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The analytical solution is derived for the steady MHD mixed convection, laminar,
heat and mass transfer over an isothermal, inclined permeable stretching sheet, im-
mersed in a uniform porous medium in the presence of chemical reaction, thermal
radiation, Dufour and Soret effects, an external transverse magnetic field, and in-
ternal heating. The governing equations are transformed into a dimensionless cou-
pled system of non-linear ordinary differential equations and then solved analyti-
cally by the homotopy analysis method. A parametric study illustrating the
influence of the chemical reaction, magnetic field, porous medium inertia parame-
ter, and the Dufour and Soret numbers on the fluid velocity, temperature, and con-
centration are investigated through the obtained analytic solution. As well as the
local Nusselt and the Sherwood numbers is conducted. The obtained results are
presented graphically and the physical aspects of the problem are discussed. The
obtained solution has been tested numerically for some values of the system param-
eters. Comparison with previously reported numerical results is tabulated and
agreement is recorded. Analytic form of some characteristic parameters, e. g. the
local skin-friction coefficient, the local Nusselt number, and the local Sherwood
number, stress at the stretching surface, local mass transfer coefficient, the local
wall mass flux, the local heat transfer coefficient and the local heat flux, are given
due to the obtained analytic solution.

Key words: heat mass transfer, chemical reaction, Soret-Dufore effect, internal
heating, permeable stretching sheet, homotopy analysis method

Introduction

In last few years there has been a great interest to investigate the boundary layer flows
of viscous fluids due to a uniformly stretching sheet because of its technological applications
importance in metallurgical and polymer sheet extrusion from a die. The study of boundary
layer flows over flat surfaces have been amply investigated numerically by some researchers
since Sakiadis [1, 2] who was the first invented such problem. Crane [3], and Andersson [4],
have been treated the problem from different aspects. Recently, a great attention has been
directed to investigate the mixed free-forced convective and mass transfer boundary layer MHD
fluid flow from an inclined permeable stretching plate in a porous medium. This problem has
many industrial applications in the reactor safety, oil reservoirs, geothermal systems, en-
ergy-storage units, heat insulation, heat exchangers, drying technology, catalytic reactors, and
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nuclear waste repository. The mixed free-forced convective and mass transfer problem had been
reviewed by Dey et al. [5], De Hoog et al. [6], Schneider [ 7], Chamkha, et. al. [8] and Merkin et
al. [9].

The MHD fluid flow from a vertical plate with chemical reaction has been studied by
many authors [10-13]. The effects of thermal-diffusion and diffusion-thermo on mixed convec-
tion boundary layer flows had been considered by Kafoussias et al. [14]. Afify [15] studied the
influence of temperature-dependent viscosity with Soret-Dufour effects on non-Darcy MHD
free convective heat and mass transfer. Seddeek [16] used the finite element method to study the
effect of various injection parameters on heat transfer for a power-law non-Newtonian fluid
over a stretched surface with thermal radiation.

Afify [17] discussed the effects of variable viscosity on non-Darcy MHD free convec-
tion along a non-isothermal vertical surface in a porous medium. Ghaly et al. [18] investigated
the effects of chemical reaction, heat and mass transfer on laminar flow with temperature de-
pendent viscosity using finite difference method. The above mentioned studies and others were
restricted to the numerical solution, considering some effects while neglecting the others. For
example Postelnicu in [19] analyzed the effect of a magnetic field on heat and mass transfer by
natural convection from vertical surfaces in porous media considering Soret-Dufour effects, and
in [20] studied the effect of chemical reaction and Soret-Dufour effects. Seddeek [21] discussed
the Soret-Dufour effects effect on mixed free-forced convective flow and mass transfer over a
stretching surface with a heat source the case of constant viscosity. The more recent study by
Abd El-Aziz [22] discussed the effect of Ohmic heating by using the shooting method and in
[23] he discussed the effect of Soret-Dufour effect on MHD three-dimensional free convection
heat and mass transfer for a temperature dependent viscosity fluid with radiation flows over a
permeable stretching surface.

In spite of all these investigations reported in the literatures; no one discussed all the
effects actually exist in the applications. Although, the analytical solutions are more economical
for the industrial purposes, all the above investigations are numerical. This was the motivation
to do the present paper.

In this paper the analytical solution is provided and
C., T. L discussed for mixed free-forced convective and mass

\ transfer problem of a viscous, incompressible, electri-

al | /\< cally conducting MHD fluid flow past an inclined per-

'V\ 7, O meable stretching surface in a porous medium and

y )\ considering simultaneously the additional effects
— \ which arise by porosity, Hall effect, chemical reac-
>¢/ \\ix tion, heat generation or absorption due to the chemical
7 reaction, thermal-diffusion and diffusion-thermo,

which cannot be neglected in several practical cases.
The reaction features of the obtained solution are ana-
lyzed under different conditions by varying the key
parameters.

Figure 1. The stretching plate of the
problem and coordinates

Problem formulation

Consider a steady viscous incompressible laminar three-dimensional mixed
free-forced convective boundary-layer electrically conducting fluid flow with heat and mass
transfer over an inclined permeable stretching flat plate embedded in a saturated porous medium
influenced by chemical reaction, porosity, internal heat generation/absorption, Hall effect, Soret
and Dufour effects (fig. 1).
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The problem is performed based on the following assumptions: (1) the flow is laminar,
steady-state and three-dimensional; (2) the sheet is inclined to the vertical, continuously stretch-
ing in the x-direction in the plane y = 0 with a velocity u = Ux; (3) the sheet is permeable to allow
possible blowing or suction; (4) the porous medium is isotropic, homogeneous and non-mag-
netic therefore there is no magnetic induction; (5) the effect of compressibility and viscosity
heating are neglected; (6) the Boussinesq approximation is valid and the boundary-layer ap-
proximation is applicable; (7) the fluid and the porous medium are in local thermodynamic equi-
librium; (8) the fluid is well-mixed systems, considering the chemical reactions to be first order;
(9) the coordinate origin is located at the surface of the sheet y = 0; (10) the x- and z-axis are
taken parallel to the sheet and the y-axis is normal to it; (11) the magnetic field is uniform and
applied parallel to the direction and there is no electric field; (12) the velocity components, tem-
perature, and concentration are functions of x and y variables; (13) there is no slip flow at walls;
(14) the physical properties of the fluid and porous medium are constant. Therefore the govern-
ing equations:

— continuity equation
ou ow

ox Oz
— momentum equations
ou ou u oBZ(u+mW) v
U— +W—=v——+ T-T.)+B-(C-C.)cos¢——2— " "y (2
™ 0 Vo glBr( )+ Bc( )] plem) K (2)
ow ow W . oBX(mu—-WwW)
U—+W—"=y + T-T.)+B-(C—-C)sing——21— "~ W (3
= . e glBr( )+ Bc( )] olim) K (3)

— energy equation
2 2
WLyl ok OT Doy @€ 0O o\ yw (4)
0x o0z pc, 0z2 ¢,C; 0z pc,

— diffusion equation
oC oC 0*C D K T

u—+W—=D, — +k,C (5)
ox Oz 0z? w0z
subjected to the boundary conditions
y=0, u, =Ux, v=0, W =0, c=C,
(6)

y—>oo u—0, wW—0, T->T,6 C-—>C,

The internal heat to generation/absorption term g™ is modeled according to the follow-
ing equation:
" * _ * kU
q" =14 (T, -T.)e"+B (T, —T.)] — (7
v

We considered the interaction between diffusion of (heat and mass)
(D K+/ T, )(0*T/0z*) and (D, K1/c,C,)(0°C/0z%), namely the Soret (Sr) and Dufour (D,) effects.
The x-axis is taken in the plate whose inclination angle 9 is with the horizontal. The z-axis is
taken in the plate and parallel to the horizon. The y-axis is taken normal to the plate. The Hall ef-
fect as a result of applied external magnetic field transverse to the plate parallel to y-axis is con-
sidered, under the assumption of neglecting the induced magnetic field compared with the ap-
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plied field; this is characterized by a small Reynolds number. By using the following
dimensionless variables:

_[u _ _T-T. _c-c,
n—\/;y, v(x,y)=vUvxf(n), O T @(n) —CW—CW (8)

W_ 00

and
y= %” _xUG), v = —‘Z—‘” = JOvf(p, W=UsH@),
y X

4 = M _L, AZ:mM
1+m? Uk 1+ m?

)

The governing egs. (1)-(5) can be reduced to the following dimensionless equations
where eq. (1) is satisfied identically:

F A~ 2 +GrO + God — A,f — A,H =0 (10)
H'+ fH'—fH + Ayf — A, H=0 (11)
O"+PfO'+B'O + D®"+ AN =0 (12)
D"+ Sc(fd'— g@) + Sr@" =0 (13)

where the prime denotes the differentiation df/dn. The boundary conditions (6) can be reduced
to the following dimensionless form:

n=0f0)=0, fO)=1 HO)=0, ©0)=1, @©0) =1,

n—e f(x)=0, H(*)=0, 6(x)=0, ®(x)=0

The reduced dimension less system (10)-(14) describes the considered boundary value

problem. This set of equations is coupled non-linear non-homogeneous system of differential
equations. It is not so simple to solve by using the traditional methods either analytical or numer-

ical which is noticed for most realistic problems. This is one of our motivation by work in this
paper, and our second motivation is to solve one of the realistic problem arise in the reactors.

(14)

Analytic solution

The homotopy analysis method (HAM) invented by Laio [24], proved its power to
solve several non-linear problems [25, 26]. To overcome the difficulty appears with the problem
under investigation in this paper related to the non-linearity and the non-homogeneity of the sys-
tem of differential equations and to get a uniformly analytic solution for this complicated prob-
lem we shall use the HAM. By means of the traditional homotopy method; using p<[0, 1] as the
homotopy embedding parameter, 7 is stands for, 7, , 7y, i o, and 71, as the auxiliary parameter
their values which control the convergence of the series can be determined. L stands for L;, Ly,
Lg, and L, as the auxiliary linear operators, and 7,(n) stands for f(h), Hy(17), @ (1), and @ (1)
as an initial guess, and 7(n) for An), H(n), ©(n), and @(n) as a solution, respectively, where:

Ly =(@°-0%), Ji(n0)=/fo(m=1-e, LC, + Cyn+ Cse"]=0 (15)

LH=%<02+6>, Jy(,0)=Hy(p) =e—e 2, Ly[C, +Cye]=0  (16)
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Lo (02+0), J3(1,0)=0(m) =e™, Le[C, + C,e"]=0 (17)

Ly =(0%+0), J,(1,0)=@o(n) =e7",  Ly[C) + Cre]=0 (18)
Using the rules of solution expression for the unknown functions:

S= Sf,0, Hm)= $H,m), 0m=£6,0m, @m=3e,m, (19

m=0 m=0
2m+1 2m+2
fm (77) = kzofmkeikna Hm (77) = kzl fmkeﬁ;m,
" 242

e (20)
@m (TI) = kzl kae_kn’ cDm (77) = kzl ¢mke_kn:

where the constant coefficient, ., /1, 1> 0, x> a0d @, ., have to be determined.

The zero-order deformation equation:
(1= p)LLJ; (1, p) = 7,0 (] = pAN,[J; (1, p)] 21

For the homotopy mapping the initial guess is J(n, 0) = 7; ((17) and J(n, 1)=7n(n)is
the solution, where J(n, p),i=1, 2, 3, 4 stand for the functions f{n), H(n), ©(n), and O(n), re-
spectively. Following the known steps of the HAM [24] and assuming the Taylor series expan-
sion in the power of p:

o 1 omJ;(n,
S ) =7+ S, pt, ) = — LR 22)
m=1 ml op™ |,
where fori=1, 2, 3, 4, =, ,(n) is stands for f,,(n), H,(n), ©,,(1), and @, (1), respectively.
Therefore Vm > 1; the m-th order deformation equation reads:
L[”lm (77) - lmﬂ'-i,m—l (77)] = hlim (ﬂi,m—l (77)] (23)
I m>1
= 24
X {0 <0 24)
where Il m[ﬂi,mfl(n)]
1 o' N,J[J;(,
Lin 1 (] = L, p)) 25)
(m-1)! op™m! =0
Then the f~equation in the system:
3 2 2
Ny 3 J 10 p) = gy [ D) Gy v Gery — 4, S0 4,0, (26)
on’ on? on on
the H-equation in the system;
0%J oJ 0J 0J,
N,[Jy, J, 1, p) = L -, A, -4, (27)
on? on on on

the ®-equation:
Nl[‘]l"]37']4](nsp) = a P

the @-equation:
N4[J13J3’J4](777p) =

2

2

+PrJ1%—(%) -B*Jy+D, sy gren (28)
on \ on on?

on?

2
on

on?

— 98¢/, +Sr (29)

where J,(n, p), JL(n, p), J5(1, p), and J,(17, p) are the homotopy mappings related to the unknown
functions f{(n), J(n), ©(n), and @(n), respectively, which grew by the homotopy parameter



188 Abdallah, 1. A., Analytic Solution of Heat and Mass Transfer over a ...

0 < p < 1from the initial guess solutions fo(17), Hy(17), @(1), and @ (1) at p = 0 to the solutions
S, H(n), ©(n), and (1) at p =1 i. e.;
S =fm), J,m)=H@m, J;0D)=060m), J,0nl) =20 (30)
Therefore by eqs. (26), and (29)-(36) we get:
Lelfo (1, ) = X S (] = 1 ¢ F,, (1)
Fu) = 30 +'S fuf s =S fiian #G10,, +G0, — A Sy + Ayt )
the H-equation in the system:

LylH,, (M) = xnH e (] =Ny P, (10)

P,(n)=H,_, + :g Sl iy — ’:g SoH iy + Ay f oy — A4 H,, 2
the ®-equation:
Le[©,, (1, P) = % Ot (D] = 1160, (1)
0,m =0, +Pr mil SuOnon + B0, +D D} + AT 33)
the @-equation: "
Lo (@, (1, ) = X P (D] = 1o R, (1)
R, () =@, + Scmf So®@poip +7SC@,  +S1@;
#=0 (34)

The equations (38), (40), (42), and (44) are subject to the conditions:
Su©@ =0, f,0)=1  f,(2)=0, H,(0)=0, H,()=0,
0,0)=1 0,(x)=0, @,0)=0, @, (x)=0, 1<m
then the coefficientsf,,,, 4,,;, 0, > and @, , can be determined, and as a consequence the solution
of the system of the coupled non-linear non-homogenous differential equations which described
the considered problem. We have from the expressions of the initial guess functions as a zero ap-
proximation of the solution that the coefficients:

Jo =L fo=-L hy =1 hy=-1 6,=1 and ¢, =1 (35)

Therefore the other coefficients in the expression of the solution can be easyly deter-
mined from the following recurrence relations:

2m+1
me :_k—l fmk
5 - (36)
fmk :msmk +Zm)‘m—1,kfm—l,k 1<k <2m+1
2m+2
hm,2 = _kzl hmk
2n i 37
hmk =me,k—l +Zmﬂ’m—1,khm—l,k 2<k<2m+2
2m+2
9m71 == ka
k=2 (38)

ka :LkUm,k—l +%mﬂ‘m—l,k0m—l,k’ 2<k<2m+2

kZ —
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2m+2
¢m,1 == z ¢mk
fi
=—V, i ¥ XA et ks 2< k<2m+2
Dok 0k mk-1 1T X kPt k

Smk =0y +ﬁmk’ T, Kk = Emk +6mk’

m

Umk :pmk+o-mk7 14 k =Vmk +:umk’ 2<k<2m+2

m

Ay = A, (k _k3)ﬂ’m—l, i Smer ke — Ao A kP
+GA,, 10,00 +GCA 1 Dk 1<k <2m+1

ﬂml :O> Bm,2m+1 =0
m=l " min[2m-2n-1,k-1]
( [S2 +S(S_ k)]fm,k—sfm—l—n,sj 2<k<2m

lek =Z

n=0 \ s=max[l,k-2n-1]

Emp = Ay (k) Ay o +1f o (K2 = A Ay gy 1Sk <2m+1

m—1 min[2m—2n, k]
[ (k- 2s)fmksm1ns) 1<k <2m+l1

n=0 \ s=max[l,k-2n-1]

pmk = (k2 +B*)ﬂ’m—l,k9m—1,k +k2ﬂ“m—l,k¢m—l,k +A*5]£ 1 S k S 2m+1

mm[2m 2n,k]
G = Pr Z ( (- s)fm,ksemlmj 1<k <2m+1

§= maxlk 2n-1]

Ymk =IStk2]2, 0 10,y i + (K2 =Scy) Ay By 1<k <2m+1

Mo = Srz (

where {1 k=1 {1 1<k <2m+2
= a Ak =

min[ 2m 2n,k]

( S)fm,ks¢mln,sj 1<k <2m+1

?maxlk 2n—1]

k

ol =
0 k=1 0 otherwise

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

Substituting in eq. (19) one gets the analytic solution expressions for the
dimensionless velocity components profiles f, and H, also the heat distribution ® and mass

transfer @.

Results and discussion

The obtained analytic solutions (19)-(22) for the velocity components profiles 1 /(1)
and H(n), also the temperature distribution ®(n), and the concentration distribution @(177) are
plotted for some specific values of the parameters to show the behavior of the solution and to de-
pict the effect of some parameters. We have used the Mathematica package in our calculations
and to plot the solutions up 30-order approximation. The chosen value of the auxiliary parame-
ter i = —1is determined in fig. 2 by plotting the #-curves for /"(0), H '(0), ® '(0), and @(0) vs. i
are performed at the values of: y=0, Sr=0.01, M=0,Pr=0.7, m=0.0, A"=B*=0.01, Da=0,

Gr=Gc=1,Sc=0.22,Re=3, and D, =0.01.
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\ 10 Figure 2. The 7 curves
N < of  for the @) /"(0), (b)
8 H'(0), (c) ©'(0), and (d)
N % 6 @'(0), up to 30" order
\4 approximation at
41 Pr =0.7 with Gr =1,
2 2 Ge=1,Sc=0.22,
ho_ . : : s Ao . i i 8 Da=0, m=0.0,
-2 -15 - 05 0 20 -5 -05 o Dy=03,Sr=0.1;
@ (b) Re=3, A=B=0.01,
—10 M =0.01, and y = 0; it
e show that the value
51 h=-1 is the control key
i / \\ . /;’%—“‘“\xJJ of the series
- y - ; 0 convergence
—2/ -1.5 -1 -0.5 2 /-5 -1 05
-5 /
-10
(©) 71 @ 18

The influence of variation in the fluid parameters, Pr, M, 4", B", Sr, D, and y on the ve-
locity profiles, the temperature profile, and the mass transfer profile are displayed in figs.
(3)-(11). In order to get a clear insight of the physical problem, the velocities f{n) and H(1n), the
temperature @(7n), and concentration @(1n) have been discussed by assigning numerical values
to the problem parameters. Realistic values of Sc =0.22, 0.62, and 0.78 are chosen for hydrogen,
water vapor, and ammonia at temperature 25 °C and on atmospheric pressure, Pr= 0.7 for the air
at temperature 20 °C and on atmospheric pressure, Gr, = 1 for heat transfer, and Gc, = 3 for mass
transfer. Re, = 3, and y=-0.5,-0.3, 0.7, 1.0, and 3.0.

Figures (3)-(4) depict the effect of the rate of internal heat generation 4™ > 0, B* > 0,
and absorption 4* <0, B* <0, due to the space-dependent coefficient 4" > 0, and due to the tem-

: H(n)
AL 0.05
1 0.04
08 003}
0.6
0.02
0.4
0.01 . s
0.2 Figure 3. The influence of
0 . internal heat generation
(@ O n () O 2 4 6 1 A" >0, and absorption
o) A <0, coefficients of
12(’7) 1.2 space-dependent on the

analytic solution for the
velocity profiles f'(17) in
x-direction and H(7) in
z-direction, the tempera-
ture ©(n), and concentra-
tion @ (1)




THERMAL SCIENCE: Vol. 13 (2009), No. 2, pp. 183-197 191

Figure 4. The influence of
internal heat generation B > 0,
and absorption B" <0,
coefficients of space-dependent
on the analytic solution for the
velocity profiles f'(17) and
H(n), the temperature ©(1n),
and concentration @(n)

perature-dependent coefficient B* > 0. It shows that the solution respond to the increasing in
these parameters by increasing for the cases of the velocities components profiles (1), H(n),
and on the temperature ©(1n), and by decreasing for the case of concentration @(7).

Figure 5 illustrates the effect of the chemical reaction parameter for mass generation
y < 0/destruction y > 0. It is seen, that the velocities f'(17), and H(n) and concentration @(n7) de-
creases by increasing of , and the temperature @ (1) is responds by increasing with increasing in y.

1 _5(77) 0.05

1
0.8
0.6

Figure 5. The effect of the

chemical reaction parameter ; 2@(7,)
for mass generation y < 0/ ’
destruction on internal heat 1

generation on the velocity 08k
profiles f'(n) and H(7n7), and on

the temperature ©(77), and on

y=-0.5,-0.3,0.1,

y=-0.5,-0.3,01,

the concentration @(1) 04 0.7,3.0
02t .
0 L 0 e T
c) O 2 4 n () O 2 4 6

Figure 6 shows the effect interaction of the magnetic parameter M. The velocity pro-
files f'(n) and H(n), respond by decreasing vs. to the increasing in the magnetic parameter,
while the temperature @(1) and the concentration @(n) responds by increasing vs. to the in-
creasing in the magnetic parameter.
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08 06
05
0.6 M=00,0510,15 0.4 M=05 10,15 Figure 6. The effect of the

magnetic parameter /M on
internal heat generation on the
velocity profiles f''(17) and H(7)
and on the temperature ©(7),
and the concentration @(7)

8 (b) 1 2 3 4 5,6

M=0.0,051.0,15

Figure 7 shows also that in each group with constant magnetic parameter response to
the increasing of Soret parameter by increasing the velocity profiles f'(n) and H(1), and decreas-
ing both the temperature @(7) and the concentration @ (/). The opposite response by the veloc-
ity profiles f"(n) and H(1n), and the temperature @ (1) and the concentration @(1); is noticed for
the increasing variation in the Dufour parameter D,,. We can use the obtained analytic solution
expressions given by (19) to calculate f"(0), H'(0), ® '(0), and @ '(0).

() H(h)

Figure 7. The effect of the
Soret parameter (Sr), Dufour
parameter (D,), on internal
heat generation on the velocity
profiles f'(n7) and H(7), and on

20 7 the temperature ©(7), and the
concentration @ ()
e
15 (m)
1
Sr D,
—— 2.0 0.03
0.8 % - 0.4 8;138
——0.20.
06 .‘?\\ M=1
0.4
0.2 S5y
2l M=0 TS

0 4 8 12 16 7 20 n 25

Therefore one can calculate the characteristic numbers of engineering interest and
give a series expression for each as follow, respectively: the Shear stress in the x-direction and in
the z-direction are:
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Tyx = M\/E Uxf"(0), 7, = ﬂ\/g UxH'(0) (49)
% v
The local skin-friction coefficients are:
2 n 2 !
Cy = f"0), Cp=——=H'(0) (50)
Re, JRe
The local Nusselt number is:
Nu, =XhTW=—,/Rex@'(0) (51)
where the heat transfer coefficient is
q o 2m+2
ST v%;( )0, (52)
and the mass flux is -
o0 m+
=—k(T, -T.) @ (0)=—k(T, —-T.) Z > (=00, (53)
V m=0 r=1
The local Sherwood number is:
Sh, = DL = —JRe,®'(0) (54)
where the mass transfer coefficient is
m U &2
h =—Y = - 4 55
m C _ C \/:Z [Z:: )¢m[ ( )

and the mass flux is

my = _Dm(Cw _COO)‘/gCD,(O) = _Dm(CW _COO) %i Z £)¢mé‘ (56)

Therefore we can find for the first time an analytic series expression for the character-
istic numbers: skin friction coefficients, Nusselt number, local Sherwood number, stress at the
stretching surface, local mass transfer coefficient, local wall mass flux, local heat transfer coef-
ficient, and the local heat flux, due to the obtained analytic solution. The behavior of the charac-

teristic numbers is plotted in figs. (8)-(12).

Ci Cyy
3 Pr=07 1.75
25 Pr=1.0-+——— L
= Pr o 10 oo 1.25

L [ 075
1F 0.5 :
0.5 \*\g 0.25 ——— )
o = . . e

Re,
50 100 150 200

Figure 8. Local skin-friction coefficients vs. local Figure 9. Local skin-friction coefficients vs. local
Reynolds number for different values of Pr = 0.7, Reynolds number for different values of Pr = 0.7,

1.0, and 10.0 1.0, and 10.0
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hy Re,
50
40
30 ¢
20 {
10t

Re, 1 2 3 4

50 100 150 200 X 5

Figure 10. The Nusselt number vs. Reynolds Figure 11. The heat transfer coefficients over the
number for different values of the Pr = 0.7, 1.0,  square root of local Reynolds number vs. x
and 10

Sh,
25 Pr-10 — For the sake of comparison numerical re-
5 sults have also been computed just in our ana-
lytic solution for parameter values and listed
15 in tabs. 1 and 2 beside the previously com-
puted results by the others used numerical so-
10 . .
lutions; we reported agreement with these re-
5 sults as shown in the tables.
Re,
50 100 150 200

Figure 12. Local Sherwood number vs. local
Reynolds number for different values of Pr = 0.7,
1.0, and 10.0

Table 1. Comparison of the present analytic calculation of f7'(0), H'(0), ® '(0), and @ '(0)
by the calculated values [22]

0.71 —-1.000 0.9732 1.1874 0.4493 —1.0000 | 0.9465 1.2056 0.4540
3.0 —-1.000 0.4387 0.4883 1.1598 | —1.0000 | 0.4285 0.4885 1.1652
7.0 —-1.000 0.2933 0.3192 1.8896 | —1.0000 | 0.2828 0.3092 1.8954

Table 2. The values of £''(0), H'(0), ®'(0), and @'(0) for different values of M result by the analytic solu-
tion evaluated at: Pr=0.71, Gr =1, Ge =1, S¢ = 0.22, D, = 0.06, Sr =1, A* = B* = 0.01, and y = 0.1

w T o T me e [ ew ]

0.01 0.80613 0.32114 —0.39936 —0.39748
0.1 0.95711 0.37794 —0.37286 —0.38768
0.3 1.10667 0.53926 —0.32118 -0.35101
0.5 1.23667 0.57365 —0.31227 —0.33656
1.0 1.35667 0.58926 —0.25118 -0.31107
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Conclusions

In this paper the boundary layer problem is formulated for the mixed free-forced con-
vective MHD fluid flow with heat and mass transfer over an inclined permeable stretching plate
in a porous medium influenced by: chemical reaction, thermal-diffusion and diffusion-thermo,
internal heat generation/absorption, porosity, and Hall effect. The highly non-linear coupled
system of partial differential equations characterizing flow, heat and mass transfer has been con-
verted to a coupled system of non-linear ordinary differential equations by applying suitable
similarity transformations. The resulting system solved by homotopy analysis method to obtain
a uniformly analytic solution. The obtained solution is examined and analyzed by verification
and applying to a realistic case with specific parameter values.

A graphical verification of the obtained analytic solution for the velocities (1) and
H(n), the temperature @(n) and concentration @(n) given by solution (19) is examined graphi-
cally for a set of parameter values of the problem. A good agreement with the previous special
cases discussed numerically in the literatures are noticed and reported in tables. The derived an-
alytic solution (19) is serve as a direct tool (for the first time) to introduce analytic series expres-
sions for the important engineering characteristic numbers: skin friction coefficients, Nusselt
number, local Sherwood number, stress at the stretching surface, local mass transfer coefficient,
the local wall mass flux, the local heat transfer coefficient, and the local heat flux eqs. (49)-(56).
Acording to the knowledge of the author, this is not reported before in the literature. The main
advantage of this analytic solution for such highly complicated problems vs. the numerical solu-
tion is that we can investigate such problems for a wide class of parameters values more eco-
nomically. The analytic solution serves as a tool to avoid the expensive numerical solution and
difficulties that arise for some specific parameter values during the numerical computations.
The power of the homotopy analysis method to treat such non-linear problems provides a direct
method to treat the MHD problems with additional effects appears in the realistic problems. The
important advantage to treat analytically such realistic problems is to provide the ability to build
a control system on the parameters set of the problems related to the quality production.

Nomenclature
A* — coefficients of space-dependent internal hn  — mass transfer coefficient, [-]
heat generation/absorption, [Ks™'] hy,  — heat transfer coefficient, [—]
B* — coefficients of temperature-dependent K — permeability of the porous medium, [m?]
internal heat generation/absorption, Kr  — thermal diffusion ratio, [-]
[Ks™] k — thermal conductivity, [Wm'K™']
By — the magnetic induction, [Tesla] kw  — thermal diffusivity (=k/pc,), [m’s™]
C — concentration in fluid layer, [kmolm™] ky — chemical reaction parameter of mass
Ci — local skin friction coefficient, [—] generation/destructive, [s ']
Cy, — local skin friction coefficient, [-] M — magnetic parameter (:oBg/p U), [-]
Cs — concentration susceptibility, [—] m — Hall parameter, []
Cy — concentration at sheet surface, [kmolm ] my  — mass flux at sheet surface, [kmolm s ']
C. — concentration in free stream, [kmolm’3] Nu, - local Nusselt number, [kth’l]
Da — Darcy number [=(Gr)"?K/v] Pr  — Prandtl number (= pvc, K™
Dy, — the coefficient of mass diffusivity, [m’s™'] 0 — coefficient of heat generation/absorption,
D, — Dufour number [W]
[ =Dukr(Cy — C.)cyCo(Ty — T.)], [-] ¢,  — heat flux at the surface, [Wm ]
f(n), H(n) — dimensionless velocities q" — rate of internal heat generation, [WSil]
Gey — local mas Grashof number Ra, - local Darcy-Rayleigh number
[gBc(Cyy — C)x’cosd/V?, [-] [(ghr(Tw — T)KxAB], [-]
Gry — local heat Grashof number Re, — local Reynolds number [= (Ux/v)], [-]

[gB1(Ty — T)x*cosd V2, [-]



196 Abdallah, 1. A., Analytic Solution of Heat and Mass Transfer over a ...

Sc — Schmidt number (= v/Dy,), [-] Br  — coefficient expansion with temperature,
Sh, - local Sherwood number (=xy,/Dp), [—] [K*I]

Sr = Soret number [= Dpkr(Ty—T.)/ Tu(Cu = C)L -]y — dimensionless chemical reaction

T  — temperature inside the boundary layer, [K] parameter (= vk,/U?)

T — mean fluid temperature, [K] — dynamic viscosity [kgm 's ']

T,  — temperature at sheet surface, [K] o L. Lo )

T. - fluid temperature in the free stream, [K] kinematic viscosity (= u/p), [m’s ']

X, y, z— rectangular Cartesian co-ordinates, [m] _ electrical conductivity, [ Q’]m’]]

u
v

el — density of the fluid, [kgm™]
o

9 — inclination angle, [rad]

Greek letters

. . . )

. . . . Twx  — shear stress in the x-direction [Nm ]

e - F;gzlsé?g]coefﬁment with concentration, Tw, — shear stress in the z-direction [Nm ]
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