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The linear Rayleigh-Taylor instability of two superposed incompressible magne-
tized fluids is investigated incorporating the effects of suspended dust particles and
viscosity. The basic magnetohydrodynamic set of equations have been constructed
and linearized. The dispersion relation for 2-D and 3-D perturbations is obtained
by applying the appropriate boundary conditions. The condition of Rayleigh-Tay-
lor instability is investigated for potentially stable and unstable modes, which de-
pends upon magnetic field, viscosity and suspended dust particles. The stability of
the system is discussed by applying the Routh-Hurwitz criterion. It is found that the
Alfven mode comes into the dispersion relation for perturbations in x, y-directions
and in only x-direction, while it does not come into y-directional perturbation. The
stable configuration is found to remain stable even in the presence of suspended
dust particles. Numerical calculations have been performed to see the effects of
various parameters on the growth rate of Rayleigh-Taylor instability. It is found
that magnetic field and relaxation frequency of suspended dust particles both have
destabilizing influence on the growth rate of Rayleigh-Taylor instability. The ef-
fects of kinematic viscosity and mass concentration of dust particles are found to
have stabilized the growth rate of linear Rayleigh-Taylor instability.

Key words: hydromagnetic instabilities, magnetohydrodynamics,
Rayleigh-Taylor instability, suspended dust particles, viscosity

Introduction

The problem of Rayleigh-Taylor (R-T) instability has importance in space plasma
physics and astrophysics providing explanation for a large number of observations between
streaming fluids. In laser fusion process, the high temperature with thermal energy exchange is
important and the R-T instability plays a crucial role in laser plasma experiments. It is encoun-
tered frequently in the laboratory plasma with the magnetic fusion problem. It occurs when a
lighter fluid supports a heavier against gravity whereupon they tend to interchange their posi-
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tions. The problem of R-T instability is studied widely by many authors in different types of me-
dium. Chandrasekhar [1] has given the detailed contributions to this classical problem of R-T in-
stability under different assumptions of hydrodynamics and hydromagnetics. Roberts [2] has
investigated the effect of finite kinematic viscosity and magnetic resistivity on the R-T instabil-
ity of two superposed incompressible fluids. Ogbonna et al. [3] have analyzed the stability of a
plane interface separating two viscous superposed fluids and concluded that the stability crite-
rion is independent of viscosity but the magnetic field has stabilizing influence. Mikaelian [4]
has discussed the effect of viscosity on the R-T instability. Lange et al. [S] have investigated the
fingering instability in a water sand mixture experimentally in the context of R-T instability of
two stratified fluids of different densities and dynamic viscosities. El-Ansary et al. [6] have in-
vestigated the R-T instability for three fluid systems taking the effects of surface tension and ro-
tation. Thus the problem of linear R-T instability is widely discussed in different types of me-
dium for different cases.

In addition to this, the problem of R-T instability of two superposed visco-elastic flu-
ids is widely discussed by many authors due to its industrial and chemical importance. In this
view, Sharma et a/. [ 7] have investigated the R-T instability of Rivilin-Ericksen elastico-viscous
fluid through porous medium in presence of horizontal magnetic field and uniform rotation. Re-
cently, Kumar ez al. [8] have discussed R-T instability of two superposed viscous-viscoelastic
fluids and found the stabilization effect of both kinematic viscosity and kinematic
viscoelasticity on the growth rate of R-T instability.

In the case of dusty plasma or plasma with dust, there are problems in which dust grain
will be in motion relative to the surrounding gas or plasma. In this case dust is subjected to a vis-
cous drag force, which is given by Stokes law [9]. Owing to the relevance of suspended dust par-
ticles in number of astrophysical situations and laboratory problems, various workers have in-
corporated the effect of suspended dust particles in the R-T instability analysis. Scanlon et al.
[10] have given a novel account of the theoretical studies focused on the effect of suspended
dust particles on the onset of Bernard convection. Sharma et a/. [11] have studied the effect of
suspended particles in an infinitely conducting gas layer in hydromagnetics where destabilizing
influence of these particles is pointed out. Sharma ez al. [12] have also analyzed the R-T instabil-
ity for a medium consisting of two superposed fluids including suspended particles and shown
the criteria determining stability and instability of the system. Sanghvi ez al. [13] have discussed
the hydromagnetic Kelvin-Helmholtz (K-H) instability in the presence of suspended particles
and finite Larmor radius (FLR) effect and found that suspended dust particles have stabilizing
influence on the system. Also, Gupta et al. [14] have discussed the R-T instability of two
superposed magnetized viscous fluids with neutral particles. The effects of rotation and FLR
corrections on the R-T instability of two superposed magnetized conducting fluids with sus-
pended dust particles are analyzed by Sharma et al. [15,16]. Kumar et al. [17] have investigated
the R-T instability of two superposed Rivlin-Eriksen visco-elastic fluids in presence of sus-
pended dust particles.

In this light, Sunil et al. [18] have discussed the R-T instability of two superposed
hydromagnetic porous medium in the presence of suspended dust particles. In this work the con-
dition of R-T instability is obtained but effect of viscosity of the medium was not considered. In
the present work, we wish to discuss R-T instability with viscosity of the medium, which has
definite role in connection with suspended dust particles.

Recently, Khan et a/. [19] have discussed the K-H discontinuity in two superposed vis-
cous conducting fluids in the presence of horizontal magnetic field. They found that viscosity,
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porosity, and surface tension have stabilizing influence on the growth rate of the unstable mode.
El-Sayed [20] has investigated the transverse hydromagnetic K-H instability including effects
of suspended particles, viscosity and FLR corrections. He has discussed perturbation only in
y-direction and solved the R-T and K-H problem. In his static result there is no effect of mag-
netic field on the dispersion relation and condition of R-T instability. We find that the terms due
to magnetic field do not come into dispersion relation due to consideration of 2-D perturbations.
Thus it is of interest to discuss the problem of R-T instability taking 3-D perturbations. In the
present problem we have considered the different configuration of perturbations and tried to ex-
plain the effect of magnetic field along with suspended dust particles and viscosity on the condi-
tion of R-T instability and growth rate of R-T instability.

In the light of above discussion, we find that investigation of the problem of R-T insta-
bility is of current interest in thermal physics. It is important to note that in various works [13,
15, 18], the R-T instability is discussed with and without suspended particles and magnetic field
but the effect of viscosity is not included in the analysis. In the present paper, we analyze the R-T
instability at the plane interface of two superposed incompressible conducting viscous fluids of
different densities in the presence of uniform horizontal magnetic field including the effects of
suspended dust particles and viscosity of the medium. We have also discussed stable and unsta-
ble arrangements as separate cases.

Basic equations of the problem

We consider two superposed incompressible fluids of variable density and constant
viscosity with horizontal magnetic field H(H, 0, 0) and gravity field g(0, 0, —g) in the two re-
gions (see fig. 1). The fluids are taken to be conducting in which non-conducting suspended dust
particles have been incorporated. The relevant basic magnetohydrodynamic (MHD) equations
of the problem are:

p 8 vy He (VT x ]+ KN (§ — G + pg +uv 2 +| 24 W0
dt 4n O0x 0z )0z
P (G -V)p=0 ©)
ot z
‘2_H+(ﬁ-V)ﬁ=(ﬁ-V)ﬁ (3)
t
V-u=0, and V-H=0, ) 70
V2 P2
where d/dt =[0/0t + (uV)]is the convective deriv- H
ative, u(u, v, w), p, i, . denote the velocity, density, —
viscosity, and the magnetic permeability of the 0 z=0 X
fluid, respectively. v(x, t) and N describe the veloc- I‘ L,
ity and the number density of the suspended dust v p,
particles. If we assume identical dust particles in 5 .

shape and size then the net effective drag force of the H
suspended dust particles on the fluid per unit volume ©.0-9
is KN(v —u) where the Stokes drag coefficient K =

6mua, and a being the suspended dust particle ra- ~ Figure 1. Schematic diagram of the
dius considered R-T configuration
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We know that the force exerted by the fluid on the dust particles is equal and opposite
to that of the force exerted by the dust particles on the fluid, thus there is an extra force term in
equation of motion of the dust particles equal in magnitude but opposite in sign. The equations
of motion and continuity including dust particles can be written as:

mN{g—\: i G .V)v} _KN(i-¥) 5)
and
N V. (N¥)=0 6)
Py

where mN is the mass of the suspended dust particles per unit volume.
Linearized perturbation equations of the problem
Letop, 6p and Iﬁl(hx,hy , h,) denote the perturbations in the density, pressure and mag-

netic field, respectively. Then by neglecting the equilibrium and most perturbed terms, the
linearized perturbation equations of the configuration are:

p OV _ysp B [(vV x By H] 4 KNV —0) +89p +uv2i +| 2 SU K (g
ot 4t 0x 0z )oz

9P _ _ypp ®)

ot
O v @ixi )

ot

(ﬂiﬂjv:a (10)

K ot
V-i=0, and V-h=0 (11)

where D = d/dz.

Dispersion relation and discussions

Equations (7)-(11) are the linearized perturbation equations of the present problem. To
get better insight into the effect of magnetic field on the R-T instability problem depending upon
2-D and 3-D configuration, we discuss three different cases of the R-T instability: (1) general
case having perturbations of the variables in both x, y-directions (2) the perturbation only in
x-direction, and (3) the perturbation only in y-direction.

The R-T instability with perturbations in both x, y-directions

Assuming all the perturbations of the form:
exp(ikx + ikyy + nt) (12)

where k, and k, are the wavenumbers of perturbations along x, y directions providing
(k? =k} +k3?)and n is the growth rate of harmonic disturbance.
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Equations (7)-(11) can be written in the component form using eq. (12), as follows:
[o(1+ n) + mN Jnu=—(1+ tn)ik Sp + (1 + tn)(D? — k2 )u + (ik . w+ Du)(1 + tn)Du (13)

[o(L+n) + mN ]nv=~(1+tn)ik ,op + u(1+tn)(D? —k?)v +

ik, w+ Dv)(1 + 7n) Dy + “; (ik ih, — ik, h )1+ 7n) (14)
[o(+7n) + mN Jnw=—(1+tn)Dép + (1 + rn)(D2 k2 yw+= = (1 +n)(Dp)w +
+4—ﬂ (ik h, — Dh )1 +7n) +2(1 + rn)(D,u)(Dw) (15)
nh = ik Hi (16)
ik u+ik,v+Dw=0 (17)
ikhy +ikyh, +Dh, =0 (18)

where 7 =m/K is the relaxation time of the suspended dust particles and v = ui/p, is the kinematic
viscosity of the fluid.

On eliminating op between eqs. (13)-(15) and using egs. (16)-(18), we obtain follow-
ing differential equation in w:

n(tn+D)[D(pDw) — k2 pw]+ n{D[mN (Dw)] — k2 (mN Yw} —

—p(tn+1)(D? — k22w S [(Dp)(z'n+1)w]+'uef  (tn+1)(D? — k2 yw—
n

— (e + D{D(Du)(D? + k*)w] =2k * (Du)(Dw)} =0 (19)

Now we consider the case where two superposed fluids have uniform densities p, and
0, and uniform viscosities £, and i,. The fluids are separated by a horizontal boundary z = 0.
Then, in each region of constant density and viscosity, eq. (19) reduces to:

(D* — 12D~ K2)w =0 (20)
h
o Ko =g + 2|1V HkiH 1)
v p(l+tn) 4mn?p

Since w must vanish both when z — —oo (in the lower fluid) and z — +o0 (in the upper
fluid), the general solutions of eq. (20) appropriate to the regions are:

w, = A, exp(kz) + B, exp(K,z), (z<0) (22)

w, = A, exp(—kz) + B, exp(—K,z), (z>0) (23)

where 4,, B,, 4,, and B, are arbitrary constants and K, and K, are the positive square roots of eq.
(21) for the two regions, respectively.

The above solutions must satisfy certain boundary conditions. Following
Chandrashekhar [1] these conditions require at an interface (z = 0):
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w=0
and Dw=0 (24)

u(D? +k2)w=0
Integrating eq. (19) across the interface z = 0, we get:

{|:Pz_,u_2(D2_k2)}DW2} _{|:P1 _:“_I(Dz_kz):|le} + N (Dw, —=Dw;) .o +
n n B ™m+1
=0 z=0 (25)
J2H? 2 2k 2
Rl (Dw, =Dw; ).y + gk_(Pz =P IWy +—— Uy = )(Dw)y =0
4mn? n? n
where w, and (Dw), are the common values of w, and w, and similarly, Dw, and Dw, at z = 0.
Applying the boundary conditions as given by eq. (24) into egs. (22) and (23), we ob-

+

tain:
Ay +B =4, +B, (26)
kA, + KB, =—k4, - K,B, (27)
My [2k2 4, +(K12 +k?)B 1=u,[2k2 4, +(K22 +k2)B,] (28)

2172
mN__pkiH }Aﬁ

k2 k2
—_— — +_ — — i
{2’12 (P2 —p1) Y Ly —py) —py il dmn?

k
+|:—(Pz _Pl)“‘%(ﬂz _;ul)j|Bl +

2n?

2 k2 mN  uk2H?
+g—(P2_P1)+—(#2 —Hy) =Py - -£ 4, +
n m+1  4mn?

k2 kK
J{g—z Py =p1) +—= (u; _ﬂl)}Bz =0 (29)
2n n

Eliminating the constants 4,, B;, 4,, and B, from the set of egs. (26)-(29), we obtain
the following determinant:

1 1 -1 -1
k K k K
2k2py (K +k2) =2k2p, —py (K3 +k2)
where o B Y J
gk? k2 mN  pu,krH?
oa=|—— — +_ - —_— — —
|:2n2 (P2 =p1) . (ty =) = py il drn?
k2 kK
B=|==(py—p))+—L(uy —11,)
2n? n

mN _uekxzm}

k2
= | =— —_ +_ j— . —_
14 { 3 (P2 —p1) . Uy =) —pa il dn?

2 k.
5:{—2(1)2 _Pl)"”ﬁ(ﬂz _ﬂl)}
n
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On solving the determinant (30), we get the following characteristic equation:

(K) ~K)2k2V(p, — py)a +b]~2k(c+d)+ (K, ~)Lf ~2k>V(p, — p,)h]=0  (31)

where )
mNn  k K2H?
a= |P2 T —— (K = k), _#1)"““—
+1 n 4nn?
[ mNn  uk2H?|[ 2mN 2uk2H?
b= |pan+ Palut Sl &(pz—pl)———(pﬁpz)—”—
Tn+) 4nn || n? v+1 4nin?
[ mNn — uk2H? | mN  k K2H?
c= |pn+t + 2 —— (K = k), _H1)+'u—
™m+1 4nn | m+1 n 4nin?
I mNn  pk2H? ] mN  k JK2H?
d= |pn+t + s —— (K, = k), _/11)+'u—2
m+1 dnn | m+1l n 4nn
[ mNn  pk2H? || gk 2mNn 2uk2H?
- n+ + = (py—p)— —(p, +p,)—
f= 1P ™m+1 4nn || n? (P2 =p1) ™m+1 (P1+p2) 4mn?
I mN  k JK2H?
h=|p + —— (K, = k), _ﬂ1)+—ﬂ 5
m+1l n 4nn

The characteristic eq. (31) shows the combined influence of magnetic field, permeabil-
ity, kinematic viscosity, and suspended dust particles on the R-T instability of two superposed
magnetized viscous fluids. Owing to character of the dispersion relation (31), K, and K, involve
square roots; we restrict our treatment to the fluids of equal kinematic viscosities (v, = v, = V).
Also for simplicity in the stability analysis, we further assume that the fluids to be highly viscous
as given in Chandrasekhar [1]. Therefore, under the above restrictions we get:

n mNn N U h2H?

Ki,=k+ +
2kvy 5 2py vy k(Tn+1)  8mnkvy ,p ,

(32)

Substituting the values of K; — k and K, — k from eq. (32) in the expression (31) and
simplifying we obtain following dispersion relation:

2f72 2fy2
{pl n?(tn+1) +n*mN + ‘l% (tn+ 1)}{p2n2 (zn+1)+n2mN + % (tn+ 1)}
T T

— 2172
-{nﬁ +n2(1+ 2mN +2k2vrj+n{gkrp' Py, ki +2k2v}+
P1 T P2 py+py  An(py +py)

PrL=P> 2ukiH? }
p1+py An(p +p7)

+gk

=0 (33)

Equation (33) represents the general dispersion relation for R-T instability of two
superposed magnetized viscous fluids including suspended dust particles. In the absence of sus-
pended dust particles (7 = 0, and N = 0) this dispersion relation reduces to Ogbonna et al. [3]
when vertical magnetic field is not considered in the dispersion relation.
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The dispersion relation (33) is product of three factors and on equating the first and
second factor equal to zero, we get:

2172 212
o 42| 147N +/'t°k"H m+#ek"H =0 (34)
Pi 4mp, 4mp,
2172 212
s 2 14N\ BRH T pkPHE (35)
P2 4mp, 4mp,

Equations (34) and (35) give the dispersion relation for Alfven mode modified by sus-
pended dust particles and propagating in x-direction. The Alfven velocity in both the dispersion
relations is different and depends on the density of the upper and lower mediums. If we put 7 =0,
and N =0 in both the equations, we get simple Alfven wave propagation in x-direction. Thus we
find that Alfven modes are damped due to presence of suspended dust particles and this also
gives a stable effect to the configuration of our system.

On equating third factor to zero it gives the following dispersion relation:

_ 2fr2
™3 +n2(1+ 2mN +2k2vrj+n{gkfpl P2, kit T +2k2v |+
P+ P2 pL+py An(p +p3)
PL =Py, 2ukiH?
pi1+py A4n(py +p,)

+ok =0 (36)

The dispersion relation (36) represents the effect of suspended dust particles and vis-
cosity and the condition of the R-T instability can be obtained. If we neglect effect of viscosity
in eq. (36), we get the same dispersion relation that is obtained by Sunil ef al. [18]. Thus eq. (36)
is the dispersion relation modified due to viscosity as compared to Sunil ef al. [18]. In the ab-
sence of viscosity and magnetic field, eq. (36) reduces to eq. (35) of Sanghvi et al. [13]. In pres-
ent case we have taken 3-D perturbation and we are getting effect of magnetic field in the disper-
sion relation due to perturbation in x-direction. In Sanghvi et al. [13] the perturbation was taken
only in y-direction and there was no effect of magnetic field in the dispersion relation. Thus our
dispersion relation gives the complete information regarding the problem of R-T instability of
two superposed magnetized fluids. If we ignore the effect of magnetic field then, eq. (36) gives
the similar result that is obtained by Sharma ez al. [16] excluding FLR corrections and rotation in
that case. We find that in that case, the effect of magnetic field was taken in the basic equations
of the problem but it does not appear in the dispersion relation due to the consideration of 2-D
perturbations, but in the present problem we get the effect of magnetic field due to 3-D perturba-
tions of the problem. Thus dispersion relation (36) is modified due to the inclusion of viscosity
and magnetic field. We also note that in the absence of viscosity there is not any effect on the na-
ture of equation. In both the cases with and without viscosity the dispersion relation is a cubic
equation. Thus with viscosity no new mode is obtained in the dispersion relation.

In the case of Sunil ef al. [18], they have taken the same density of the medium in the
term mN/p whereas we have taken different densities of the medium which appears in dispersion
relation as (p; + p,)/2 instead of p in contribution of suspended dust particles.

We now discuss potentially stable and unstable configuration separately from our ba-
sic dispersion relation (36).
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Stable configuration (p; > p,)

If we apply this condition of p, > p, to eq. (36), we find that all the coefficients are pos-
itive, meaning thereby all the roots of the equation have negative real part satisfying the neces-
sary condition of Routh-Hurwitz criterion. Therefore the stable configuration remains stable
even in the presence of suspended dust particles. We have discussed the necessary condition of
stability of the system using Routh-Hurwitz criterion but this in not sufficient condition for a
system to be stable. Therefore for necessary and sufficient condition we must find Hurwitz mi-
nors. From eq. (36) we get: ImN

P TP

_ 2 2
A2=2k2v+(1+ 2mN +2k2er(gkrpl Py | 2T +2k2v]>0 (37)
Pt P p1+py Anlp, +py)

_ 2072
A3 — kpl ,02 + 2:ueka JA2>0
p1tpy An(p; +py)

A =1+ +2k2vr>0

If we assume p, > p,, then we find that all A are positive. Thus on applying necessary
and sufficient condition to our system we find that for p, > p, the system is always stable. Thus
we find that there is no change on the condition of stability of the system due to presence of sus-
pended dust particles.

Unstable configuration (p, > p,)

If we assume p, > p, and applying Routh-Hurwitz criterion to eq. (36), we find from
the constant term that configuration shall be unstable according as:
k2H?
B tgk(p, —pa)<0 (38)
2n
Thus the unstable configuration remains unaffected under the condition (38) in the
presence of magnetic field. But the potentially unstable configuration can be stabilized for a cer-
tain wave number and by suitable choice of magnetic field, which is determined as
k3

2—X>gk(/32 -pP1) (39)
T

On comparing our result with Sunil et al. [18] where viscosity is not included, we get
the same condition of R-T instability. Thus, we find that viscosity of the medium has no effect
on the condition of R-T instability but viscosity changes the growth rate of R-T instability of the
medium. The result given by Sharma et al. [12] excluding magnetic perturbations, differs from
us in the sense that we have shown that the potentially unstable configuration can be stabilized,
for certain wavenumbers range by an appropriate value of magnetic field, while in their case it
remains unstable for all wavenumbers.

The numerical calculations have been performed on the dispersion relation (36) to see
the effect of magnetic field, relaxation frequency of suspended dust particles, kinematic viscos-
ity, and mass concentration of dust particles on the growth rate of R-T instability. We write the
dispersion relation (36) in dimensionless form as:
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3+ fS (420" ) + 262V | =0 [(ny —my ) =2V 2 =2k f ] -

(40)

=10, =) =2V 21=0

where

n

n
* =, f:
Jek

fi . v
= , vV = R
Jek J@)?

k' =kygk, v} =\/EVA (41)
g

We have also substituted o' = mN/(p, + p,) and (17, — ;) = [(0,—p)/(p, + p,)] as mass
concentration of dust particles and the Atwood number, respectively.

In figs. 2-5 we have plotted the growth rate of unstable R-T mode vs. dimensionless
wavenumber for different values of magnetic field and no magnetic field, kinematic viscosity,
relaxation frequency, and mass concentrations of suspended dust particles.

In fig. 2, we have depicted the dimensionless growth rate of R-T instability vs.
dimensionless wavenumber of various values of magnetic field V; =00, 1.0, and 2.0. The values
of constant parameters are taken to bea’ =05, 1" =10, v* =05 and , —n, =15.1tis clear from
the curves that the growth rate of R-T instability increases by increasing the value of magnetic
field. The peak value of growth rate is minimum for the case of no magnetic field while it is max-
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Figure 2. The growth rate of unstable R-T mode
(positive real roots of n*) against wavenumber
for different values of magnetic field (Vj)
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Figure 3. The growth rate of unstable R-T mode
(positive real roots of n*) against wavenumber
for different values of relaxation frequency of
suspended dust particles ( f; )
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Figure 5. The growth rate of unstable R-T mode
(positive real rots of n*) against wavenumber for
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imum for the greater value of magnetic field (V' ). Thus magnetic field has destabilizing influ-
ence on the growth rate of the system. It is also seen from the curves that the growth rate de-
creases by increasing the value of dimensionless wavenumber for all values of magnetic field.
Hence the larger value of wavenumber will give the minimum value of growth rate.

In fig. 3, the dimensionless growth rate of R-T instability vs. dimensionless
weavenumber is depicted for different values of relaxation frequency of suspended dust parti-
cles f, =05,10,and 15. The values of constant parameters are taken to be a' = 0.5,
v, =10, v* =05, and n,—n, = 1.5. Itis obvious from the curves that the growth rate of R-T insta-
bility /" increases by increasing the value of f,. The growth rate is also maximum for the larger
value of f". Hence relaxation frequency of suspended dust particles has destabilizing role on
the growth rate of R-T instability.

If fig. 4, we have plotted the growth rate of R-T instability against the dimensionless
wavenumber for various values of kinematic viscosity parameter v* =00, 0.6, and 12. The values
of constant parameters are taken to bea’ =05,V =10, f" =05, and 1, — n, = 1.5. From the
curves it is clear that on increasing the value of v* the growth rate decreases. The peak value of
growth rate is unaffected by the inclusion of kinematic viscosity. Hence kinematic viscosity has
damping effect and causes stabilization on the growth rate of R-T instability.

In fig. 5, we have seen the effect of mass concentration of suspended dust particles on
the growth rate of R-T instability. The curves are traced fora'=0.5, 1.5, and 2.5. The values of
constant parameters are taken to be v* =05,V =05, f* =05, and n, — n, = 1.5. From the
curves it is clear that on increasing the value of o' the growth rate of the system decreases. The
peak value also decreases by increasing a'. Hence mass concentration of suspended dust parti-
cles has stabilizing influence on the growth rate of the system.

If we neglect the effect of suspended dust particles (7 =0, N=0) in eq. (36), we get the
dispersion relation

n? vonk2 Pt g PPy HCRT 42)
P TP pr+py An(py +py)

where u; = vp, and u, = vp,.

In dispersion relation (42) if we ignore the effect of magnetic field, then we get the sim-
ilar result that is obtained by Mikaelian [4]. In absence of viscosity we get the classical result of
Chandrasekhar [1]. Thus we find that the results in the present analysis have been modified due
to the presence of suspended dust particles, magnetic field, and viscosity of the medium.

The perturbation only in y-direction

In the present case we assume that the perturbation is only in y-direction. We consider
eqs. (7)-(11) of the problem. On taking the perturbations of the form of:

exp(ikyy + nt)

where k, is the wavenumber of perturbation along y-direction (k, =k 7) and n is the growth rate
of harmonic disturbance, the linearized perturbation equations are written in the component
form. From these equations after simplification we get the differential equation in w as:

n(tn +D)[D(pDw) — k2 pwln{D[mN (Dw)]— k2 (mN)Yw} — u(tn +1)(D? — k2)2w+

S [(Dp)(zn +Dw] = (zn + D{D(Dp)(D? + k?)w] =2k 2 (Du)(Dw)] =0 (43)
n



Sharma, P. K., et al.: Rayleigh-Taylor Instability of Two Superposed Magnetized ...
22 THERMAL SCIENCE: Year 2010, Vol. 14, No.1, pp. 11-29

We consider the case where two superposed fluids have uniform densities p, and p,
and uniform viscosities y, and u,. The fluids are separated by a horizontal boundary z = 0, then
in each region of constant viscosity and density, eq. (43) reduces to:

(D>~ K*)(D*> - K>)w =0 (44)
where
K2 =2 +f{1+ﬂ} (45)
% p(l+1n)

Since w must vanish both when z — —oo (in the lower fluid) and z — +oo (in the upper
fluid), the general solutions of the eq. (44) appropriate to the regions are:

w, = A, exp(kz) + B, exp(K, z) } 46)

w, = A, exp(—kz) + B, exp(—K, z)

where 4,, B,, 4,, and B, are arbitrary constants and K, and K, are the positive square roots of eq.
(44) for the two regions, respectively.

The above solutions must satisfy boundary conditions given in eq. (24). Also, integrat-
ing eq. (43) across the interface z = 0, we have another condition:

{pz -2 (p2 —kz)}Dwz} —{{01 L (pe —kz)}le} +
n z=0 n z=0

mN gk?

2k?
+ (Dw, =Dw; ) .o +n_2(P2 —P1 )W +T(ﬂ2 =y )(Dw), =0 (47)

m+1
Applying the boundary conditions stated above and after eliminating constants 4, B,
A4, and B,, we get the following dispersion relation:

2mN

(pytn+p, +mN)(p,tn+ p, anN){rn3 +n2(1+
P1 TP

+2k2vr]+

+n(gkru +2k2vJ+gku}=O (48)
PP Py TP

Equation (48) gives the dispersion relation for the R-T instability of two superposed
fluids of density p, and p, in the presence of viscosity and suspended dust particles. In this case
we have considered only 2-D perturbations (in y-direction) of various physical quantities. We
find that due to consideration of perturbation only in y-direction, the effect of magnetic field
does not come into the dispersion relation. In the absence of suspended particles (7 = 0) the dis-
persion relation reduces to Ogbonna et al. [3] excluding the effect of vertical magnetic field in
their case.

The dispersion relation (48) has three factors. On equating first and second factors to
zero, we get:

n P +mN _

piT

0 (49)

and
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+ mN
py P27 g (50)
P>t

These two equations are due to the presence of suspended dust particles, which do not
give the R-T instability. Equations (49) and (50) represent stable damped mode whose damping
rate depend upon ratio of mass concentration and relaxation time of suspended dust particles. If
there are no suspended dust particles then obviously these two modes vanish.

From the third factor of dispersion relation (48) we get:

™3 Jrnz(l+ﬂ+2k2vrj+ngk7:’o1 — P2 —gk PL=P2 (51)
P1t P2 P+ P P+ P>
If we neglect the effect of viscosity in dispersion relation (51) then we get:
™3 +n[1+ 2mN J—n[gkr’oz — P ]—gkp2 — P (52)
P+ P> P+ P P+ P

This dispersion relation is identical to Sanghvi et al. [ 13] where perturbation is assumed only
in y-direction. Thus we find that if we include
the effect of viscosity then the dispersion rela-
tion is modified as relation (51) in the present
case. We also find on comparing eqgs. (51) and
(52) that no new mode is appearing in the dis-
persion relation due to viscosity. Also we find ~ 0.60f
that in both the cases i. e. with viscosity and ®)
without viscosity the term of magnetic field is 0451
not appearing in the dispersion relation. ' ©

The effect of viscosity on the growth
rate of R-T instability is studied numerically
by plotting the curves between growth rate of

0.75

25 . 30

0'300.0 0.5 1.0 1.5 2.0 f
s

unstable R-T mode and relaxation frequency
of suspended dust particles. The results have
been also reduced to Sanghvi efal. [13] by tak-
ing a' = 0.6 and v' = 0.0. We write dispersion
relation (51) in dimensionless form by using
the dimensionless parameters given in eq. (41).

Figure 6. The different curves for the growth
rate of unstable R-T mode (positive real roots of
n*) against relaxation frequency of suspended
dust particles ( f: ); curve (a) is for non-viscous
fluids (v*= 0.0), which is identical to Sanghvi et
al. [13]; curves (b) and (c) are for

v*=0.25 and 0.5, respectively

We get from eq. (51):
n3 +n2[(14+20") f +2k2V )= n"[(n, =) —2k2V f7]1—f(m, —1m) =0 (53)

In fig. 6, we have depicted the growth rate of R-T instability against relaxation fre-
quency of suspended dust particles for different values of viscosity parameters. Curve (a) is
plotted for a' = 0.6, k* = v* = 0.0, and 1, — 17, = 0.6 which is identical to Sanghvi et al. [13].
Curves (b) and (c¢) have been depicted fora'=0.6, k" =1.0,17,—n,=0.6,and, v' =0.25 and 0.5,
respectively. From the curves we find that on increasing the value of viscosity the growth rate of
R-T instability and peak value of growth rate both decrease. Hence viscosity has damping effect
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i a3 on the growth rate of the R-T instability. We
1.20 —a—a =09 find that the growth rate gets modified due to
m the presence of viscosity and it is identical to
1 05l \:\ Sanghvi et al. [13] for non-viscous case (v* =
' =0.0).

\.Q.\:\\-\.\.\l\l*._._ In fig. 7 we have made only the effect of

0.90F \&‘\.\.\.\ - mass concentration of suspended dust particles
A T for non-magnetized and non-viscous fluids on

0.7%" '. : '. I. I. I.

Figure 7. Shows the growth rate of R-T
instability vs. relaxation frequency of suspended
dust particles for non-viscous non-magnetized
system; the values of constant parameters are
taken to be v’ = 0.0, K= 1.0, and 1, — 71 =1.5

the classical R-T instability. For this we have
plotted the curves between growth rate of R-T
instability and relaxation frequency of sus-
pended dust particles. From the curves it is clear
that the growth rate of R-T instability decreases
on increasing value of mass concentration of
suspended dust particle. The peak value of the

growth rate does not depend on mass concentra-
tion of suspended dust particles. These results
are identical to the previous one in which the effect of viscosity and magnetic field is considered
and we get the same results. Hence the effect of suspended dust particle is to stabilize the system
in both presence and absence of viscosity and magnetic field.

Equation (51) is a cubic equation and it gives three modes of propagations. If we put

7= 0and N=01neq. (51) we get:
n? +2k2yp L1 "P2 +gk

P TP

p] _pZ =O
P+ P>

(54)

This is well known dispersion relation for the R—T instability with viscosity. We put
vp, =, and vp, = u,, we get from eq. (54)
P1 — P2 =0
P11+ P

n? +2k2n 2L H2 4 op
P11+ P

(55)

This is the same relation as given by Mikaelian [4]. This gives the effect of two viscos-
ities of the two media in dispersion relation.
If we neglect the effect of viscosity we get the classical R-T instability which growth
rate depends upon the Atwood number and given as:
n? gk PLP2 _g (56)
P+ P2

Now we consider dispersion relation (51) in which the presence of suspended dust par-
ticles is considered. This is a cubic equation but from constant term we can deduce the condition
of R-T instability. We assume following two cases.

Stable configuration (p, > p,)

We assume p, > p, and we apply this condition to eq. (51), we find that all the coefti-
cients of eq. (51) are positive, meaning thereby all the roots of the equation are located in
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left-hand complex plane i. e. have a negative real part (Hurwitz necessary criterion). Hence the
interface is stable. We have discussed only necessary condition of instability. For necessary and
sufficient condition of stability we should calculate Routh-Hurwitz minors of the eq. (51) and

we get: mN

Ay =1+ +2k2vr>0
P1 P,
2mN - P,
A, =2k2v+ +2k2er(gkr +2k2vJ>0 (57)
Pt P Pt P
A3 =(gku A2 >0
P TP

If we assume p, > p, then we find all the A are positive. Thus on applying the necessary
and sufficient condition of stability of the system we find that for p, > p, the system is always
stable.

Therefore, the stable configuration remains stable even in the presence of suspended
particles and where there is no effect of suspended particles, we get the same result.

Unstable configuration (p, > p;)

Applying Hurwitz criterion to eq. (51), we find that configuration shall be stable or un-
stable according as:

P1—pP<0, or py—p,>0 (58)

Evidently the unstable configuration remains unaffected under the condition p, >p, in
the presence of suspended dust particles. Thus, we may conclude that the R-T instability of two
superposed conducting viscous fluids remains uninfluenced by the presence of suspended dust
particles for the case of potentially stable arrangement.

We also note that there is no effect of horizontal magnetic field on the condition of in-
stability. The magnetic field term does not appear in the dispersion relation and we get the dis-
persion relation as if there is no magnetic field.

The perturbation only in x-direction
In this case we assume the perturbation only in x-direction. We take the eqs. (7)-(11)
for this problem. On taking the perturbation of the form:
exp(ikx + nt)

where k, is the wavenumber of perturbation along x-direction (k2 = k2 ) and n is the growth rate
of harmonic disturbance. The linearized perturbation equations written in the component form
and after eliminating variables between these equations we obtain following differential equa-
tions in w:

n(tn + l)[D(pr) kzpw] + n{D[mN (Dw)]— k2 (mN)Yw} —u(tn+1)(D? —k?)?w+
+_ [(Dp)(zn +1)w] + % (tn+1)(D2 —k2)w— (59)
—(Tn +D{D[(Du)(D? + k2 )w] =2k > (Du)(Dw)} =0
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In this section we consider the case where two superposed fluids have uniform densities
p, and p, and uniform viscosities 1, and 1,. The fluids are separated by horizontal boundary z =0,
then in each region of constant viscosity and density, eq. (59) reduces to:

(D*- i) (D*-KHw =0 (60)
where
K2=k2+ 2|1+ mN +NeH2k2
vl pd+tn) 4nn?p

Since w must vanish both when z — —oo (in the lower fluid) and z — +oo (in the upper
fluid), the general solutions of the eq. (60) appropriate to the regions are:

w, = A, exp(kz) + B, exp(K, z) } (z<0) 61)

w, = A, exp(—kz) + B, exp(-K,z)| (z>0)

where 4,, B,, 4,, and B, are arbitrary constants and K, and K, are the positive square roots of eq.
(60) for the two regions, respectively.
Integrating eq. (59) across the interface z = 0, we have another condition:

pr 22 k2 Dwy | | py B0 k) w4 (D, D)+
" . n Lo T+l
2172
LHKH
47tn?

Applying the boundary condition stated above and after eliminating constants 4,, B,,
A,, and B,, we get the following dispersion relation:

2 2
(D, =) g + £ (0 = py iy + 2 Gy =)D =0 (62

2072 2072
pyn?(tn+1)+n>mN +M(Tn+l) pon*(tn+1)+n*mN +’ueki(m+l) .
4n 4r
_ 2772
dtn’ +n2[1+ 2mN +2k2vr]+n{gkz'pl Py, 2HKiH +2k2v}+ (63)
P11 P2 PPy An(py +p3)
P =Py, 2uckPH? }

+

p1+tpy, 4nlp; +py)

Thus eq. (63) gives the dispersion relation for the R-T instability of two superposed
fluids of different densities in the presence of horizontal magnetic field, viscosity, and sus-
pended dust particles. In this study we have considered only 1-D perturbation (only in x-direc-
tion) of various quantities. In the absence of suspended particles (7 = 0) the dispersion relation
agrees with the earlier one obtained by Ogbonna et al. [3] when vertical magnetic field is not
considered in the dispersion relation.

Now on equating each factor of eq. (63) to zero, we get three dispersion relations:

2 2 2 2
0’ +n2( mNJ+“ekXH o HkHE (64)

1+ —
Pi 4mp, 4mp,
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kiH? kiH?
E +n2(1+ﬂJ+”° T HATT (65)
P2 4mp, 4np,

_ 2772
™3 +nz{l+2m—N+2k2v1'j+n{gkz'p1 P2, 2 ki +2k2v |+
P+ P2 pr+py An(py +p3)
_ 272
+gk P P> + 2:ucka
Py +py  An(py +py)

We find that these three dispersion relations given by egs. (64)-(66) are similar to egs.
(34)-(36) of the case for 3-D perturbations and in the present case we have considered only 2-D
perturbation (in y-direction). On comparing dispersion relation (64) and (65), we find that
Alfven velocity has no effect in y-directional perturbation, but it comes into picture when we
consider 3-D perturbations or perturbation only in x-direction. In the case of dispersion relation
(66), we find that in the 3-D case the wavenumber kis (k? + k2 )" and in 2-D case k, is k. Thus
there is change in k& due to the consideration of type of perturbation. Following the previous case
for 3-D perturbations, we may obtain condition of instability as well as stability for this case
also.

-0 (66)

From the above discussion in X-y, y and x-direction perturbation we get some conclu-
sion about the effect of magnetic field on R-T instability. In discussing R-T instability some au-
thors [13, 18, 20] have taken perturbation only in y-direction and they could not get the effect of
magnetic field on the R-T condition. If they could have taken the perturbation in x-direction, the
effect of magnetic field on the R-T instability could be obtained as in our present case. At the
same time if perturbations are in both x-y-directions the condition of R-T instability is influ-
enced by external magnetic field.

Conclusions

In the present paper, we have discussed the R-T instability of two superposed magne-
tized fluids in the presence of suspended dust particles and viscosity. The magnetic field is as-
sumed in x-direction and gravitational fields is assumed perpendicular to the direction of mag-
netic field (in z-direction). The condition of R-T instability as well as stability is obtained for
3-D and 2-D perturbation cases. The stability of the system is discussed by applying
Routh-Hurwitz criterion. We find that there is no effect of suspended dust particles and viscosity
on the condition of R-T instability.

We find that when we consider perturbation in y-direction (i. e. perpendicular to the di-
rection of the magnetic field), there is no effect of magnetic field on the dispersion relation as
well as condition of R-T instability. In the case, when we consider perturbation in x- direction (i.
e. parallel to the direction of magnetic field), the condition of R-T instability is identical to that
as obtained in 3-D perturbations case. We conclude that the effect of magnetic field is appearing
when perturbations are taken along the magnetic field. We conclusively say that if there is either
3-D perturbations or perturbation along the direction of magnetic field, the presence of magnetic
field is predominantly in the dispersion relation and condition of R-T instability. We notice that
the Alfven mode is unaffected by the presence of suspended dust particles when we consider
perturbation only in y-direction while it modifies in the remaining two cases.

In the graphical presentations we have plotted dimensionless growth rate of unstable
R-T mode against dimensionless wavenumber for different values of relaxation frequency of
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suspended dust particles, magnetic field, mass concentration of dust particles, viscosity, and
density difference of the fluids. It is found that the presence of magnetic field and relaxation fre-
quency of suspended dust particles destabilizes the growth rate of R-T instability. But the effect
of kinematic viscosity and mass concentration of suspended dust particles is found to have stabi-
lized the growth rate of R-T instability. The peak value of growth rate of R-T instability does not
depend upon kinematic viscosity but it is affected by the presence of magnetic field, relaxation
frequency, and mass concentration of suspended dust particles.
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Nomenclature
a — suspended dust particle radius, [m] t — time, [s]
/s — relaxation frequency of suspended dust u — fluid velocity, [ms ']
particles, [s™'] , v — suspended dust particle velocity, [ms™']
g acce?eratlon due E(; gravity, [ms ] Greek letters
g — gravity field, [ms ]
H — magnetic filed, [Am '] u — dynamic viscosity, [kgm™'s™]
ky, k, — horizontal wavenumbers, [m] U, — magnetic permeability, [Hm™]
m — mass of suspended dust particles, [kg] % — kinematic viscosity, [ms ']
N — number density, [m ] P — density, [kgm™]
n — growth rate, [s '] T — relaxation time of suspended dust particles, [s]
p — fluid pressure, [Pa]
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