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This paper deals with artificial neural network modeling of diesel engine fueled
with jatropha oil to predict the unburned hydrocarbons, smoke, and NO, emissions.

The experimental data from the literature have been used as the data base for the
proposed neural network model development. For training the networks, the injec-
tion timing, injector opening pressure, plunger diameter, and engine load are used
as the input layer. The outputs are hydrocarbons, smoke, and NO, emissions. The
feed forward back propagation learning algorithms with two hidden layers are
used in the networks. For each output a different network is developed with re-
quired topology. The artificial neural network models for hydrocarbons, smoke,

and NO, emissions gave R’ values of 0.9976, 0.9976, and 0.9984 and mean percent
errors of smaller than 2.7603, 4.9524, and 3.1136, respectively, for training data
sets, while the R? values of 0.9904, 0.9904, and 0.9942, and mean percent errors of
smaller than 6.5557, 6.1072, and 4.4682, respectively, for testing data sets. The
best linear fit of regression to the artificial neural network models of hydrocarbons,

smoke, and NO, emissions gave the correlation coefficient values of 0.98, 0.995,

and 0.997, respectively.
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Introduction

Vegetable oils have been considered as one of the most versatile alternative fuel op-
tions for petroleum diesel in direct injection diesel engine applications because these oils have
substantial prospect as a long-term substitute for diesel fuel [1]. In this context, many varieties
of vegetable oils have been used by different countries, but only a very few and non-edible type
such as jatropha oil, karanji oil, efc. can be considered to be economically affordable to some de-
veloping nations like India in particular [2-4].

In general the higher density of jatropha oil makes the fuel spray narrow and its pene-
tration deeper. The higher viscosity of jatropha oil can lead to poor atomization and mixture for-
mation with air. This may result in slower combustion, lower thermal efficiency, higher emis-
sions of unburned hydrocarbons (HC), smoke, etc. The higher carbon residue of jatropha oil
leads to injector coking which in turn results in poor fuel atomization and consequently high
smoke levels [5]. However, with advanced injection timing there will be better combustion and
improved performance and also reduction in emissions. Significant improvement in perfor-
mance and emissions can also be evident with increased injection pressure because of enhanced
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atomization at the nozzle outlet, more vapor distribution, and better mixing. At higher injection
pressures mean diameter of fuel droplet reduces resulting in better mixing and distribution.
However, very high injection pressures lead to fine droplets, which can adversely affect fuel dis-
tribution in air [6-8].

Therefore, in order to meet out the emissions norms and legislations, the fuel injection
system parameters namely injector plunger diameter, injector nozzle opening pressure, number
of nozzle holes and its size, and injection timing need to be modified and optimized in the case
of jatropha oil fueled DI diesel engine. Experimental studies to measure the emissions from
jatropha oil fueled diesel engine for various injection system design and operating conditions at
different load and speed conditions and to optimize the injection system parameters are quite
complex, time consuming, laborious, and expensive. The theoretical studies using mathematical
models can predict the emissions from these engines, but the accuracy may not be sufficiently
satisfactory [9, 10], on account of simplifying assumptions invoked for the calculation of vari-
ous species of the exhaust gas components. Also developing an accurate mathematical model
for the operation of a jatropha oil fueled diesel engine is too difficult due to the complexities in-
volved. Hence the other alternative is to predict the emissions by experimental approach based
on artificial neural networks (ANN) model. However, for producing good and reliable results,
this approach itself is expensive and time consuming, because of the requirement of large vol-
ume of experimental data for precise and accurate training of the networks.

ANN have been applied to estimate desired output parameters when sufficient experi-
mental data is provided. They allow the modeling of physical phenomena in complex systems
without requiring explicit mathematical representations. It is evident from the literatures that
many researchers have applied the ANN approach to predict the performance and exhaust emis-
sions of gasoline, diesel, and biodiesel engines [9-13]. Neural networks have also been used suc-
cessfully for analyzing the effect of cetane number on exhaust emissions from engine [14].
Korres et al. [15] have applied ANN to evaluate the relationships between lubricity and other
diesel fuel properties.

The present paper deals with the development and applicability of an ANN model for
the prediction of exhaust emissions of jatropha oil fueled direct injection diesel engine. Experi-
mental results from the literature [5] has been used as the data base for training and testing the
present ANN models for predicting the emissions of unburned HC, smoke, and NO, of the diesel
engine fueled with jatropha oil.

ANN model

Artificial neural networks are computational models composed of processing units
called neurons connected together to form a network. They are used to solve complex functions.
The computation that each neuron performs, along with the way they are interconnected, de-
cides a particular type of neural network. While there are numerous different artificial neural
network architectures that have been studied by researchers, the most successful one for the en-
gine emission prediction applications have been multilayer feed forward networks. These are
networks in which there is an input layer consisting of nodes that simply accept the input values
and successive layers of nodes that are neurons. The outputs of neurons in a layer are inputs to
neurons in the next layer. The last layer is called the output layer. Layers between the input and
output layers are known as hidden layers.

The development of the ANN model consists of two stages. In the first stage called train-
ing, about 2/3 to 3/4 of the total data volume of the input-output set is used to train the network.
The intention is to tune the independent parameters of the network, so that it can “learn” the under-
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lying relationship between inputs and outputs.
In this the weights and bias values are initially
chosen randomly and the weights are adjusted,
so that the network attempts to predict the de-
sired output. In the second stage called testing,
about 1/4 to 1/3 of the total volume of input
data sets is employed in the network simulation
to validate the network predictions. The typical
archltegture of feed forward neural network is  p. gure 1. Feed forward back propagation neural
shown in fig. 1. network (topology 4-8-3-1)

The networks are trained to perform a par-
ticular function by adjusting the values of the
connection-strengths between the adjacent elements. For this purpose several learning algo-
rithms are used. All of these algorithms use the gradient of the performance function to deter-
mine how to adjust the weights to minimize performance. The gradient is determined using a
technique called back propagation, which involves performing calculations backwards through
the network. The back propagation computation is derived using the chain rule of calculus. In
this back propagation training algorithm, the weights are moved in the direction of the negative
gradient to get convergence. After training the ANN model, the network can be simulated for the
test input data sets and then they can also be validated for adoption with minimum error rate.
Neural networks contain no preconceptions of what the model shape will be, so they are ideal for
cases with low system knowledge. They are useful for functional prediction and system model-
ing where the physical processes are not understood or are highly complex. However, they re-
quire a lot of data to give good confidence in the results and hence neural networks are not suit-
able for small data sets. However, with large number of inputs, the number of connections and
hence the complexity increases rapidly.
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Methodology

Unfortunately there is no clear theory to guide us on choosing the number of nodes
(neurons) in each hidden layer or indeed the number of layers. The common practice is to use
trial and error, although there are schemes for combining optimization methods such as genetic
algorithms with network training for these parameters. Since trial and error is a necessary part of
neural network applications it is important to have an understanding of the standard method
used to train a multilayered network. The common method used to train the network is back
propagation. While it is possible to consider many activation functions, in practice it has been
found that the logistic sigmoid function works best. The training of all sets of a training data
group is named an epoch [16].

In the present study the experimentally measured emissions values for different design
and operating conditions of the injection system of the jatropha oil fueled diesel engine at several
load conditions were used to train and test an artificial neural network. Injector opening pressure
(IOP, bar), injection timing (IT, degree CA), and plunger diameter (D, mm) which represents the
injection system design and operating parameters and percentage of engine load (¥, %) were used
as the input layer, while unburned hydro-carbons (HC, ppm), smoke density (S, BSU) and nitro-
gen oxides (NO,, ppm) emissions were used as the output layer. The multi-layer feed forward net-
works of different topology have been used in the model and the back propagation learning algo-
rithm has been applied to the hidden layers. Scaled conjugate gradient (SCG) and
Levenberg-Marquardt (LM) algorithms have been used for the variants. Neurons in the input layer
have no transfer function while that in the hidden layers have logistic sigmoid (logsig) transfer
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function. A linear activation function called purelin transfer function, has been used for the neu-
rons in the output layer. All the input and output data sets have been normalized between 0 and 1
before they are fed to the ANN model.

A computer code has been developed in MATLAB 7.0 and the networks have been
trained and tested. In order to have more accuracy of training the networks and to have minimum
errors in output prediction, an increased number of neurons in the hidden layers were tried. Ini-
tially the network topology with one hidden layer was tried and subsequently number of hidden
layers was increased. The ANN architecture, as shown in fig. 1, has been used with different to-
pology for different outputs. It was found that two hidden layers with 8 or 9 neurons in the first
hidden layer and three neurons in the second hidden layer give optimum results. First, the net-
works were trained successfully, and then the test data was used to test the network. With help of
results obtained by the network, the outputs are compared using statistical methods. Errors at the
learning stage and testing stage are described as the mean square error (MSE), R?, maximum per-
centage error, and mean percentage error (MPE) values. The equations by which these errors are
computed are:

1 2
MSE ==%|t; —o,| (1)
pPJ
2(tj —0;)?
R2=1-L — )
2.0
J
t. —o0:
mpe =131 "% 100 3)
P

where ¢, is the target value for the j data set, o; s the output value for the j data set, and p is the
pattern (total number of data sets used).

Results and discussion

The total patterns consisting of 108 input-output data sets have been divided into two
samples, one sample consisting of 83 data sets were used as training data (tab. 1) and the other

Table 1. Input-output data sets for training

(ﬁgﬁggr Inj ec;;);s?ﬁzning Injection timing Eﬁ) ii ge HC Smoke NO,
o [ [deg CA] o | [eml | [(BSUL | [ppm]
7 220 335 20 404 0.3 142
7 220 335 25 403 0.3 200
7 220 335 50 419 0.4 247
7 220 335 40 435 0.4 386
7 220 335 60 498 0.9 326
7 220 335 70 603 1.2 1001
7 220 335 75 635 1.3 1024
7 220 335 90 910 2 1303
7 220 335 100 1298 24 1431
8 205 32 15 365 0.5 200
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Table 1. (continuation)

8 205 32 25 663 0.6 326
8 205 32 30 741 0.7 401
8 205 32 40 852 0.9 636
8 205 32 50 908 1.2 895
8 205 32 70 1185 1.8 1279
8 205 32 75 1307 1.9 1366
8 205 32 80 1583 2.1 1441
8 205 32 100 2290 3.6 1753
8 220 32 15 383 0.3 134
8 220 32 20 481 0.3 228
8 220 32 30 512 0.4 404
8 220 32 40 543 0.5 647
8 220 32 50 618 0.6 903
8 220 32 60 715 0.7 1119
8 220 32 75 878 1.1 1403
8 220 32 80 953 1.3 1551
8 220 32 90 1150 1.7 1930
8 240 32 15 292 0.1 115
8 240 32 20 303 0.2 224
8 240 32 25 304 0.3 333
8 240 32 40 383 0.4 688
8 240 32 50 507 0.5 961
8 240 32 60 609 0.6 1206
8 240 32 70 721 0.7 1560
8 240 32 80 744 1 1819
8 240 32 90 868 1.4 2091
8 240 32 100 1115 1.8 2538
8 260 32 20 385 0.2 284
8 260 32 25 451 0.2 375
8 260 32 30 484 0.3 427
8 260 32 50 604 0.4 1056
8 260 32 60 724 0.5 1306
8 260 32 70 789 0.5 1727
8 260 32 75 855 0.7 1871
8 260 32 90 1031 1.3 2438
8 260 32 100 1417 1.6 2659
8 205 30.5 15 469 0.6 170
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Table 1. (continuation)

8 205 30.5 25 725 0.7 220
8 205 30.5 30 871 0.7 257
8 205 30.5 40 915 1.2 484
8 205 30.5 60 1083 1.7 902
8 205 30.5 70 1317 2.1 1107
8 205 30.5 75 1496 2.4 1179
8 205 30.5 80 1752 2.6 1215
8 205 30.5 100 2377 39 1540
8 205 335 15 413 0.4 196
8 205 335 20 469 0.5 324
8 205 335 30 592 0.7 463
8 205 335 40 692 0.8 707
8 205 335 50 792 1 987
8 205 335 70 993 1.5 1452
8 205 335 75 1049 1.8 1534
8 205 335 80 1172 1.9 1626
8 205 335 90 1496 2.5 1753
8 205 345 20 491 0.5 289
8 205 345 25 569 0.5 400
8 205 345 40 703 0.6 734
8 205 345 50 826 0.8 1053
8 205 345 60 926 1 1336
8 205 345 75 1250 1.6 1622
8 205 345 80 1395 1.8 1745
8 205 345 90 1741 22 1932
8 205 345 100 2210 2.6 2070
9 220 23 15 266 0.1 101
9 220 23 20 283 0.1 135
9 220 23 25 299 0.2 203
9 220 23 30 299 0.2 225
9 220 23 50 315 0.4 473
9 220 23 60 347 0.5 586
9 220 23 70 387 0.5 743
9 220 23 80 428 0.8 890
9 220 23 90 468 1.2 1047
9 220 23 100 517 1.9 1137
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Table 2 Input-output data sets for testing

7 220 335 15 380 0.3 94

8 205 32 20 564 0.6 276
8 220 32 25 491 0.3 309
8 240 32 30 315 0.3 442
8 260 32 40 527 0.3 688
8 205 30.5 50 982 1.4 711

8 205 335 60 882 1.2 1290
8 205 34.5 70 1127 1.4 1535
9 220 23 75 412 0.6 822
7 220 335 80 691 1.5 1174
8 205 32 90 2002 2.6 1615
8 220 32 100 1555 2.1 2200
8 260 32 15 352 0.1 140
8 205 30.5 20 658 0.7 207
8 205 335 25 547 0.6 370
8 205 345 30 603 0.6 487
9 220 23 40 307 0.3 338
7 220 335 50 458 0.6 641
8 205 32 60 986 1.3 1093
8 220 32 70 812 0.9 1268
8 240 32 75 744 0.8 1682
8 260 32 80 877 0.8 2082
8 205 30.5 90 2165 32 1348
8 205 335 100 2038 34 1868
8 205 345 15 413 0.5 190

sample of randomly selected 25 data sets were used as test data (tab. 2). Experimentally mea-
sured unburned HC, smoke, and NO, emission results of neat jatropha oil fueled direct injection
diesel engine for different operating conditions were used as the data sets for the present ANN
modeling study. The different experimental test conditions were obtained with different combi-
nations of injector opening pressures, injection timing, plunger diameter, and engine loads. The
feed forward back propagation networks with topology of 4-8-3-1, 4-9-2-1, and 4-8-3-1 were
found to give best predictions of HC, smoke, and NO, emissions respectively. The MSE, R, and
the MPE values were used for comparison. The ANN model emissions results have been shown
for both training and testing data in tab. 3. For each output separate network was used.
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Table 3. Predicted results of the ANN model
ANN MSE R? MPE MSE R? MPE

oo topology Gleeliny (Training) | (Training) | (Training) | (Testing) | (Testing) | (Testing)
HC 4-8-3-1 LM 9.72E-05 | 0.9976 2.7603 | 7.55E-04 | 0.9904 6.5557
NO 4-8-3-1 SCG 1.05E-04 | 0.9984 3.1136 | 3.39E-04 | 0.9942 4.4682

X

Smoke | 4-9-2-1 SCG 9.96E-05 | 0.9976 4.9524 | 495E-04 | 0.9904 6.1072

The training plots of the different ANN networks used in the study are shown in fig. 2
for HC, smoke and NO, emission networks. It can be seen that the goal selected for all the out-
puts is same (0.0001). Also it is found that the training performance MSE value of HC network

Performance is 9.71955e-005; Goal is 0.0001 Performance is 9.96338e-005; Goal is 0.0001
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as shown in fig. 3(a) and smoke network as shown in fig. 3(b) is less than that of NO, network
model, fig. 3(c). The training number (epochs) used for HC, smoke and NO, models are 161,
2516, and 3000, respectively. With these training numbers the goal is reached in all the net-
works. Figure 3 shows the histograms of number of output sets falling on the different range of
error percentage values. It is shown in fig. 3(a) that 80% of the output sets fall on the lower error
range of £10% in the case of HC network simulation. Figure 3(b) shows the histogram for the
case of smoke and it is about 80% of the output sets falling on the error range of —5 to 10%. His-
togram for NO, shown in fig. 3(c) reveals that 40% and 50% of outputs fall on 0 to —5% and
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+10% error range, respectively. It can be observed that small amount of output sets have error
range of +20% while 80 to 90% of the outputs have low error ranges.

The comparison of results predicted by ANN model with experimental results for dif-
ferent emission parameters are given in figs. 4 to 6. It can be noted from the fig. 4 that the model
predictions are very close to the experimental values of HC emissions. The R? value obtained for
the HC model was 0.9904 with MSE of 0.0007 and MPE of 6.5557. Figure 5 shows that the pre-
dicted results of the model very well fit to the characteristic curve of experimental results of
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Figure 6. Comparison of experimental and ANN
predicted results for NO,

smoke emissions. The R? value obtained for the
smoke model was 0.9904 with MSE of 0.0005
and MPE of 6.1072.

The comparison of results of prediction for
the NO, emissions with their experimental val-
ues is given in fig. 6. It can be observed that the
two curves are very close to each other. This re-
veals that predictions of the NO, model are very
well in agreement with the actual values of
emission. The R? obtained for the model was
0.9942 with MSE 0f 0.0003 and MPE 0f4.4682.
Hence the ANN model can be applied to predict
the HC, smoke, and NO, emissions of jatropha
oil fueled diesel engine for a given injection
timing, injector opening pressure, plunger di-
ameter, and engine load conditions.

The performance of a trained network can be
measured to some extent by the errors on the
training, validation, and test sets, but it is often
useful to investigate the network response in
more detail. One option is to perform a regres-
sion analysis between the network response and
the corresponding targets. The regression anal-
ysis is performed on these three ANN models to
confirm the suitability of the networks. Figures
7 shows the results of regression analysis per-
formed on HC, smoke, and NO, networks. It
can be noted from fig. 7(a) that the best linear fit
of the HC model has a slope of 0.989 and y in-
tercept of 0.00249 which are, respectively, very
near to 1 (the slope of the case where the re-
sponse A is exactly equal to target T and zero
(they intercept of the case where the response is

1.4

Best linear fit: A = 0.989T + 0.00249

1.2

0.8

0.6

0.4

0.2

o Data points R=0.98

—— Best linear fit

0
0

0.5 T 1

(a) HC ANN model

Best linear fit: A= 0.975T + 0.00629

0.6

0.4

0.2

0

R =0.995

o Data points
——— Best linear fit

i A= T

(b) Smoke ANN model

0.5 T 1

1

Best linear fit: A= 1.017 —0.000404

R=0.997

A
o}
0.8 é
0.6
0.4
< Data points
0.2 . .
—— Best linear fit
A=T
0 . . . .
0 0.2 0.4 0.6 08 1 1

(c) NO, ANN model

Figure 7. Linear fits of ANN models
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exactly equal to target), and figs. 7(b) and 7(c) show that the slopes of best fits of smoke and NO,
network models are also very near to 1 while their y intercepts are very near zero. However the
slope of the best linear fit of the NO, emission model is higher than that of others.

The correlation coefficient (R value) between the outputs and targets provides the
measure of how well the variation in the outputs 4 is explained by targets 7. The R value of very
close to 1 indicates a good fit. The fig. 7 indicates that the correlation coefficient values of all the
networks are very near to 1 and thus give good fits.

Conclusions

The ANN models have been developed for predicting the HC, smoke and NO, emis-
sions of jatropha oil fueled direct injection diesel engine. Four inputs namely, injection timing,
injector opening pressure, plunger diameter and engine load are used as the input layer while the
output is either HC, or smoke, or NO, emissions. Feed forward back propagation learning algo-
rithms with two hidden layers with 8 or 9 neurons in the first hidden layer and 2 or 3 neurons in
the second hidden layer are used. About 77% of the total data sets have been used for training
and 23% have been used for testing. The ANN models for HC, smoke and NO, emissions
yielded R? values 0£ 0.9976, 0.9976 and 0.9984 and mean percent errors are smaller than 2.7603,
4.9524, and 3.1136, respectively, for training data sets, while the R? values are 0.9904, 0.9904,
and 0.9942 and mean percent errors are smaller than 6.5557, 6.1072, and 4.4682, respectively,
for testing data sets. The best linear fit of regression to the ANN models of HC, smoke, and NO,
emissions have yielded the correlation coefficient values 0 0.98, 0.995, and 0.997, respectively.
The results may easily be well thought-out to be within the acceptable limits. Hence these ANN
models may be considered for predicting the emissions in jatropha oil fueled diesel engines.
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