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This pa per deals with ar ti fi cial neu ral net work mod el ing of die sel en gine fu eled
with jatropha oil to pre dict the un burned hy dro car bons, smoke, and NOx emis sions. 
The ex per i men tal data from the lit er a ture have been used as the data base for the
pro posed neu ral net work model de vel op ment. For train ing the net works, the in jec -
tion tim ing, in jec tor open ing pres sure, plunger di am e ter, and en gine load are used
as the in put layer. The out puts are hy dro car bons, smoke, and NOx emis sions. The
feed for ward back prop a ga tion learn ing al go rithms with two hid den lay ers are
used in the net works. For each out put a dif fer ent net work is de vel oped with re -
quired to pol ogy. The ar ti fi cial neu ral net work mod els for hy dro car bons, smoke,
and NOx emis sions gave R2 val ues of 0.9976, 0.9976, and 0.9984 and mean per cent
er rors of smaller than 2.7603, 4.9524, and 3.1136, re spec tively, for train ing data
sets, while the R2 val ues of 0.9904, 0.9904, and 0.9942, and mean per cent er rors of
smaller than 6.5557, 6.1072, and 4.4682, re spec tively, for test ing data sets. The
best lin ear fit of re gres sion to the ar ti fi cial neu ral net work mod els of hydrocarbons, 
smoke, and NOx emis sions gave the cor re la tion co ef fi cient val ues of 0.98, 0.995,
and 0.997, re spec tively.
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In tro duc tion

Veg e ta ble oils have been con sid ered as one of the most ver sa tile al ter na tive fuel op -
tions for pe tro leum die sel in di rect in jec tion die sel en gine ap pli ca tions be cause these oils have
sub stan tial pros pect as a long-term sub sti tute for die sel fuel [1]. In this con text, many va ri et ies
of veg e ta ble oils have been used by dif fer ent coun tries, but only a very few and non-ed ible type
such as jatropha oil, karanji oil, etc. can be con sid ered to be eco nom i cally af ford able to some de -
vel op ing na tions like In dia in par tic u lar [2-4]. 

In gen eral the higher den sity of jatropha oil makes the fuel spray nar row and its pen e -
tra tion deeper. The higher vis cos ity of jatropha oil can lead to poor at om iza tion and mix ture for -
ma tion with air. This may re sult in slower com bus tion, lower ther mal ef fi ciency, higher emis -
sions of un burned hy dro car bons (HC), smoke, etc. The higher car bon res i due of jatropha oil
leads to in jec tor cok ing which in turn re sults in poor fuel at om iza tion and con se quently high
smoke lev els [5]. How ever, with ad vanced in jec tion tim ing there will be better com bus tion and
im proved per for mance and also re duc tion in emis sions. Sig nif i cant im prove ment in per for -
mance and emis sions can also be ev i dent with in creased in jec tion pres sure be cause of en hanced
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at om iza tion at the noz zle out let, more va por dis tri bu tion, and better mix ing. At higher in jec tion
pres sures mean di am e ter of fuel drop let re duces re sult ing in better mix ing and dis tri bu tion.
How ever, very high in jec tion pres sures lead to fine drop lets, which can ad versely af fect fuel dis -
tri bu tion in air [6-8]. 

There fore, in or der to meet out the emis sions norms and legislations, the fuel in jec tion
sys tem pa ram e ters namely in jec tor plunger di am e ter, in jec tor noz zle open ing pres sure, num ber
of noz zle holes and its size, and in jec tion tim ing need to be mod i fied and op ti mized in the case
of jatropha oil fu eled DI die sel en gine. Ex per i men tal stud ies to mea sure the emis sions from
jatropha oil fu eled die sel en gine for var i ous in jec tion sys tem de sign and op er at ing con di tions at
dif fer ent load and speed con di tions and to op ti mize the in jec tion sys tem pa ram e ters are quite
com plex, time con sum ing, la bo ri ous, and ex pen sive. The the o ret i cal stud ies us ing math e mat i cal 
mod els can pre dict the emis sions from these en gines, but the ac cu racy may not be suf fi ciently
sat is fac tory [9, 10], on ac count of sim pli fy ing as sump tions in voked for the cal cu la tion of var i -
ous spe cies of the ex haust gas com po nents. Also de vel op ing an ac cu rate math e mat i cal model
for the op er a tion of a jatropha oil fu eled die sel en gine is too dif fi cult due to the com plex i ties in -
volved. Hence the other al ter na tive is to pre dict the emis sions by ex per i men tal ap proach based
on ar ti fi cial neu ral net works (ANN) model. How ever, for pro duc ing good and re li able re sults,
this ap proach it self is ex pen sive and time con sum ing, be cause of the re quire ment of large vol -
ume of ex per i men tal data for pre cise and ac cu rate train ing of the net works. 

ANN have been ap plied to es ti mate de sired out put pa ram e ters when suf fi cient ex per i -
men tal data is pro vided. They al low the mod el ing of phys i cal phe nom ena in com plex sys tems
with out re quir ing ex plicit math e mat i cal rep re sen ta tions. It is ev i dent from the lit er a tures that
many re search ers have ap plied the ANN ap proach to pre dict the per for mance and ex haust emis -
sions of gas o line, die sel, and biodiesel en gines [9-13]. Neu ral net works have also been used suc -
cess fully for an a lyz ing the ef fect of cetane num ber on ex haust emis sions from en gine [14].
Korres et al. [15] have ap plied ANN to eval u ate the re la tion ships be tween lu bric ity and other
die sel fuel prop er ties. 

The pres ent pa per deals with the de vel op ment and ap pli ca bil ity of an ANN model for
the pre dic tion of ex haust emis sions of jatropha oil fu eled di rect in jec tion die sel en gine. Ex per i -
men tal re sults from the lit er a ture  [5] has been used as the data base for train ing and test ing the
pres ent ANN mod els for pre dict ing the emis sions of un burned HC, smoke, and NOx of the die sel 
en gine fu eled with jatropha oil.

ANN model

Ar ti fi cial neu ral net works are com pu ta tional mod els com posed of pro cess ing units
called neu rons con nected to gether to form a net work. They are used to solve com plex func tions.
The com pu ta tion that each neu ron per forms, along with the way they are in ter con nected, de -
cides a par tic u lar type of neu ral net work. While there are nu mer ous dif fer ent ar ti fi cial neu ral
net work ar chi tec tures that have been stud ied by re search ers, the most suc cess ful one for the en -
gine emis sion pre dic tion ap pli ca tions have been multilayer feed for ward net works. These are
net works in which there is an in put layer con sist ing of nodes that sim ply ac cept the in put val ues
and suc ces sive lay ers of nodes that are neu rons. The out puts of neu rons in a layer are in puts to
neu rons in the next layer. The last layer is called the out put layer. Lay ers be tween the in put and
out put lay ers are known as hid den lay ers.

The de vel op ment of the ANN model con sists of two stages. In the first stage called train -
ing, about 2/3 to 3/4 of the to tal data vol ume of the in put-out put set is used to train the net work.
The in ten tion is to tune the in de pend ent pa ram e ters of the net work, so that it can “learn” the un der -
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ly ing re la tion ship be tween in puts and out puts.
In this the weights and bias val ues are ini tially
cho sen ran domly and the weights are ad justed,
so that the net work at tempts to pre dict the de -
sired out put. In the sec ond stage called test ing,
about 1/4 to 1/3 of the to tal vol ume of in put
data sets is em ployed in the net work sim u la tion 
to val i date the net work pre dic tions. The typ i cal 
ar chi tec ture of feed for ward neu ral net work is
shown in fig. 1.

The net works are trained to per form a par -
tic u lar func tion by ad just ing the val ues of the
con nec tion-strengths be tween the ad ja cent el e ments. For this pur pose sev eral learn ing al go -
rithms are used. All of these al go rithms use the gra di ent of the per for mance func tion to de ter -
mine how to ad just the weights to min i mize per for mance. The gra di ent is de ter mined us ing a
tech nique called back prop a ga tion, which in volves per form ing cal cu la tions back wards through
the net work. The back prop a ga tion com pu ta tion is de rived us ing the chain rule of cal cu lus. In
this back prop a ga tion train ing al go rithm, the weights are moved in the di rec tion of the neg a tive
gra di ent to get con ver gence. Af ter train ing the ANN model, the net work can be sim u lated for the 
test in put data sets and then they can also be val i dated for adop tion with min i mum er ror rate.
Neu ral net works con tain no pre con cep tions of what the model shape will be, so they are ideal for 
cases with low sys tem knowl edge. They are use ful for func tional pre dic tion and sys tem mod el -
ing where the phys i cal pro cesses are not un der stood or are highly com plex. How ever, they re -
quire a lot of data to give good con fi dence in the re sults and hence neu ral net works are not suit -
able for small data sets. How ever, with large num ber of in puts, the num ber of con nec tions and
hence the com plex ity in creases rap idly. 

Meth od ol ogy

Un for tu nately there is no clear the ory to guide us on choos ing the num ber of nodes
(neu rons) in each hid den layer or in deed the num ber of lay ers. The com mon prac tice is to use
trial and er ror, al though there are schemes for com bin ing op ti mi za tion meth ods such as ge netic
al go rithms with net work train ing for these pa ram e ters. Since trial and er ror is a nec es sary part of
neu ral net work ap pli ca tions it is im por tant to have an un der stand ing of the stan dard method
used to train a mul ti lay ered net work. The com mon method used to train the net work is back
prop a ga tion. While it is pos si ble to con sider many ac ti va tion func tions, in prac tice it has been
found that the lo gis tic sig moid func tion works best. The train ing of all sets of a train ing data
group is named an ep och [16].

In the pres ent study the ex per i men tally mea sured emis sions val ues for dif fer ent de sign
and op er at ing con di tions of the in jec tion sys tem of the jatropha oil fu eled die sel en gine at sev eral
load con di tions were used to train and test an ar ti fi cial neu ral net work. In jec tor open ing pres sure
(IOP, bar), in jec tion tim ing (IT, de gree CA), and plunger di am e ter (D, mm) which rep re sents the
in jec tion sys tem de sign and op er at ing pa ram e ters and per cent age of en gine load (W, %) were used
as the in put layer, while un burned hy dro-car bons (HC, ppm), smoke den sity (S, BSU) and ni tro -
gen ox ides (NOx, ppm) emis sions were used as the out put layer. The multi-layer feed for ward net -
works of dif fer ent to pol ogy have been used in the model and the back prop a ga tion learn ing al go -
rithm has been ap plied to the hid den lay ers. Scaled con ju gate gra di ent (SCG) and
Levenberg-Marquardt (LM) al go rithms have been used for the vari ants. Neu rons in the in put layer 
have no trans fer func tion while that in the hid den lay ers have lo gis tic sig moid (logsig) trans fer
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Fig ure 1. Feed for ward back prop a ga tion neu ral
net work (to pol ogy 4-8-3-1)



func tion. A lin ear ac ti va tion func tion called purelin trans fer func tion, has been used for the neu -
rons in the out put layer. All the in put and out put data sets have been nor mal ized be tween 0 and 1
be fore they are fed to the ANN model.

A com puter code has been de vel oped in MATLAB 7.0 and the net works have been
trained and tested. In or der to have more ac cu racy of train ing the net works and to have min i mum 
er rors in out put pre dic tion, an in creased num ber of neu rons in the hid den lay ers were tried. Ini -
tially the net work to pol ogy with one hid den layer was tried and sub se quently num ber of hid den
lay ers was in creased. The ANN ar chi tec ture, as shown in fig. 1, has been used with dif fer ent to -
pol ogy for dif fer ent out puts. It was found that two hid den lay ers with 8 or 9 neu rons in the first
hid den layer and three neu rons in the sec ond hid den layer give op ti mum re sults. First, the net -
works were trained suc cess fully, and then the test data was used to test the net work. With help of 
re sults ob tained by the net work, the out puts are com pared us ing sta tis ti cal meth ods. Er rors at the 
learn ing stage and test ing stage are de scribed as the mean square er ror (MSE), R2, max i mum per -
cent age er ror, and mean per cent age er ror (MPE) val ues. The equa tions by which these er rors are 
com puted are:
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where tj is the tar get value for the jth data set, oj is the out put value for the jth data set, and p is the
pat tern (to tal num ber of data sets used).

Re sults and dis cus sion

The to tal pat terns con sist ing of 108 in put-out put data sets have been di vided into two
sam ples, one sam ple con sist ing of 83 data sets were used as train ing data (tab. 1) and the other
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Ta ble 1. In put-out put data sets for train ing

Plunger
di am e ter

[mm]

In jec tor open ing
presure

[bar]

In jec tion tim ing
[deg CA]

En gine
load
[%]

HC
[ppm]

Smoke
[BSU]

NOx

[ppm]

7 220 33.5 20 404 0.3 142

7 220 33.5 25 403 0.3 200

7 220 33.5 50 419 0.4 247

7 220 33.5 40 435 0.4 386

7 220 33.5 60 498 0.9 326

7 220 33.5 70 603 1.2 1001

7 220 33.5 75 635 1.3 1024

7 220 33.5 90 910 2 1303

7 220 33.5 100 1298 2.4 1431

8 205 32 15 365 0.5 200
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Ta ble 1. (con tin u a tion)

Plunger
di am e ter

[mm]

In jec tor open ing
presure

[bar]

In jec tion tim ing
[deg CA]

En gine load
[%]

HC
[ppm]

Smoke
[BSU]

NOx

[ppm]

8 205 32 25 663 0.6 326

8 205 32 30 741 0.7 401

8 205 32 40 852 0.9 636

8 205 32 50 908 1.2 895

8 205 32 70 1185 1.8 1279

8 205 32 75 1307 1.9 1366

8 205 32 80 1583 2.1 1441

8 205 32 100 2290 3.6 1753

8 220 32 15 383 0.3 134

8 220 32 20 481 0.3 228

8 220 32 30 512 0.4 404

8 220 32 40 543 0.5 647

8 220 32 50 618 0.6 903

8 220 32 60 715 0.7 1119

8 220 32 75 878 1.1 1403

8 220 32 80 953 1.3 1551

8 220 32 90 1150 1.7 1930

8 240 32 15 292 0.1 115

8 240 32 20 303 0.2 224

8 240 32 25 304 0.3 333

8 240 32 40 383 0.4 688

8 240 32 50 507 0.5 961

8 240 32 60 609 0.6 1206

8 240 32 70 721 0.7 1560

8 240 32 80 744 1 1819

8 240 32 90 868 1.4 2091

8 240 32 100 1115 1.8 2538

8 260 32 20 385 0.2 284

8 260 32 25 451 0.2 375

8 260 32 30 484 0.3 427

8 260 32 50 604 0.4 1056

8 260 32 60 724 0.5 1306

8 260 32 70 789 0.5 1727

8 260 32 75 855 0.7 1871

8 260 32 90 1031 1.3 2438

8 260 32 100 1417 1.6 2659

8 205 30.5 15 469 0.6 170
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Ta ble 1.  (con tin u a tion)

Plunger
di am e ter

[mm]

In jec tor open ing
presure

[bar]

In jec tion tim ing
[deg CA]

En gine load
[%]

HC
[ppm]

Smoke
[BSU]

NOx

[ppm]

8 205 30.5 25 725 0.7 220

8 205 30.5 30 871 0.7 257

8 205 30.5 40 915 1.2 484

8 205 30.5 60 1083 1.7 902

8 205 30.5 70 1317 2.1 1107

8 205 30.5 75 1496 2.4 1179

8 205 30.5 80 1752 2.6 1215

8 205 30.5 100 2377 3.9 1540

8 205 33.5 15 413 0.4 196

8 205 33.5 20 469 0.5 324

8 205 33.5 30 592 0.7 463

8 205 33.5 40 692 0.8 707

8 205 33.5 50 792 1 987

8 205 33.5 70 993 1.5 1452

8 205 33.5 75 1049 1.8 1534

8 205 33.5 80 1172 1.9 1626

8 205 33.5 90 1496 2.5 1753

8 205 34.5 20 491 0.5 289

8 205 34.5 25 569 0.5 400

8 205 34.5 40 703 0.6 734

8 205 34.5 50 826 0.8 1053

8 205 34.5 60 926 1 1336

8 205 34.5 75 1250 1.6 1622

8 205 34.5 80 1395 1.8 1745

8 205 34.5 90 1741 2.2 1932

8 205 34.5 100 2210 2.6 2070

9 220 23 15 266 0.1 101

9 220 23 20 283 0.1 135

9 220 23 25 299 0.2 203

9 220 23 30 299 0.2 225

9 220 23 50 315 0.4 473

9 220 23 60 347 0.5 586

9 220 23 70 387 0.5 743

9 220 23 80 428 0.8 890

9 220 23 90 468 1.2 1047

9 220 23 100 517 1.9 1137



sam ple of ran domly se lected 25 data sets were used as test data (tab. 2). Ex per i men tally mea -
sured un burned HC, smoke, and NOx emis sion re sults of neat jatropha oil fu eled di rect in jec tion
die sel en gine for dif fer ent op er at ing con di tions were used as the data sets for the pres ent ANN
mod el ing study. The dif fer ent ex per i men tal test con di tions were ob tained with dif fer ent com bi -
na tions of in jec tor open ing pres sures, in jec tion tim ing, plunger di am e ter, and en gine loads. The
feed for ward back prop a ga tion net works with to pol ogy of 4-8-3-1, 4-9-2-1, and 4-8-3-1 were
found to give best pre dic tions of HC, smoke, and NOx

 emis sions re spec tively. The MSE, R2, and
the MPE val ues were used for com par i son. The ANN model emis sions re sults have been shown
for both train ing and test ing data in tab. 3. For each out put sep a rate net work was used.
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Ta ble 2 In put-out put data sets for test ing

Plunger
di am e ter

[mm]

In jec tor open ing
pres sure

[bar]

In jec tion tim ing
[deg. CA]

En gine load
[%]

HC
[ppm]

Smoke
[BSU]

NOx

[ppm]

7 220 33.5 15 380 0.3 94

8 205 32 20 564 0.6 276

8 220 32 25 491 0.3 309

8 240 32 30 315 0.3 442

8 260 32 40 527 0.3 688

8 205 30.5 50 982 1.4 711

8 205 33.5 60 882 1.2 1290

8 205 34.5 70 1127 1.4 1535

9 220 23 75 412 0.6 822

7 220 33.5 80 691 1.5 1174

8 205 32 90 2002 2.6 1615

8 220 32 100 1555 2.1 2200

8 260 32 15 352 0.1 140

8 205 30.5 20 658 0.7 207

8 205 33.5 25 547 0.6 370

8 205 34.5 30 603 0.6 487

9 220 23 40 307 0.3 338

7 220 33.5 50 458 0.6 641

8 205 32 60 986 1.3 1093

8 220 32 70 812 0.9 1268

8 240 32 75 744 0.8 1682

8 260 32 80 877 0.8 2082

8 205 30.5 90 2165 3.2 1348

8 205 33.5 100 2038 3.4 1868

8 205 34.5 15 413 0.5 190



Ta ble 3. Pre dicted re sults of the ANN model

Outputs
ANN

to pol ogy
Algorithm

MSE
(Train ing)

R2

(Train ing)
MPE

(Training)
MSE

(Testing)
R2

(Testing)
MPE

(Test ing)

HC 4-8-3-1 LM 9.72E-05 0.9976 2.7603 7.55E-04 0.9904 6.5557

NOx 4-8-3-1 SCG 1.05E-04 0.9984 3.1136 3.39E-04 0.9942 4.4682

Smoke 4-9-2-1 SCG 9.96E-05 0.9976 4.9524 4.95E-04 0.9904 6.1072

The train ing plots of the dif fer ent ANN net works used in the study are shown in fig. 2
for HC, smoke and NOx emis sion net works. It can be seen that the goal se lected for all the out -
puts is same (0.0001). Also it is found that the train ing per for mance MSE value of HC net work

as shown in fig. 3(a) and smoke net work as shown in fig. 3(b) is less than that of NOx net work
model, fig. 3(c). The train ing num ber (ep ochs) used for HC, smoke and NOx mod els are 161,
2516, and 3000, re spec tively. With these train ing num bers the goal is reached in all the net -
works. Fig ure 3 shows the his to grams of num ber of out put sets fall ing on the dif fer ent range of
er ror per cent age val ues. It is shown in fig. 3(a) that 80% of the out put sets fall on the lower er ror
range of ±10% in the case of HC net work sim u la tion. Fig ure 3(b) shows the his to gram for the
case of smoke and it is about 80% of the out put sets fall ing on the er ror range of –5 to 10%.  His -
to gram for NOx shown in fig. 3(c) re veals that 40% and 50% of out puts fall on 0 to –5% and
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Fig ure 2. Train ing plots of net works



±10% er ror range, re spec tively. It can be ob served that small amount of out put sets have er ror
range of ±20% while 80 to 90% of the out puts have low er ror ranges.

The com par i son of re sults pre dicted by ANN model with ex per i men tal re sults for dif -
fer ent emis sion pa ram e ters are given in figs. 4 to 6. It can be noted from the fig. 4 that the model
pre dic tions are very close to the ex per i men tal val ues of HC emis sions. The R2 value ob tained for 
the HC model was 0.9904 with MSE of 0.0007 and MPE of 6.5557. Fig ure 5 shows that the pre -
dicted re sults of the model very well fit to the char ac ter is tic curve of ex per i men tal re sults of
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Fig ure 4. Com par i son of ex per i men tal and ANN
pre dicted re sults for HC

Fig ure 3. His to grams of er ror per cent age

Fig ure 5. Com par i son of ex per i men tal and ANN
pre dicted re sults for smoke



smoke emis sions. The R2 value ob tained for the
smoke model was 0.9904 with MSE of 0.0005
and MPE of 6.1072. 

The com par i son of re sults of pre dic tion for
the NOx emis sions with their ex per i men tal val -
ues is given in fig. 6. It can be ob served that the
two curves are very close to each other. This re -
veals that pre dic tions of the NOx model are very 
well in agree ment with the ac tual val ues of
emis sion. The R2 ob tained for the model was
0.9942 with MSE of 0.0003 and MPE of 4.4682. 
Hence the ANN model can be ap plied to pre dict 
the HC, smoke, and NOx emis sions of jatropha
oil fu eled die sel en gine for a given in jec tion
tim ing, in jec tor open ing pres sure, plunger di -
am e ter, and en gine load con di tions. 

The per for mance of a trained net work can be 
mea sured to some ex tent by the er rors on the
train ing, val i da tion, and test sets, but it is of ten
use ful to in ves ti gate the net work re sponse in
more de tail. One op tion is to per form a re gres -
sion anal y sis be tween the net work re sponse and 
the cor re spond ing tar gets. The re gres sion anal -
y sis is per formed on these three ANN mod els to
con firm the suit abil ity of the net works. Fig ures
7 shows the re sults of re gres sion anal y sis per -
formed on HC, smoke, and NOx net works. It
can be noted from fig. 7(a) that the best lin ear fit 
of the HC model has a slope of 0.989 and y in -
ter cept of 0.00249 which are, re spec tively, very
near to 1 (the slope of the case where the re -
sponse A is ex actly equal to tar get T and zero
(the y in ter cept of the case where the re sponse is 
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Figure 6. Comparison of experimental and ANN
predicted results for NOx

Fig ure 7. Lin ear fits of ANN mod els



ex actly equal to tar get), and figs. 7(b) and 7(c) show that the slopes of best fits of smoke and NOx

net work mod els are also very near to 1 while their y in ter cepts are very near zero. How ever the
slope of the best lin ear fit of the NOx emis sion model is higher than that of oth ers.

The cor re la tion co ef fi cient (R value) be tween the out puts and tar gets pro vides the
mea sure of how well the vari a tion in the out puts A is ex plained by tar gets T. The R value of very
close to 1 in di cates a good fit. The fig. 7 in di cates that the cor re la tion co ef fi cient val ues of all the 
net works are very near to 1 and thus give good fits.

Con clu sions

The ANN mod els have been de vel oped for pre dict ing the HC, smoke and NOx emis -
sions of jatropha oil fu eled di rect in jec tion die sel en gine. Four in puts namely, in jec tion tim ing,
in jec tor open ing pres sure, plunger di am e ter and en gine load are used as the in put layer while the
out put is ei ther HC, or smoke, or NOx emis sions. Feed for ward back prop a ga tion learn ing al go -
rithms with two hid den lay ers with 8 or 9 neu rons in the first hid den layer and 2 or 3 neu rons in
the sec ond hid den layer are used. About 77% of the to tal data sets have been used for train ing
and 23% have been used for test ing. The ANN mod els for HC, smoke and NOx emis sions
yielded R2 val ues of 0.9976, 0.9976 and 0.9984 and mean per cent er rors are smaller than 2.7603, 
4.9524, and 3.1136, re spec tively, for train ing data sets, while the R2 val ues are 0.9904, 0.9904,
and 0.9942 and mean per cent er rors are smaller than 6.5557, 6.1072, and 4.4682, re spec tively,
for test ing data sets. The best lin ear fit of re gres sion to the ANN mod els of HC, smoke, and NOx

emis sions have yielded the cor re la tion co ef fi cient val ues of 0.98, 0.995, and 0.997, re spec tively. 
The re sults may eas ily be well thought-out to be within the ac cept able lim its. Hence these ANN
mod els may be con sid ered for pre dict ing the emis sions in jatropha oil fu eled die sel en gines.

Ref er ences

[1] Forson, F. K., Oduro, E. K., Hammaond Donkoh, E. Per for mance of Jatropha-Oil Blends in a Die sel En -
gine, Re new able En ergy, 29 (2004), 7, pp. 1135-1145

[2] Joshi, H. C., Biodiesel from Jatropha an Al ter na tive Fuel for the Fu ture, In ven tion In tel li gence, Sci en tific
Re search Mag a zine, Na tional Re search De vel op ment Cor po ra tion New Delhi, Sep.-Oct. 2003, pp.
205-216

[3] Senthil Kumar, M.,  Ramesh, A., Nagalingam, B., An Ex per i men tal Com par i son of Meth ods to Use Meth -
a nol and Jatropha-Oil in a Com pres sion Ig ni tion En gine, Bio mass and Bioenergy, 25 (2003), 3, pp. 
309-318

[4] Pramanik, K. Prop er ties and use of Jatropha Curcas Oil and Die sel Blends In Com pres sion Ig ni tion En -
gine, Re new able En ergy, 28 (2003), 2, pp. 239-248

[5] Narayana Reddy, J., Ramesh, A., Para met ric Stud ies for Im prov ing the Per for mance of a Jatropha-Oil Fu -
eled Com pres sion Ig ni tion En gine, Re new able En ergy, 31 (2006), 12, pp. 1994-2016

[6] Yamane, K., Ueta, A., Shimamoto, Y., In flu ence of Phys i cal and Chem i cal Prop er ties of Bio-Die sel Fu els
on In jec tion, Com bus tion and Ex haust Emis sion Char ac ter is tics in a Di rect In jec tion Com pres sion Ig ni -
tion En gine, Int J En gine Res, 2 (2001), 4, pp. 249-261 

[7] Celikten, I., An Ex per i men tal In ves ti ga tion of the Ef fect of In jec tion Pres sure on the En gine Per for mance
and Ex haust Emis sion in In di rect In jec tion Die sel En gines, Ap plied Ther mal En gi neer ing, 23 (2003), 16,
pp. 2051-2060

[8] Icingur, Y.,  Altiparmak, D., Ef fect of Cetane Num ber and In jec tion Pres sure on a DI Die sel En gine Per -
for mance and Emis sions, En ergy Convers Man age, 44 (2003), 3, pp. 389-97

[9] Arcaklioglu, E., Celikten,  I.,  A Die sel En gine’s Per for mance and Ex haust Emis sions,  Ap plied En ergy, 80
(2005), 1, pp. 11-22

[10] Canakci, M., Erdil, A., Arcaklioglu, E., Per for mance and Ex haust Emis sions of a Biodiesel En gine, Ap -
plied En ergy, 83 (2005), 6, pp. 594-605

THERMAL  SCIENCE: Vol. 13 (2009), No. 3, pp. 91-102 101



[11] Cenk Sayin, H. et al., Per for mance and Ex haust Emis sions of a Gas o line En gine Us ing Ar ti fi cial Neu ral
Net work, Ap plied Ther mal En gi neer ing, 27 (2007), 1, pp. 46-54

[12] Golcu, M., et al., Ar ti fi cial Neu ral Net work Based Mod el ing of Vari able Valve-Tim ing in a Spark-Ig ni tion 
En gine, Ap plied En ergy, 81 (2005), 2, pp. 187-197

[13] Celik, V.,  Arcaklioglu, E., Per for mance Maps of a Die sel En gine, Ap plied En ergy, 81 (2005), 3, pp.
247-259

[14] Deng Yuanwang, et al., An Anal y sis for Ef fect of Cetane Num ber on Ex haust Emis sions from En gine with 
Neu ral Net work, Fuel, 81 (2002), 15, pp. 1963-1970

[15] Korres, D. M., et al., A Neu ral Net work Ap proach to the Pre dic tion of Die sel Fuel Lu bric ity, Fuel, 81
(2002), 10, pp. 1243-1250

[16] Haykin, S., Neu ral Net works: a Com pre hen sive Foun da tion,   MacMillan Pub lish ing Com pany, New
York, USA, 1994

Authors' affiliations:

T. Ganapathy (corresponding author)
Internal Combustion Engines Laboratory,
Mechanical and Industrial Engineering Department,
Indian Institute of Technology Roorkee,
Roorkee 247667, India
E-mail: tganappathi@yahoo.co.in

R. P. Gakkhar, K. Murugesan
Internal Combustion Engines Laboratory, 
Mechanical and Industrial Engineering Department,
Indian Institute of Technology Roorkee,
Roorkee, India

Paper submitted: September 29, 2008
Paper revised: March 23, 2009
Paper accepted: April 18, 2009

102 Ganapathy, T., Gakkhar, R. P., Murugesan, K.: Artificial Neural Network Modeling of ...


