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The fractional (half-time) sub-model of the heat diffusion equation, known as
Dirac-like evolution diffusion equation has been solved by the heat-balance inte-
gral method and a parabolic profile with unspecified exponent. The fractional
heat-balance integral method has been tested with two classic examples: fixed tem-
perature and fixed flux at the boundary. The heat-balance technique allows easily
the convolution integral of the fractional half-time derivative to be solved as a con-
volution of the time-independent approximating function. The fractional sub-model
provides an artificial boundary condition at the boundary that closes the set of the
equations required to express all parameters of the approximating profile as func-
tion of the thermal layer depth. This allows the exponent of the parabolic profile to
be defined by a straightforward manner. The elegant solution performed by the
fractional heat-balance integral method has been analyzed and the main efforts
have been oriented towards the evaluation of fractional (half-time) derivatives by
use of approximate profile across the penetration layer.

Key words: fractional equation, heat diffusion, half-time fractional derivative,
heat-balance integral method

Introduction

The fractional calculus [1-5] is powerful tool for solving non-linear equation with
complex boundary conditions and allowing, for instance, surface flux and temperature to be
known without development of the entire temperature profile in depth of the heated medium.
The common method for solving fractional-order equations are purely mathematical, even
tough they are approximate in nature, among them: in terms of Mittag-Leffler function [6],
similarity solutions [7], Green’s function [8, 9], operational calculus [10], numerical methods
[11], variational iteration method [12, 13], and differential transformations [14,15] . The pres-
ent work refers to a well established method of integral solution commonly known as heat-bal-
ance integral [ 16]. The core of the model is the assumption of the thermal penetration layer prop-
agating with a finite velocity. Beyond the front of this layer the medium is undisturbed. This
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idea of Goodman [17], in fact, corrects the physical incorrectness of the parabolic heat-equation

where the speed of the flux is infinite.

The heat-balance integral method (HBIM), even its 50 years history, is still useful and
allows many complicated problems to be solved [18-22]. The problems in the HBIM solutions
are well known and may be formulates in some points, among them:

— Arbitrary of the approximate profile that is the general drawback of the classical approach
conceived by Goodman [16, 17]. This disadvantage could be avoided by using methods
optimizing the profile through double integrations [23-26], i. e. the so-called, refined integral
method (RIM) [26] or by imposing thermodynamic constraints [27] and use of additional
conditions derived through existing exact solutions [27-29] fractional calculus [30].

— The effect of the flux defined by the unknown profile in the right-hand side of the heat-balance
integral that commonly is avoided by double integration, i. e. the RIM method [26].

The present article address a heat-balance integral solution of the fractional half-time

model: w —a OT (x, 1) (1)

02t Ox
which has been developed by Oldham et al. (ref. [2], p. 200) and Agrawal [31, 32] through
non-dimesionalisation, and Laplace transform of the heat-diffusion equation:
oT (x, 1) 0 *T(x,1)
ot 0x?

)

Preliminaries

Equation (1) is second order in space and first order in time, while eq. (2) is first order
in space and half order in time. Equation (1) is exact for planar geometry and a short-time ap-
proximation in its general form [ref. [2], p. 200] for cylindrical and spherical geometries [2].

Equation (1) is equivalent to the basic diffusion eq. (1) [2] and allows the heat flux and
the temperature at the boundary to be determined as it was demonstrated by Agrawal [30, 31],

namely: "0 t):\/ﬁﬂ[T(o 1)-T,] (3a)
q" (0, P& g ;
1 d—l/z "
T(0,f) = — q"(0,0)+ T, G0
/,chp dr—1/2

Here d"/?/d¢"? and d-?/d¢ ' are the right-side fractional semi-derivative and integral
as integro-differential operators [1-3] — see appendix A.
In accordance with the Riemann-Liouville (RL) definitions [1-4] the semi-derivatives
of T(x, f) with respect to the space coordinate and the time are defined as:
RLOV2T(x, ) 1 d +7(z1)

8,012 F[ljdx o Vx -z

2
02T (x,t) 1 djT(z,u)du
0

0,112 F(lja [ —.
2

dz (4a)

(4b)

RLDI/2 —
t
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Solutions of (1) and (2) describing the entire temperature distribution in a semi-infinite
medium have been developed either numerically, by series [5] or other methods as mentioned
above. Now, we will demonstrate how the HBIM [16, 17] employing a parabolic profile with
unspecified exponent [26-28] works. The idea is explained next.

To be precise, eq. (1) is the so-called Dirac’s equation [34]:

(RLD2u)(1,x) = A 5“5’ D (t>0, x eR) (5a)
X
‘1‘im u(t,x)=0, (R:112u)(0+,x) =6p (x) (5b,¢)
x|
with A, <0;0p(x) is the Dirac’s delta function. The fundamental solution of (5a,b,c ) is [30,31]:
1 1 X 43 x?2

u(x,t)=———a¢| ——,0; = exp( } x>0 (5d)

Apt [ 2 ADJ}] 224t 2% pt

That to some extend approaches the well-know exact solution of eq. (2) — see Appen-
dix E for more details.
In term of Caputo derivatives, the initial value problem is [34]:

ou(x,t)

(CDfu)(t,x)=2Ap p (t>0,x eR,0< u<l) (6a)
X
‘l“im u(t,x)=0, u0+x)=g(x) (6b,c)
with a general solution:
u(x, t) =u, ; (t,x)= 2L T E,  (ikpkt*)G(k)e~*dk (6d)
T

where G(k) is the Fourier transform of the initial condition g(x) and E,, 4(2) is the bi-parametric
Mittag-Leffler special function [1] . This is a localized solution because lim u(t,x) =0. With
g(x) =p(x), the fundamental solution turns out to eq. (5d). el

Aim

The article addresses some major points, among them:

(1) Integral-balance approach to the solution of the fractional eq. (1), termed here as fractional
heat-balance integral method (FHBIM), following the idea of the classical Goodman’s
HBIM.

(2) Benchmark solutions of two basic cases allowing comparisons to exact solutions and
estimations of errors.

Problem statement — HBIM approach
HBIM approach

The HBIM approach to the fractional equations will be demonstrated through solution
of the sub-model (1) by two classical examples concerning specified temperature and defined
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thermal flux at the boundary x = 0, respectively. However, the idea will be briefly explained in
general.

Let us suggest that the heat propagate up to a depth into the medium and further the
temperature field is being undisturbed. At the boundaries of the thermal layer the classical con-
ditions hold, namely:

x=0, T=T, (7a)
x=5, T=T, (7b)
oT
X = 6’ _— 7C
o (7¢)
Besides, the thermal penetration depth &(¢) holds the initial condition:
t=0, 6)=0 (7d)
In accordance with the Goodman concept, at any time ¢, the following energy balance
should be satisfied: 5
o1/2 50T
T(x, 1) |dv = —Ja [ 8a
ﬂat”z ( )} (I)ax (8a)
that yields:
o[ a2
j T(x,0) |dv=~a(T| _ ~T| _)=~a(T,-T.) (8b)
otl/2 x=8 x=0
0

To some extent, looking at the RHS of eq. (7b) the result is equivalent to that provided
by the double integration approach in solution of the classical HBIM [23, 24 ], and the technique
used by RIM [24-26].

Next, let us suggest that the temperature distribution across the thermal layer is
approximated by an approximate function 7,(x) depending only of the space co-ordinate x
within 0 <x <4(¥). The application of the boundary conditions (6a,b,c) yields a profile ex-
pressed as a function of x and coefficients depending on d(¢). Now, let us replace in eq. (7)
T(x, t) by the approximating function 7,(x, d), namely:

o[ a2 \/_
ﬂatl/z Ta(x,t)}dx: (T, -T.) (92)
ol a1/2
I, = I {W T, (x, t)}dx (9b)

0

Now, the main problem is the evaluation of the fractional heat-balance integral (9b)

through particular expression of 7,(x, ) and the definition of the half-time derivative (4b). The
integral (9a) is termed hereafter — Half-time heat-balance integral (HT-HBI).

Some preliminary thoughts

Before starting with solutions, we have to comment that from mathematical point of
view the approximate function used by the HBIM only satisfies the heat-balance integral but not
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the original equation [30]. That’s correct, but we have to remember that HBIM stands to reason

because three main issues stay behind it, among them:

(1) The starting eq. (2) is physically incorrect since it leads to infinite propagation of the flux
across the layer. The Goodman approach corrects this by introduction of the thermal layer
concept that physically makes the problem solution close by that provided by the correct
hyperbolic equation. Briefly, the front movement existing in both the hyperbolic equation
solution and the real processes is not an outcome of the Fourier’s parabolic equation.

(2) The integration over the space coordinate means physical an energy balance over the thermal
layer (only within it there is a heat transfer) at a given time ¢.

(3) The choice of the approximating function is a matter of argument and it is affected by the
type of boundary conditions atx =0 [28, 29]. However, we have to remember, that at a small
increment of the time ¢ we have almost stationary heat transfer bounded by 0 < x < ¢ and
almost all known approximations used in HBIM (see the comprehensive analysis in [29])
quite well approach the static temperature profile. Hence, we with the integration over the
space co-ordinate (the heat balance integral) we, practically, froze the time and show that
temperature profile expands along x as the thermal depth grows with time. All this profiles
are similar and satisfy the energy balance of the solid. This mechanistic explanation quite
well gives details of the physics of the phenomena modeled by (1) and (2). Moreover, the
fractional diffusion equation referring sub-diffusion problems [34] the heat (mass)
propagation (diffusion) is so slow that the concept of the penetration layer becomes essential
in view of the fact that it really exists [35, 36].

Therefore, there is challenge to test how the HBIM works with a fractional time deriv-
ative and what is the technology of such a solution. Furthermore, what is the outcome as a pro-
file and predicted surface temperature/flux with respect to the solution provided by the basic
model (2)? This is a good option to perform a HBIM solution of a fractional equation prior to
apply the same technology to the fractional heat-wave equation. Last but not least, the browsing
of the literature and available solutions of fractional diffusion equations reveals that this is, in
fact, the first attempt to apply the HBIM methodology to this branch of models. Many answers
to the questions and ideas raised are provided by the next benchmark solutions.

Benchmark exercises and analyses

Two basic examples with simplest boundary conditions at the medium from surface
are solved by the method suggested that allows wide area for comparison of the results devel-
oped to those provided by either approximate or exact solution of the basic model (2). The pro-
gram of the benchmarks solution is it follows:

— definition of the approximate profile,

— fractional heat-balance integral,

— thermal penetration depth, and

— calibration of the exponent of the approximate profile.

Approximate temperature profile

Several cases will be exemplified by expressing 7,(x, ) as a parabolic profile with un-
specified exponent [26-28] and various boundary conditions at x =0

T.(x, f)=a + b(1 + cx)" (10a)
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or in dimensionless form:

T-T,
O, (x,1)= 4 = (1+cex)" 10b
()= 2= () (10b)

S ©

as will be demonstrated further in this work.
Any another approximate profile such as polynomial [16, 19, 29] or exponential [39,
40] can be used, but the parabolic one (10a,b) allows to demonstrate two basic issues of the
method developed in this work :
— how the fractional defined boundary conditions at x = 0 allows to calibrate the profile
exponent, and
— to demonstrate in an explicit manner the evaluation of the fractional heat-balance integral.

Example 1. Fixed temperature at x = 0

This classical problem allows to compare the exact solution of eq. (2), its HBIM solu-
tion and that of the sub-model eq. (1) through the FHBIM. Applying the boundary conditions
(6a,b,c) to eq. (10) we get:

a=T,, b=T -T, c=—— (11a,b,c)

o

that yields: Y
T,(x,t)=T, + (T, _T”)(l_gj (12)

The exponent is still unspecified and its exact value will be discussed further in this work.
Example 2. Specified flux at x = 0, q"(0, t) = q,

Let the approximate profile (10) satisfies the following boundary and initial conditions
within the thermal layer 0 <x <&, namely:

x =0, —Aﬂzq”(O,t)zq0 =const. (13a)
0x
x=06, T=T, (13b)
x=0, ar =0 (13c)
0x
and
t=0, 8()=0 (14)
with the conditions (25a,b,c) the coefficients of the approximate profiles are [27]:
1 1
a=T,, b=gqy,—, c=—— 15a,b,c
90 n S ( )
Hence,
5 X n
T,(x,t)=T, +q,—|1-= 16a
2 (%, 0) 90 M( 6) (162)

In dimensionless forms as:

0,=L@D "L _ 4 o >} o g L0110 X} 6,0
T,-T. T,-T.7n\ o 5 Al s
f]oz
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The next step is the evaluation of the time semi-derivative (4b) with substitution of
T(x, t) by T,(x, ) as it is done in the next section.

Fractional heat-balance integral

This section addresses the integration of eq. (9b) containing a half-time derivative
(RL) over the thermal penetration layer, namely:

02T (x,0) 1 d (T(x, u)d _ T (x,u)

12 — -
D) a+t1/2 ( ]dl‘ m \/_dequ (17)
with I'(1/2) = =" [2, 3]. 2
The substitution of eq. (17b) into eq. (9b) yields:
T(x, u) T(x, u)
o I{HJ } HLJJT } (5
Denoting: T(x, u)
D(x,t du 18b
(0= [ L0 N (18b)
we get
S (159
Applying the Leibniz rule to eq. (18¢) we have:
1 g[d
I, _ﬁﬂa@( t)}dx—\/_{ j@( x,t)dx — D(5, t)—} (19a,b)
Let denote: |
Ifr:ﬁ(lA —1Ig) (19¢)
where
_de _ &
I, =3 g(D(x, f)dx and I =®(5,1) 4 (19d,e)

If the exact profile 7(x, f) is replaced by the approximate one 7,(x, ¢), then the @(x, 1)
defined by eq. (18b) is approximated as:
1
0, (x,1) :jTa(x’“)du
t —

Hence, we get a way to find the equation defining the time evolution of the thermal
penetration depth (7).

(20)

FHBI to Example 1
Now, let us develop the integrals at issue by replacing 7(x, £) by O,(x, &) (Example 1),

r-T. =0, =|1-% (21a)
T -T B

s )

namely:
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Hence, the function @(x, 7) is replaced by cD@_a(x, f) expressed as:

Dy, (x, 1) = j@ (x, u) du (21b)
t —

Prior to the next step of the integration, we stress the attention on the fact that at a
given time moment t, 6(¢) is a fixed length. The later is quite important in the integration per-
formed next (see 22b,c). If this statement seems strange, let us recall that if the length of the slab
is L and the pre-heating period is over, and then 6(¢) is replaced by L in the profile. Now, let us
integrate step-by step, with eq. (21b) using as a benchmark the case of prescribed temperature at
x =0 (Example I):

1}=%E@a(x,t)dx} DJ@@a(M) } [”( deuwi (22a)

We integrate in the rectangle 0 <x <9, 0 < u <t and the change in the order of integra-

tion in eq. (22a) yields:
(ideu} (22b)
n+l1 t—u

IR RS

Next, since @y, (0, )= 0, the second term of eq. (19b) becomes zero, namely:

Further

dé
Dy, (6,)—=0 23
@-a( )dt ( )
Hence _
T _1d zﬁ(ij ZLLE(&/}) (24a)
Jr dt n+l)| Jon+lde
that is _
1/2
=4 j O o, |- =L svn (24b)
de| g\ or? | rn+lde
FHBI to Example 2

Following the technology in evaluations of the evaluations of the fractional heat-bal-

ance integral we have:
5 n
PR i(l—ﬁj L dudx (25a)
Jrdt|ooT, -T. An o t—u

because at x =6 n
_ 9 S (y_x]| |®_, (25b)
T,-T, An 1) dt
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From eq. (25a) we have:

1q_q—olii 5( j
T, Ty nyfr de )

Because the approximated function is limited within the range of integration, then fol-
lowing the Fubini’s theorem by changing the order if integration in eq. (26a) we get:

dudx] (26a)

90 11d’5(xj”1 Ls2 1
19=—10 - “lfdufd1-2 | —dx|=[— du  (26b)
AT, - T)nfdt['[ l §) Ji—u £n+11/,_u
That leads to:

I C e o1 5241) (260)
o2 /I(T T)n(n+1)fdt

Thermal penetration depth

The penetration depth depends on the FHBI and the flux at x = 0 upon the boundary
conditions imposed.
With Example 1 (prescribed temperature) we have:

a9 g2
IfTr:JO‘(atl/z@ajdxzﬁn—Jr—(&/_)— \/_j (27a)
that yields
ﬁ:—(&/_ )=a (27b)
With Example 2 (prescribed flux) we have:
a9l pu2 90 1 52 _
ﬂatm j AT, -T.) n(n+1) fdt 2 ‘ﬂ (282)
" ! Vo=~ = & 52y 20+ 1
2 — — 2
o J_ d t)= :> (5 t)=2(n+1) 6=0 (28Db)

The solutions of egs. (27b) and (28b) are:
Prescribed temperature

Equation (27b) evolves to:

d5 5 1 n+1
29
PR ﬁ \/_\/_ (252)

with a solution (by Maple 7)
5T(t)=Dw/;+%, D=«/E«/E”T+1 (29b)

t
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Prescribed flux

Equation (28b) evolves to:

&, 5 _ 1 (nthinda (302)

dt 4y Ji

Equation (32b) has a solution (by Maple 7)

5q(¢)=fB«/?+2, B =(n+Wrna (30b)
3 Vi
In both cases, eqs. (29a) and (30b), the initial conditions are: 6(0) =5+(0) =35,(0) = 0.
Hence, we have the only reasonable C; = 0 and C, = 0 that finally defines the thermal layer
depths, namely:

5T(z)=~/07«/5”7+1 (31a)
5q(z)=JE§JE(n+1) (31b)

The choice of C; = 0 and C, = 0 comes from physical reasons since eqs. (29a) and
(30b) give 6 — « att=0, that is equivalent to infinite propagation of the temperature field at the
onset of the diffusion process.

Calibration of the exponents of the approximate profiles

In accordance with the results developed in the previous section (eqs. 31a,b) we
obtained the following approximate profiles:

e Example I n
T,(,0)=T. +(T, T} 1-—~ (32a)
Jar «/;(n +1)
o Example 2 2
Ta(x’t)=Tw+%5é S (32b)

" \/(ng/;(n+l)

With the classic Goodman method applied to eq. (2) the accuracy of the approximated
solution depends on the choice of the exponent of the parabolic profile, commonly taken as n =2
or n=3. However, the arbitrary choice of the exponent x raises a question about its refining with
respect to minimization of errors in the approximate solution. It was demonstrated in [27, 28],
that when the solution of eq. (2) by the HBIM was developed the correct determination of the
exponent needed one boundary condition more in addition to BC (5a,b,c) imposed by the ther-
mal layer concept of Goodman. More precisely, this additional boundary condition means the
heat flux to be known when the surface temperature is specified. With respect to the solution of



Hristov, J.: Heat-Balance Integral to Fractional (Half-Time) Heat Diffusion Sub-Model
THERMAL SCIENCE: Year 2010, Vol. 14, No. 2, pp. 291-316 301

(2), this approach was developed by either the exact solution [27, 28] of Carslaw et al. [37] —
termed here as “exact solution” of eq. (2) — or by fractionally defined flux and temperature, as
presented by egs. (3a,b). The second approach, for example, allows the HBIM to be applied to
quite complex boundary conditions.

With regard to the solution of eq. (1), under the conditions of Example 1, by the para-
bolic profile (10), the additional boundary condition at x = 0 is the surface flux. This implies that
both solutions, the approximate and the exact one, have to provide equal thermal fluxes at the
boundary. Therefore, the flux at is immediately defined from the half-time derivative of the sur-
face temperature, that is the exact solution is given by eq . (3a) and with both profile the follow-
ing condition has to hold:

q"0,0)=q%0,1)=¢;(0,7) (33a)

Hence, irrespective of function representing the solution, exact or approximate, the
heat flux has to be equal if we have to obey the process physics. Where the fluxes provided by
both solutions are:

q%0,0) = /”tpC [T(0 H)-T.] and ¢,0,0)=A(T,-T,) (33b,c)

\/(;\/;(n+l)
2

Equating the boundary heat fluxes provided by both solutions we have — 7(0, t) = T, =

O e G ey o
Jno2n

N (35)

Jo n+l

Hence, the approximate profile is:

= const.:

and

Q@0=@—R{h )3%@@:@—&{% (36)

Jraat wn&J

With the prescribed flux problem (Example 2) , since the flux is defined at x = 0, the
following condition has to hold:
7,0, =100, 1) (37a)

Here 7,0, ?) is defined by eq. (3b), setting eq. (1) at x =0, because (0T/0x),_, defines
the surface flux.
Hence

1 d- 1/2

apC, 1/2 /— \/7

Because the semi-integral on the . h. s. of eq. (3b) is (d"">C)/(dt %) = 2C(t/n)"? [2]
where C is any constant. From eq. (37b) with the HBIM profile defined by eq. (32b) making
equal the temperatures at x = 0 we have:

Ty (x=0)=

(37b)
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J— ‘f J— \f J_zqof Vi (38)

This equation defines 7 as:

3n? =2n=>n= 2?75 ~~/2094395 ~1.447 (39)

Brief comments on FHBI and the solutions developed thereof

The general idea was applied and verified by two simple examples with simplest bound-
ary conditions well-known in the literature. The improvement of the method of the HBIM in the
cases with the half-time derivative sub-model is that the surface temperature or the flux can be de-
rived directly by egs. (3a) and (3b) — these outcomes of the direct setting of eq. (1) atx =0. This
option, in fact, allows closing the set of equations needed to find all parameters of the profile (10)
as it was analyzed in [28]. The classical Goodman method provides only 3 conditions (5a,b,c) that
work correctly with the profile (10) — see the discussion in [28]. The determination of the exponent
n needs an additional condition to be imposed on the profile. These are general comments, which
summarize previous notions and remarks but in general with the half-time derivative sub-model
the deficiency in the boundary conditions are not obvious unlike the case when the same method
and profile are applied to eq. (2) (see [27, 29]).

To this end it is better to know what are the expressions of 6 provided by the integral
solution of the sub-model (1), that of the basic one (2) as well to compare results provided by
them to those coming from exact solutions. As in the classical studies on HBIM we compare the
flux and temperatures at x = 0 since, in fact, the values of the exponents were calibrated at this
point. The exactness and correctness of this approach will be discussed further in this work.

A principle point in the development of the fractional HBI is the integration devel-
oped. In Appendices B and C an alternative approach is provided, more physical rather than
mathematical, giving results exactly the same as those developed by egs. (24b) and (28b). In ad-
dition, integrations by Maple 7 of both examples at issue is given in Appendix D; giving the
same results as limits when x — 5(z).

Numerical tests with the approximate solutions

The following numerical experiments test the accuracy of the profiles developed by the
methodology developed in Example 1 and Example 2 and calibration of the exponent at x = 0.
These numerical tests address two major issues:
— prediction of the boundary values (flux or temperature) by approximate profiles, and
— prediction the temperature profile across the thermal penetration layer.

Boundary values

Test to Example | — thermal penetration depth

With the fixed temperature at x = 0 we have:

Sub-model (1) 57 =~at @ (40a)
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Basic model (2) 5T =at\2an(n+1) (40b)

Test to Example 2 — thermal penetration depth

With fixed flux at x = 0 the results are:

Sub-model (1) 5 =8(t) =t 4;/; (41b)
n
Basic model (2) 59 =at[n(n+1) (41b)

The subscripts 1 and 2 refer to the sub-model (1) and the basic model (2), respectively.
The superscripts 7 and ¢ denotes the boundary condition at x = 0. The results about the HBIM
solution the model (2) are taken from [27, 28].

Accuracy of the solution of x = 0

(A) Example 1 (fixed temperature boundary condition) — Prediction of the boundary flux
With the developed profile we have:

= q,,(0,)=0564(T, —T. YL

Vat  (42a)

— Sub-model (1) ¢, (0,1) =(T, - T.,)

2n
\/Eﬁ(n +1)

= 0322(T, - T, VL n=175 (42b)

1
Vot \2n(n+1) Jat

— Exact solution of (2) q.(0,£)=0318(T, - T.,) A (42¢)

Jat

A
=0564(T, -T.,)— (42d
N J_ (I, -T.) N (42d)

Hence, the HBIM solution of the sub-model (1) gives a result, eq. (42a), which overes-
timates the exact solution, eq. (42c), of the basic model. In fact, the approximate profile of the
sub-model (1) was calibrated through the fractional boundary flux:

~Model @) g, (0.0)=(T, - T.)

— Fractional relationship, eq. (3a) ¢4 (0,6)=(T, -T.,)——

45 0.0=20C, T(O £)=T.]=——=—(T, - T.) ~ 0564 (43a)

J_J_

If the profile (32a) is calibrated at x = 0 through the exact solution of the basic model
(2), then from:

q.(0,1)=0318(T, — Tm)% and ¢, (0,1)=A(T, - Tw)J_— (43b.c)
at Jat n(n+1)
we have 2
2n " —0281= 1n=0390 (43d)

0318
J_ J_J_(n+1) n+l
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The result of eq. (43d) gives:

2n A
JatJr(n+1) Jat’

which is incorrect since we need n > 1. The more correct result is provided by calibrating
through the fractional boundary flux, i. e. with n = 1 because, the relationship (3a) is more gen-
eral as a solution then the well known exact one.

4. 0,0)=(T, —T.)A = 0898(T, —T.) n=0390 (43¢)

(B) Example 1 (fixed flux boundary condition) — Prediction of the boundary temperature

4n

—Sub-model (1) T, (0,0) =T, + = ‘1/1_0\/07 =T, +1.128‘2_0\/E, n~1447 (44a)
n
~ Model (2) T, =T, +«/Zz—°,/n(n+1) = +1.128(2—°\/E, n~365 (44b)
n
— Exact solution T, =T, +2- 9% Jor =1, +11289% Jar (44c)
ar A
Fractional relationship, eq. (3b) T.0,¢)=T, +1128 - at (44d)

In this case all the three solutions provide practically equal surface temperatures and
the discrepancies emerging in the comparison of the results provided by Example 1 do not exist.

Temperature profiles
The temperature profile established through the approximate parabolic profile can be

expressed through the similarity variable 1 = x/(acf)"2. This gives a possibility to compare the
approximate solution with those assumed as exact ones. Hence, as functions of 17 we have:

Example 1 n
T-T. 2
0, = = = l-n—" | ~(1-05641), n=1 (45a)
T T [ \/n(n-i-l)J

At the same time, the exact solution of the basic problem (2), corresponding to Exam-
ple 1 is:
o, -1 —erf(gj (45b)

Moreover, the HBIM solution of the basic problem (2) with the same parabolic profile
is [27]:

T,(x,t)=T. +(T, -T. )[1 - with n=175 (45¢)

X
Vot 2n(n +1) J

Figures 1(a,b) show the temperature profiles developed by the approximate solutions to-
gether with the exact solution of the basic problem (2). The plots clearly indicate thatup to n~ 0.5
withn =1, eq. (45a) all the solutions coincide with negligible errors. This upper limit, reveals, that
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FHBIM soulutions

1
0 1
0.8 0
0.8

0.6
0.6

0.4 0.4 1-n=1 ~ 4

2-n=1674
3 - HBIM model (2)

0 0.2 |= 4 - Exact solution model (2)
5 — Fundamental solution
0 0 3 3 'l 1 ¥
(@) 5 ) O 02 04 06 08 1
ni-l

L | T=T, x=0

Prescribed flux problem
s 1-n=1 1
0.8 2-n=1674 01 1 — Exact solution of (2)
3 — Exact solution model (2) 0.8 2 — HBIM solution of (2)
06 4 — Fundamental solution 3-FHBIM, n=4.347
06 [ 4 - FHBIM, n=1.253
04 | 04 k2
02 | 02
0 v S 5 3 4 5
0 05 1 15 25 3 .
(©) nH (d) 4

Figure 1. Temperature profiles — numerical results developed by different equations developed by both
HBIM and FHBI. The fundamental solution in (b) and (c) is that described by (5d)

with a ~ 107 W/m?K and # ~ 1 s we have x ~ 5-10* m, for example, that is quite large as distance.
On other hand, with large-time approximation, with 0 <7 < 0.5 we have satisfactory solutions in a
short distance beyond the point x = 0. The increase in the range where the integral approach out-
comes will approach the exact solution needs different approach in determination of the exponent
n of the approximate parabolic profile. This problem will be discussed in the next section.

Example 2 n
Tnn=1, +202 —+ =0, =
Ao Jo?gﬁ(nﬂ)
T2 0200y, n=1447 (462)
909
A n

The profiles are shown in fig. 1(d). The discrepancy with respect to the exact solution
becomes evident with increase in the value of 1. The improvement of the profile will be dis-

cussed in the next section concerning the global minimization of the error of approximate solu-
tion.
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Least-square approach in defining the optimal exponent
Preliminaries

The Langford’s criterion [38] concerning the solution of eq. (2) with the classical
HBIM is:

0

/ 2
E(f)Eg(f)FT;g’t)‘é aTea(;"t)} dv >0 (47)

If the approximate profile is a good enough solution of the classical heat-conduction
equation, then the following function E(#) should reach its minimum; with the exact solution we
have E(f) = 0. The Langford’s criterion, in fact is a minimization of the error of the eq. (2) that
does not talk about the optimal value of n. In this context, the Myers’ method [26] applied to eq.
(2) is a straightforward minimization procedure starting from eq. (47) and providing the optimal
value of the exponent of the profile (10). Here, we will use the idea of eq. (47) formulating an er-
ror function £, ,(#) in the form:

0= | =T z>+f

The optimal » should minimize E,,(f) and prov1de the desired approximate profile.
Hence, by use approximate profile in eq. (48a) we have:

a(t) 81/2
dx >0 (48a)

5() 51/2
Fih()= J

50)
and E,), ()= ({ [F)),(x,0)]*dx  (48b.c)

The criterion is a general condition requlring the approximating function to satisfy the
domain equation.

We will demonstrate how this approach works with respect to the optimal values of the
exponents leading to a global minimization of E,,(#), in both examples analyzed here.

Numerical test

Example 1
With Example 1, we have:

or :M:(l_fj (48d)
T,-T.

and the terms of F, ,(x, ¢) are:

e T X

00, __m(y_xY (49b)
ox oL &
Hence '
11 Y 2 x dd  nx "
Fptan=——|1-= | +=1 =221 -2 50a
12 (% 1) nﬁ( 5] o 82 dt 5[ 5} (502)
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then

gl 11 ) 2 X Y75 nx xn_12
El/z(t)T—!;[ﬁﬁ[l—g] +;«/?§n(1—5] 5—3(1—5j }dx (50b)

Using the expressions: § = 8T = (at)"?[n(n +1)]/2 and d5/dt =d5 T /de = [(ext)2/4¢" ]t
“(n+ 1), and following the form of the expressions developed in [30], the error function is represented
as:

Ja
Eyp (1)1 =$61T/2 (n, 1) (50¢)
where
. 1 2n+1) At 4
€ (}’l, t) = + —— +
Wr@n+l) 3 Vo n(r+D(n+2)
n\/;(n +1) N 1 i (50d)
20n-1)Q2n+1) 22n—1)
Since the term "%/t decreases in time, the minimization of E,,(¢); depends on the
second term e/, (n,7) [26]. Following the Myers’s idea [26] the minimization of ¢, (1, ) should

be performed at # = 0, that yields:
1 N 2(n+1) N 1 s min
Wr@n+l) 3 2@n-1)

The function (51) has a complex character but we look for a non-negative value of n >
1 through minimization of ¢, (n,0). The only non-negative root of (d/dn)(e]!, (n,0) =0 that is
greater than is n = 1.6745 and min. e, (n,0)= 3.82. This value of n differs from that established

in Example 1, i. e. n=1, through call/i%ration at x=0. To this end, we have to recall that the dif-
ferences in the values of 7 come from the principles applied to find it: (1) n =1 was established in
Example 1 through an operation making equal the boundary flux provided by the approximate
solution to that calculated by the fractional half-time derivative, without any influence of the
temperature profile in depth the medium; (2) n = 1.6745 was established taking into account the
approximate temperature profile and minimizing the error £, ,(¢)r, that, in fact, is a more general
condition. Hence, with the fixed temperature at x = 0 we have to take n = 1.6745 and the profile
becomes — see fig. 1(c).

e, (10) =

(51)

T,(x,t)=T. +(T, - T.) (52a)

1.6745
l-_—*
[ 2369vat ]

With this new profile and repeating the calculations expressed by (39a,b,c) we have:
b b
nat NeT
— Exact solution of (2) q.0,6)=0318(T, - T.,) L
Jai

Thus, with n = 1.6745 the sub-model (1) overestimates the boundary heat flux with
about 30.2% that is inacceptable. Obviously, if we try to balance between the approach used in
Example 1, providing exact values of the surface flux, and the error minimization through the

— Sub-model (1) ¢,,(0,1)=(T, —T.) = 0422(T, - T.) n=16745 (52b.c)

(52d)
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Myer’s approach to the least-squares method, then, the optimal value of n is between 1 and n =
1.6745. We have to remember, that in Example 1 only physical assumptions and correct mathe-
matical manipulations were applied, while in the Langford approach and the minimization pro-
cedure thereof we apply only mathematical tools no matter what stay behind the mathematical
operators. In this, context, remember that the optimal n = 1.6745 was determined by setting =0,
that makes the function e, (n,0) dependent only on n. However, this is a mathematical trick
only because at =0 there is no heat diffusion in the body, the temperature profile does not exist,
and the valid results are only those attached to the surface x =0, i. e. the surface temperature 7
and the heat flux defined by eq. (3a); this directly address the approach used in Example 1 and n
=1 as outcome. The approach with #= 0, neglects the time-dependent terms of the error function
that decrease in time and focus the efforts at the minimization procedure at the “stationary
terms” depending on the exponent 7.

Figure 1(c) shows plots of all solutions together with the fundamental one expressed
by eq. (5d). All approximate profiles match the profile (5d) within 0 <7 <0.5.

Example 2

With the profile (27d) taking into account that § = 6/ =[(at)!/2/5]n"*(n+ 1) and d5/dr =
=d5/dt = (106" )" 2(n + 1) we get E, (1), = (a"?/1")e]l , (n, 1). Then, solving e (n,1) =0
(all operations performed by Maple 9.5) and setting # = 0 in the final expression we have:

30959
n2n+1)(2n+3)

The first 3 roots (n, = n, = ny =—1) are unrealistic. Further, the analytical solution per-
formed by the Maple’s operation “solve” provides: n, = —3.173828995 —1-4.274839820, n5 =
= -3.173828995 + 1-4.274839820, and ns = 4.347. Only the last root ny = 4.347 is real and
non-negative. It is greater than n=1.447, see eq. (39) established directly by the FBIM. With
n=1.447 we get e/ (n,0)=6.177809649 while with n=4.347 the error functionis e/ (n,0)=

1/2 1/2
=0.001569 . Therefore, with n = 4.347, the new profile is:

a(n +1){0.0628 - =0 (53)

T,(x,t)=T. + 0.772‘3—0 Jo?[l - (54)

4.347
_r
3358Jat j

Calculations, similar to those performed with (40a,b,c), give:

Sub-model (1) 7, (0,¢) =T, + 5‘170 (n+1Wat =T, (0,1)= Tw0.772i—°«/5, n=4347 (55a)
n

Exact solution T,=T,+2 T ot = T, +1.128%«/5 (55b)

2lm

Therefore, the exponent assuring a minimum mean-squares error — see fig. 1(d), of the
fractional sub-equation underestimates the surface temperature with about 31% that of the exact
solution.

Brief on the optimal profile

The general lesson of the least-square tests in estimation of the optimal exponent is:
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(1) When the surface temperature (flux) has to be defined, then the general approach developed
here through calibrating the profile at x = 0, has to be applied.

(2) When the temperature profile has to be modeled and the overall error over the entire thermal
layer has to be minimized then, the least-squares approach is the additional tool leading to
the optimal value of the exponent n. However, this step minimizes the global error but gives
inacceptable boundary fluxes and temperatures, as it was demonstrated.

Conclusions

In this paper the general framework of an integral solution to a diffusion equation with
half-time fractional derivative was presented. The fractional sub-model of the classical heat-dif-
fusion equation was especially chosen because both equations are equivalent in plane geometry.
The main approach in the classical integral approach (an approximating function dependent
only on the space co-ordinate) gives an advantage in evaluation of the fractional half-time deriv-
ative represented by a convolution integral as it was demonstrated by Example I and Example 2 .
This approach simplifies the calculations and, in fact, we evaluate the convolution integral of
the approximate function. The next step involving the integration over the space co-ordinate is
almost the same as in the classical HBIM. The outcome of this new step in the approximate solu-
tion of fractional equations is that it provides solutions almost the same as those when the basic
solutions are solved. The test eq. (1) was especially chosen as mentioned above, since it has an
integer analogue (2) that allows easily comparing the results and elucidating the emerging prob-
lems, among them:

e The FHBIM applied to the fractional sub-model provides almost the same expressions about
the heat penetration depth and practically equal results about the surface temperature and
flux (see the numerical tests (42a,b,c,d) and (44a,b,c,d) as those provided by the HBIM and
exact solutions of the integer model (2).

e The fractional sub-model provides an artificial boundary condition x = 0 allowing the
number of the equations to be equal to the number of the unknown parameters of the
parabolic profile. This artificial condition comes immediately after setting both sides of the
sub-model at x = 0. This is an advantage, since in the case of the integer model (2) this
condition does not exist [26-28].

e The optimal exponent established through the complete set of boundary conditions of
FHBIM, is lower that that derived through minimization of the global mean-square error of
the sub-model over the entire penetration depth. This result is not strange since similar
problem exist in the HBIM solution of integer model [22, 26, 29].

e The FHBIM uses an elegant technology that has some advantages with respect to the direct
determination of the exponent of the profile through the mean-square error minimization.
The method gives lowest global error of approximation but the consequent calculations of
the surface temperature (or flux) by the exponent provided by it is unacceptably
overestimated (or underestimated).

The method demonstrated in this work is, in fact, the first attempt to solve a fractional
equation by integral method. The HBIM is well-known and widely applicable but never tested
with fractional-time diffusion equation. The technology developed in this work allows develop-
ing solutions even with more complex boundary conditions then those used in this work; this
problem is beyond the scope of the present article but still unsolved.
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Nomenclature
a — coefficient in the prescribed temperature, T, — temperature of the undisturbed medium,
[K] (K]
b — coefficient in the prescribed temperature t — time, [s]
profile, [K] u — dummy variable in the fractional-time
c — coefficient in the prescribed temperature derivative (see eq. 4b)
-1 . . .
profile, [m™] X,y  — co-ordinates (x is used in some contexts
E(t)  — defined integral as a measure of the error as general independent variable), [m]
of approximations (eq. 47) z — dummy variable in the fractional-space

En(f) — global (integral) error function defined by
eq. (48a), [-]

E\n(f)r — global (integral) error function defined by
eq. (50b) for the fixed temperature
problem, [—]

E\;(t)q — global (integral) error function defined by
eq. (53) for the fixed flux problem, [—]

&1 error function defined by the integral
Ep()r, [-]

2 (1) error function defined by the integral
Eip()g, [-]

Fi,  — function defined by (48b) and the integral
Ep(t)r (48¢), [-]

n — exponent in the prescribed temperature
profile, [—]

q", q¢ — surface heat flux, [Wm]

qa — surface heat flux provided by the
approximate temperature profile, [Wm ]

qe — surface heat flux provided by the exact
temperature profile, [Wm ]

qf — surface heat flux provided by the
fractional (half-time), [Wm ]

T — temperature, [K]

T, — temperature defined by the approximate
solution, [K]

T, — temperature defined by the exact
solution, [K]

T, — surface temperature (commonly at x = 0,

see the context), [K]

References

derivative (see eq. 4a)

Greek letters

a — thermal diffusivity, [m”s ']
o — thermal layer depth, [m]
A — thermal conductivity, [Wm K]
u — fractional orders of the derivatives, [—]
of — dimensionless temperature
[=(T - T)NT;—T.)], see eq. (42d)
Superscripts
C — Caputo derivative
RL — Riemann-Liouville (Example 1) erivative
q — prescribed flux problem (Example 2)
T — prescribed temperature problem
(Example 1)
Subscripts
a — approximate
[§ — exact
fr — fractional defined
Abbreviations

HBIM - heat-balance integral method
FHBIM- fractional heat-balance integral method
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APPENDICES
Appendix A
Fractional derivative — definition and properties

Fractional calculus is the branch of calculus that generalizes the derivative of a func-
tion to non-integer order, allowing calculations such as deriving a function to 1/2 order. Despite
“generalized” would be a better option, the name “fractional” is used for denoting this kind of
derivative. The Riemann-Liouville derivative is the most used generalization of the derivative.
It is based on Cauchy’s formula for calculating iterated integrals:

X
Rpif () =—— [ LU g (A-1)
L(=p) g (x = 1)1
Fractional derivatives satisfy quite well all the properties that one could expect from
them, despite some of them are only characteristic of integer order differentiation and some
other have restrictions. Assuming further u = 1/2 for seek of clarity of the explanation in the
main text we have:

— linearity DH[af (x) + bg(x)]= aDuf(x) + bD#g(x) (A-2)
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.. duty
— composition rule DHD7f (x) =—— f(x)
dx sty

—with u = 1/2 (a semi-derivative) used in the work

1/2 -1/2
d _ Cx (A-3)
dx12 JE
1/2
D2 f(cry=c2 $2E) (A-4)
d(Cx)"?
where C is any constant
Appendix B
Alternative approach in development of the
fractional heat-balance integral — Example 1
The time semi-derivative (4b) with substitution of 7(x, #) by T,(x, )
T,(x,1)=T, +(T, —Tw)(l—%j (B-1)

is

1 d "1
D2 = T, +(T,-T.)|1- ——d B-2
ta [jdtdtj{ o )[ 5”\”#” 2
2

where D/ denotes a time semi-derivative calculated through the approximating profile 7,(x, ?)
with I'(1/2) = =2 [2, 3].

In fact6 =6(¢), but at a given time ¢ the profile depends only on the space-coordinate x.
This assumption allows, considering the function 7,(x, 8) as time-independent and moving it
outside the convolution integral in eq. (13), to get:

1 d
du}:ﬁd—T( 5)(%/:— ‘ jz—T(x St (B-3)

prr="Ld7 5)j !
ta \/Edt a\"™ ! f—u

From (B-4) we have:

1/2 — 1 d + - ! -
Dl = i t{Z\/{T (T. T)(l 5) ” (B-4)

Now, the integral of (B-3) becomes:

2 { [( -2 de = )

Now, applylng the Leibniz rule for differentiation under the integral sign (the classical
step in the Goodman method) we have:
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d a2 xY 2 _ ~ )
a{gﬁﬁln +(T, —Tw)il—gj }dx—;Tméw/;}—x/a(Ts T.) (B-6)
From (B-6) we get:

2 df sVt ds n+l1
fdr[wl} Vo=£ J?+5_t_TJ_J— (B-7)

Integrating (B-7) we have:

5(t)=DJ?+%, D:JEJE"T“ (B-8)

Obeying the initial condition we have the only reasonable C,; = 0 that finally defines

the thermal layer depth: n+l
5(t) =DVt = Jairn —~ (B-9)

The choice of C; = 0 comes from physical reasons since eq. (29a) gives 6 — ~ att=0,
that is equivalent to infinite propagation of the temperature field at the onset of the diffusion pro-
cess. The result is exactly the same as that developed through other technique of integration —
see eq. (29b).

Besides, inref. [5 —p. 89], it is especially mentioned that the function defining the mo-
tion of the front in Stefan-like problems (in the present case this is (¢) should be considered as a
constant, independent of the time # when the D!/2(RL) has to be calculated. In fact, this is the ap-
proach demonstrated by (B-3)-(B-5).

Appendix C

Alternative approach in development
of the fractional heat-balance integral — Example 2

With the approximate profile in the FHBI we have:

o x )
T (x,0)=T. +qq—|1-2 C-1
NEN) 90 M( 5) (C-1)
Integrating (C-1) from 0 to 8, see eq. (B-3), we have:
4 Al/2 " 5
ja Tw+q0i(l—£j dx:—\/a?ﬂdx (C-2)
o 0t!? An o 0 Ox

Applying the same technology as to eq. (B-3) we have:

1 d ) x )
Dl = =i t{ 2f[T + 4, M[l—g] ]} (C-3)

Now the integration with respect to the space co-ordinate x yields:

T%H [T g, j (1—5) de=—\/5j§%dx (C-4)
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Replacing the space derivative in the r. h. s. of eq. (C-4) by 87/0x = —(a'?qy/A)[1 -
— (x/6)™1] and applying the Leibniz rule we get:

df{jf [T ol ‘ﬁﬂ""‘%TmM}=€q°i(l—é)n_ld’“ (©5)

Ther. h. s. of eq. (C-5) is:

ag, f(l—x)nldx:l‘/;% 5
A n A

1)
0
Then integrating eq. (C-5) from 0 to 9, see eqs. (B-6 and B-7), we have:
—(52J_)—££5 0 (C-6)
Equation (C-7), evolves to:
& 5 _VJna
(C-7)
@ w2 v
Equation (C-7) has a solution:
5(t) = —B«/_ € p- o (C-8a,b)
f 4n

With eq. (C-8a) the initial condition §(0) = 0 the only reasonable value of the integra-
tion constant is C, = 0. Hence, the thermal layer depth is:

5(t) =~n~at 31 (C-9)
n
The results is exactly the same as eq. (31b).

Appendix D

Integration by Maple 7 of the FHBI
T, (x, u)
D-1
| { ” [EE — } (D-1)
— Example 1
The Maple program line

> int(int(((1-x/y(t))*n/sqrt(t-u)), u=0..t), x=0..y(t));

5 SNt

n+l1

provides the solution:
limxss@) — K

81 +x J"” ~ 1] _, 3wt (D-2)

o(t) n+1
— Example 2
The Maple program line

int(int((y(t)*(1-x/y(t)) n/sqrt(t-u)), u=0..t), x=0..y(t));

provides the solution:
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) 3|50 +x s RO 0-3)
M=o =27 7 5(1) ntl
Appendix E

Dirac-like fractional equation

Equation (1) has been studied by Kilbas ez al. [32], Pierantozzi et al. [33], and Usero
et al. [34] from the standpoint of an initial value problem involving the Dirac’s fractional equa-
tion:

D) =2y D 0 eR) (E-1)
X

lim u(z,x)=0, (RLI}2,u)(0+x)=35, (x) (E-2)

pel

where dp(x) is the Dirac’s delta function.
With A <0 (as in the case at issue, see eq. (1), with —«!’?), the fundamental solution is

[32]: X
3 2
u(x,t)z—Lgo —1,0; o = Jiz exp al , x20 (E-3)
Apt {27 o\t ) 224t 2Apt

The moments of this fundamental solution are given by — recall, the integration over
the space co-ordinate in the method used here defines the 15 moment of the 1. h. s. of eq. (1):

I'(n+1)

I~ n—1
Txmu(x, Hydx = (=4, )" (2 (n=0,1,2,...) (E-4)
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