider-
able on S, and S| that on S, and show that S; presents a maximum for all the values of ¢.

3-D distribution of the irreversibilities

In order to analyze the 3-D aspect of the entropy generation we traced for two values of
the total generated entropy for Ha =0, Ha = 50, and Ha = 100 (fig. 8). The 3-D behavior is more
important for Ha = 0 for both ¢ = 10! and ¢ = 107*. For ¢p = 107! the generated entropy occurs
principally near the active walls for both moderately and highly damped flow. As predicted and
for ¢ = 10~*and Ha = 0, the creation of entropy is mainly localized near the bottom of the hot sur-
face and the top of the cold surface.

Figure 9 presents for Ha = 0 and Ha = 50 the distribution of the local total generated
entropy in the z = 0.5 (in continued lines) and z = 0.9 (in dashed lines) plans for different val-
ues of the irreversibility coefficient. This figure confirms that the magnetic field limits the 3-D
character of the distribution of the generated entropy for all value of ¢. This 3-D behavior is
clear for ¢ = 103and Ha = 0.

Figures 10 and 11 represent, respectively, for Ha = 0 and Ha = 50 a decomposition of
the distribution of total generated entropy for o=10"!, in plansz=0.5andz=0.9. For Ha=0, S,
is broken up into S, and S;,.. For Ha = 50, S, is broken up into Sy,, S, and .

These figures show that for Ra = 10* and Ha = 0, the distribution of S, (fig. 9) is very
similar to the iso-entropies due to frictions, fig. 10(a), what indicates the predominance of the ir-
reversibility due to the viscous effects. For Ra =10° generated entropies are more concentrated
(than Ra = 10%) near the actives walls, for both Ha = 0 and Ha = 50.

By decreasing (fig. 9) the distribution approaches with the iso-entropies due to temper-
ature gradient what indicates the predominance of the irreversibility due to the thermal transfer.
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Ha =100
(p:'l':]_1 §D=10_4

Figure 8. Iso-surfaces of the total generated
entropy as function of ¢ and Ha; Ra = 10*

Figure 10. Contours of generated entropy for
Ha=0and ¢ =101

(a) due to friction for Ra = 10%; (b) due to
temperature variations for Ra = 10¢; (c) due to
friction for Ra = 10°; (d) due to temperatures
variations for Ra = 10°; in continuous lines

z = 0.5 plan; in dashed lines: z = 0.9 plan

Ha=0

Figure 9. Contours of total generated entropy; in
continuous lines z = 0.5 plan; in dashed lines
z=0.9 plan; Ra = 10"

The 3-D character exists for both S, and S;.
This is also noticed that for low coefficient of
irreversibility the generated entropy covers all
the z= 0.5 plan. By increasing the coefficient of
irreversibility, the generated entropy concen-
trates (locates itself) along the walls of the cav-
ity. The important generation of Sj, is located
near the center of the faces. The generation of
S, 1s near the top corner of the hot wall and the
bottom of the cooled wall.

For Ha = 50, in fig. 11, the generated en-
tropy is distributed on all the cavity and
non-localised near walls even for ¢ = 107!,
which implies that the magnetic field is op-
posed to the boundary layer phenomenon met
for the great Rayleigh numbers. It is also no-
ticed that iso-contours of entropy in the z = 0.5
and z = 0.9 plans are almost coincided except its
friction contribution. This can be explained by
the bi-dimensionalisation of the flow under the
effect of the magnetic field. The 3-D behavior
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Figure 11. Contours of generated
entropy for Ha =50 and ¢ = 10~
(a) due to friction for Ra = 10°;

(b) due to temperature variations
for Ra = 10*; (¢) due to the Joule
effects for Ra = 10°; (d) due to
friction for Ra = 10°; (e) due to
temperature variations for

Ra = 10°; (f) due to the Joule effects
for Ra = 10°; in continuous lines

z = 0.5 plan; in broken lines
z=10.9 plan

of the distribution of the generated entropy is important for only the Sj;. The maximum of S is
located in the region near the center of active walls.

Figures 12 and 13 present, respectively, for Ra=10* and Ra = 103 a decomposition of
the generated entropy for different value of Ha. These figures show that by increasing Ha, S;, be-
comes distributed on all the cavity specifically in low Rayleigh number, S;;, concentrates close to
the higher and lower walls, and S; always is concentrated near the active walls. These phenom-
ena are more marked for Ra = 10* than for Ra = 10°.

Figures 12 and 13 also show that the 3-D character is more pronounced for the entropy
generated due to the viscous effects than the other types of irreversibilities.

3,
Ha=0
Ha =20
Ha = 60
Ha = 100
Figure 12. Decomposmon of generated entropy Figure 13. Decomposition of generated entropy for

for Ra=10*and ¢ =10 Ra=10°and ¢ =10
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Conclusions

A study concerning the effect of the presence of a magnetic field on the production of
entropy in the case of the natural convection of a low Prandtl liquid metal in a cubic cavity was
conducted. This field is applied orthogonally to the isothermal vertical and opposing walls.
Some conclusions can be resumed.

e In the presence of a magnetic field the generated entropy is distributed on the entire cavity
and non-localized in the vicinity of the walls, which implies that the magnetic field is
opposed to the boundary layer phenomenon met for the great Rayleigh numbers.

e The generated entropy presents a maximum for 10 < Ha < 20 for all considered values of
irreversibility coefficient. This range must be avoided when aiming the magnetic damping of
the flow.

e The magnetic field limits the 3-D character of the distribution of the generated entropy. This
character is more pronounced for the entropy generated due to viscous effects.

e The entropy generated by friction and Joule effect is more influenced by the magnetic field
than that generated by thermal dissipation.

Nomenclature GreeR letters
= B a — thermal diffusivity, [m*s ]
B — dimensionless magnetic field (= B’/By) B - expans.ion poefﬁcient, K]
B, — downward component of the magnetic H — dynamic viscosity, [Pa-s]
~ force, [Wbm™] Hp — magnetic permeability, [Hm™']
E — dimensionless electric field v — kinematic viscosity, [m*s ']
G:! — direction of the magnetic field vy — characteristic speed of fluid (= a/])
g — acceleration of gravity ) R p — density [kgm™]
1
Ha — Hartmann number {= [(Bg Fo)(pv)I™}, [-] Pe — density of electric charge, [Cm ]
J — dimensionless density of electrical o — electric conductivity, [ 'm™]
— 7 2 e 5
current (= J /GVO,B o) Ly o — irreversibility coefficient

k — thermal confiucthlty, [Wm K] ¢ _ dissipation function
! — enclosure width, [m] D — dimensionless electric potential
N — local generated entropy (= D'/IvoBo)
;13, B ;?;;;er(;to[rpr:])rmal to the wall v — dimensionless stream function (= y//ax)

- u ~ : . - ~\

’ -d 1 ticity (= oo/l
Pr _ Prandtl number (= vier), [] o imensionless vorticity (= wa/l")
q’ — heat flux vector, [W] Subscripts
Ra  — Rayleigh number (= gBATF/var), [—] ) )
R, — magnetic Reynolds number (= povol), [—] ?}; Y.z = iirrtrilsz:fn co-ordinates
S éen — generated entropy &  friction
T — dimensionless temperature P Toule
" ’ — u
[=(T"=THNT ~T)] ot — total
v — cold temperature, [K]

T} — hot temperature, [K] Superscript
t — dimensionless time (=f'at/l?) . ) ) )
A% — dimensionless velocity vector (= Vl/a) — dimensional variable
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