THERMAL SCIENCE: Vol. 13 (2009), No. 2, pp. 121-132 121

HEAT-BALANCE INTEGRAL METHOD FOR HEAT TRANSFER IN
SUPERFLUID HELIUM

by

Bertrand BAUDOUY

Original scientific paper
UDC: 536.483:532.132:535.23:517.93
BIBLID: 0354-9836, 13 (2009), 2, 121-132
DOI: 10.2298/TSCI0902121B

The heat-balance integral method is used to solve the non-linear heat diffusion
equation in static turbulent superfluid helium (He II). Although this is an approxi-
mate method, it has proven that it gives solutions with fairly good accuracy in
non-linear fluid dynamics and heat transfer. Using this method, it has been possible
to develop predictive solutions that reproduce analytical solution and experimental
data. We present the solutions of the clamped heat flux case and the clamped tem-
perature case in a semi-infinite using independent variable transformation to take
account of temperature dependency of the thermophysical properties. Good accu-
racy is obtained using the Kirchhoff transform whereas the method fails with the
Goodman transform for larger temperature range.
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Introduction

Analytical treatment of transient heat transfer in He II has received not enough atten-
tion, considering the substantial interest as it relates to the cooling and stability of magnet sys-
tems design. Analytical treatment is useful for providing a physical description of the phenome-
non and scaling laws for engineering to design cooling system of cryogenics device cooled by
superfluid helium. Only, Dresner, using similarity solutions method, has developed analytical
solutions for the clamped temperature and heat flux cases and the pulsed-source problem [1, 2].
These cases deal with linear boundary conditions and temperature independent properties in a
semi-infinite media. These solutions are not predictive since an “adequate” temperature has to
be chosen to set the thermal properties in order to fit the experimental data [1, 2]. For the
clamped heat flux problem, the Dresner’s solution has even a free parameter that has to be ad-
justed to fit experimental data [1]. The solutions for the clamped heat flux case [1] and for the
pulsed source problem [2] reproduce with a high accuracy experimental results and give good
physical description of transient heat transfer in superfluid helium.

An adequate method in the solution of non-linear heat diffusion problems is the heat-
-balance integral method (HBIM), developed by Goodman [3], because of'its capability of solv-
ing non-linear problems where the non-linearity can be found either in the differential equation
itself or in the boundary conditions. With exact method, the resulting solution satisfies locally
the system of equations over the entire range of space and time. Such solutions are rather diffi-
cult to obtain when the differential equation is non-linear or if the boundary conditions involved
are non-linear. The HBIM in the solution of time-dependent boundary-value problems gives so-
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lutions, which satisfy the differential system only on the average over the region considered
rather than considering a local solution. It is often sufficient for engineering calculations in
which many more approximations are used to model complex systems.

Heat transfer in superfluid helium is non-linear since the Fourier law is replaced by a
non-linear law between the heat flux and the temperature gradient as it will be developed in the
next paragraph [4]. The heat diffusion equation constructed is non-linear and is a perfect candi-
date to be solved by the HBIM. More over, the thermal properties of superfluid helium are
strongly dependent on temperature, especially the equivalent thermal conductivity [5]. To take
account of these two characteristics, Baudouy used the Goodman’s method to tackle the
non-linear heat diffusion equation with temperature dependent thermal properties in superfluid
helium [6, 7]. The development is based on a Kirchhoff or Goodman transform where the HBIM
method is solved for a new variable which is the integral of the main thermal properties with re-
spect to temperature. This development takes in account both the non-linearity of the heat diffu-
sion equation of He II and the temperature dependency of the thermal properties. Nevertheless,
some approximations have been done, mainly to simplify the development to produce simple
solution forms to be used by engineers for the design of system cooled by superfluid helium.
Even if these approximations lead to some inaccuracy in the final results, the main characteris-
tics of the transient heat transfer in He Il were obtained such as the evolution of the temperature
at the cooling surface subjected to a heat flux or the time to reach the critical temperature of
phase-change between superfluid helium and normal helium [6]. Experimental results for the
pulsed source problem is fitted with good accuracy with no adjusting parameter [7].

We proposed in this paper to cover in details the treatment of the heat transfer in
superfluid helium by the HBIM and to present the clamped temperature and heat flux cases with
both transforms (Kirchhoff’s and Goodman’s) with a slight improvement.

Heat transfer in superfluid helium

According to the theory of Landau [8], below a temperature named 7, (7, =2.172 K),
helium undergoes a phase transition from normal helium (He I) to superfluid helium (He II). It is
viewed as a mixture of a normal component, the normal fluid, having a density p,, and a velocity
field v, and a superfluid component, the superfluid, having a density p, and a velocity field v,.
The superfluid component is associated with the energy ground state and the normal fluid com-
ponent is associated with energy excitations such as phonons and rotons. The density of the en-
tire fluid is defined from the densities of normal fluid and superfluid as:

p=pstp, )

For a given temperature, there is a single ratio p/p and this ratio tends to unity when
the temperature approaches the absolute zero and goes to zero when to temperature reaches the
transition temperature 7. This temperature separates the two liquid phases that exist for helium,
the normal helium (He I) above 7, and the superfluid helium (He II) below 7.

In this two-fluid model, the normal fluid is considered as a classical fluid in the Newto-
nian point of view, and therefore it caries entropy and is associated to a viscosity, x. Given that
the superfluid component is associated with the energy ground state, the motion of superfluid is
basically different from any classical fluid since its viscosity is null. The superfluid component
does not carry entropy. One can thus connect the flow of entropy to the velocity field of the nor-
mal fluid by s = psv,,, and the heat flux is expressed as:

q=psTv, @)
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where the thermal conduction in the liquid is neglected. In most practical cases, the classical
thermal conduction is negligible compared to the specific heat transfer in He II.
The momentum of He II is simply written:

PV=pV +p.V, 3)

where V is the barycentric velocity of the bulk helium flow. The heat transport process in
superfluid helium implies that any difference in temperature or heat flux leads to a movement of
normal fluid in the opposite direction of the superfluid. This internal convection is the origin of
the remarkable properties of the transport of heat in He II. For large heat flux, what is called the
“turbulent regime of superfluid helium”, a force appears between the two components, called
the mutual friction force. It is the physical description for the creation of quantized vortex,
which can be viewed as the circulation of the superfluid component around a core of normal he-
lium and it is correlated to the relative velocity of the two components. This force has been ex-
pressed by Gorter et al. [4] as:

- I .
Fns:Apsann_Vs| (Vn_Vs) (4)
This force dominates the equations of motion of the two components, which are writ-
ten as: o
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In steady-state regime and for static helium, i. e. pv = 0, by combining eqs. (5) and (6)
and using egs. (1), (2), and (3), we obtain the expression of the temperature gradient:

vn _vs|2+Apspnvn _vs|2({}n _{}5) (6)
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In most of practical cases, i. e. for large heat flux, the first term is negligible compared

to the second term [9]. In that case, the temperature gradient can be expressed in eq. (7) in term
of the heat flux using egs. (1), (2), and (3):

AR (7)

34473
—&VT:—f(T)VTzcﬁ (8)

n
where f{(7) is thermal conductivity function in the turbulent regime of He II. So according to eq.
(8), the heat flux is proportional to the cube root of the temperature gradient, which is usually
named the “Gorter-Mellink law”. In steady-state regime, this law has been compared success-
fully to experimental data numerous time (see reference [9] for example) but to solve eq. (8), in-
tegration of f{7) is necessary since it varies largely with temperature as the fig. 1 shows. He Il
has a thermal conductivity function about two orders of magnitude larger than for high-purity
metals at superfluid helium temperatures. To illustrate the high heat transfer rate in He II, the
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calculation of the equivalent thermal conductivity
is 100 kW/mK at 1.8 K and for a heat flux density of
10 kW/m?.

In transient heat transfer, several energy inputs
have to be considered to construct a model. Exam-
ining eqs. (5) and (6), kinetic energy is the first to
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8r come to mind, associated with the acceleration of

or the component’s velocity but it is rather small. The

T second is the energy to create the superfluid turbu-

ar lence but for large space, in the order of 1 m in
93 74 15 16 17 18 198 20 21 22 length, this energy is small too. In fact, the principal
TIKI energy dominating transient heat transfer in He IT is

Figure 1. Thermal conductivity function of  rclated the enthalpy of the helium [9] and this tran-
He II in saturated superfluid helium [10] sient phenomenon is controlled by heat transport

and enthalpy variation, therefore eq. (8) is used in
an energy conservation equation and yields to a non-linear heat diffusion equation:

pC, % =-Vq =V f(TWVT 9)

Obviously, such partial differential equation is difficult to solve because of the large
variation of the thermal conductivity function with temperature and its non linearity.

Heat transfer in a semi-infinite media with temperature
dependent properties using a Kirchhoff transformation

For the turbulent regime of He 11, the heat flux is given by the Gorter-Mellink law (8),
neglecting the dissipation effects in He II, the partial differential equation modeling our system
for one space dimension is:

oT 0 oT .
C,—=—3f(T)— in 0<x<e and for 7>0 (10)
ot Ox ox
where p is the density, C, — the specific heat at constant pressure, and A7) — the He II thermal
conductivity function.
For a prescribed temperature the boundary condition is:

T=T,at x=0 and for >0 (11)

and for the clamped heat flux case, the boundary condition is written as:

—Sff%:qo at x=0 and for >0 (12)

where ¢, is the heat flux at x = 0.
At the initial time, the entire media is at constant temperature 7,, so the initial condi-
tion is:
T=T,in 0<x<ew andat t=0 (13)

As it is a semi-infinite media, the necessary second boundary condition is a constant
temperature when x — « or practically for large x, i. e. the temperature field is not disturbed for
large x. This conditions is expressed by:
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T'=T, for x > o andfor >0 (14)

In the HBIM, we assume that the solution of the disturbed temperature field is limited
by a distance &(¥), called the thermal layer, after which the temperature field is not disturbed, i. e.
T'=T, forx 24(¢). For a semi-infinite media, the thermal layer is defined as being always inferior
to the length of the system. From this definition we can modify the boundary condition (14) as:

T'=T, at x=5(t) and for t>0 (15)

To take account of the temperature dependence of the thermal conductivity function of
He II, we use a Kirchhoff transformation:

T
0= [f(T)dT (16)
T
and the eqgs. (10)-(13) and are transformed into:
l@=—a3@ in 0<x < andfor >0 (a)
a 0t Ox\ ox
60=6, at x=0 and for >0 (b-1)
f 17
or —3?=q0 at x=0 and for >0 (b-2) (17
X
60=0 at x=05(¢t) and for >0 (©)
0=0in 0<x<oat t=0 (d)

where a = f(T)/pC,.

If (17a) is integrated with respect to space over the thermal layer the resulting equation
is called the heat balance integral equation. Noticing that in our system 09/0x| _ is null because
of the definition of the thermal boundary 6 since 07/ 8x|5is null, the energy equation is then

transformed into:
5 5
@dx=ja—a3@dx=—o_c3@ (18)
o Ot o Ox\Vox ox|,

where we consider o constant. In previous work, we use the value o at x = 0 for simplification.
But the thermal properties are far for being independent of temperature however to simplify the
analytical treatment of the HBIM, we decide to use the arithmetic average value of @ named &
over the temperature range to take account of its variation.

With the rule of differentiation, the integral on the left hand-side of eq. (18) is trans-

formed into: s
3
ijedx —{99} — | (19)
dry xt |, 0x|,

One can notice that, due to the boundary conditions, the second term of the left
hand-side of eq. (19) is null which reduces it to a simpler formulation:

9
ij‘edxz—o_wﬁ (20)
de g

ox

0
Equation (20) is the heat-balance integral equation for our problem. The second term
of the right hand-side of eq. (20) will be evaluated with the knowledge of the solution 6.
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Let assume that @ has a polynomial form as 6 = a(7) + a,(t)x + a,()x*> + a;(t)x* where
the coefficients a,(#) are function of time and therefore of the thermal layer 6(¢). Obviously, 0 is
an approximate solution of the system and to find the different coefficients, we need to use dif-
ferent boundary conditions: the natural conditions, which ensue from the problem, and derived
conditions, which are constructed from either the differential equation or the natural boundary
conditions. For this expression of the solution, we need two extra boundary conditions. The first
one we choose is straightforward and comes from the definition of the thermal layer:

89—0 at x=0 for >0 (21)

x
One can notice that this condition has been already used to construct the heat balance
integral equation. The second one comes from the differential equation at x =5 where the deriva-
tive of the temperature with respect to space is null because of condition (17c). We have, what it
is called a derived condition:
2
ﬂ—O at x=0 for >0 (22)
0x?
By the use of the natural boundary conditions (17b’s), (17¢), and (21), and the derived
one (22), we can formulate a solution for 6 as a function of 5:

3
9:9{1—%) (23)

where 8, = TT: Sf(T)dT for the clamped temperature case and 6, = g 36/3 for the clamped heat flux
case.

For the prescribed temperature case, if we substitute eq. (23) in the heat integral eq.
(20), a first order differential equation for thermal layer is obtained:

Yo ¥ _ gz, 2 (24)
dt 92
and the solution of eq. (24) with the initial condition (17b-1) is:
8 3 y;
f 30,
The solution of our problem is then composed of the egs. (23) and (25) for the pre-
scribed temperature problem where 6, = jT f(T)dT.
For the clamped heat flux case, the heat balance integral eq. (20) is transformed with

the boundary condition (17b-2):

(25)

df Odx a (26)
J— = (04
P £ 90
Similarly, the first order ordinary differential equation for the thermal layer is:
L) -La @7
43

The solution of eq. (27) subjected to the initial condition (17b-2) and excluding the

negative solution is:
5= 23 Jat (28)
90
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For the clamped heat flux problem, the solution is given by egs. (23) and (28). Since
the boundary surface temperature 8, is not yet known, eq. (28) cannot be directly used to evalu-
ate 6 but we can eliminate the thermal layer in the expression of 8, and have a transcendental
equation for 0 since @ is also a function of 6,

JL =gt (29)
o 3
The evolution of the thermal properties of superfluid helium with temperature used to
solve eq. (29) with a simple routine are taken from the specific data base for helium [10].

Heat transfer in a semi-infinite media with temperature
dependent properties using the Goodman transform

To take account of the temperature dependency of the thermal properties of the helium
in the transient heat balance eq. (10), another transformation can be used, the Goodman transfor-
mation [3]: r
O= [pC (T)YAT (30)

T,
The system of eqs. (10)-(13) and (15) are transformed into:

90 _ 0 4499 h0<x<w and fort>0 (a)
ot Ox ox

® =0, at x =0and for >0 (b-1)
f 31
—Mx?zqo atx=0and for >0 (b-2) D
X
O=0atx=05(¢)and for >0 (c)
O=0in0<x<=atr=0 (d)

where a is also AT)/pC,,.
Following the same procedure than in the previous paragraph, the heat balance inte-

gral equation is written as: s
ij@dx:—s aO@ (32)
dro 0x |,

As before, we use the temperature profile © = by(f) + b, () x + b,(£)x* + b;(£)x* and two
additional boundary conditions identical to the ones used earlier:

@=Oatx:5fort>0 (33)

q Ox

an 5
aQ:Oatxz&fort>0 (34)

ox?
Using the boundary condition (31b’s), (31c¢), (33), and (34) the solution for ® is given

by: L)

@=@0(1—5j (35)

where for the prescribed temperature case @, = TT;’ pC,(T)dT and for the clamped heat flux case
O, =(q;3a,)o. Similarly to the previous transform, if we introduce eq. (35) into the heat bal-
ance eq. (32), then the thermal layer for the prescribed temperature case is:
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8 3,
§=—"04p (36)
NEWE)

=£m (37)
90

For the prescribed temperature problem, the solution of our problem is then composed
of the eqgs. (35) and (36) where ©,, = j;:pdeT.

For the clamped heat flux problem, the solution is given by eqs. (35) and (37). As be-
fore, the boundary surface temperature @, is not yet known, therefore eq. (37) cannot be directly
used to evaluate 6 but we can eliminate the thermal layer in the expression of ©, and have a tran-
scendental equation: )

2\t (38)

B

Finally, one have to note that the use of the Goodman transform does not lead to any
approximation on the contrary of the Kirchhoff transform. But the variation of the thermal prop-
erty, taking in account with this method, is related to the enthalpy variation whereas the
Kirchhoff transform takes account of the thermal properties related to the heat transfer. One ex-
pects to have some difference in the comparison with analytical solutions or experimental data
since the thermal conductivity function of He II varies by several order of magnitude in the prac-
tical temperature range of He II (1.6 K; 2.172 K).

and for the prescribed heat flux:

Oyqoy =

Comparison with existing solution and experimental data
Clamped temperature case

The HBIM solutions, given by egs. (23) and (25) for the Kirchhoff transform and by
the egs. (35) and (36) for the Goodman transform are compared with the exact solution — eq.
(39), developed by Dresner in fig. 2 for the temperature range [1.8; 2.0 K]J:

- Y(pC,)°
ToTy y 2 ih o7, -7, V) X (39)
Ty =T, 8 I v

—+z?

Since the Dresner solution does not take account of the temperature dependency of the
thermal properties, eq. (39) is plotted as an area with the upper limit corresponding to the solu-
tion with the thermal properties at 7, = 1.8 K and the lower limit corresponding to the solution
with the thermal properties at 7, = 2.0 K.

In this temperature range, the HBIM solutions gives similar results since the variation
of the thermal properties are “not” to important, f(7) varies by 25 % and a(7) by 50%. The dis-
crepancy between the HBIM solutions and the exact solution can be as high as 25% for x/£*'4 < 1
and diverges at higher x/4. This discrepancy is intrinsic to the HBIM due to the fact that it only
satisfies the original partial differential equation averaged over a finite distance. And since the
thermal layer is underestimated by the HBIM as fig. 2 shows, the discrepancy is found for large x
or small ¢. Several temperature profiles and boundary conditions has been tried but none of them
so far presents a better accuracy.

For small x, the accuracy is found to be within a few percent and it is demonstrated in
comparing the heat flux at the axis origin. The heat fluxes at the x-origin are defined, respec-
tively, with the Kirchhoff and Goodman transforms as:
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00 =2 o
2 ot (40)
B =

0=V

At the wall we can consider small variation of thermal properties, hence 6, and ®, can
be replaced by average value as f~0/(T, — T}) and pC,, ~ © /(T — T;,) and eq. (40) is simplified

to:
V3 1
‘1027\4/PCpf\/T0_Tb4; (41)

which has a identical form than the heat flux given by the Dresner’s solution except that the
312/2 (0.87) coefficient in the HBIM solution is 3"4/2"2 (0.93) in Dresner’s solution.

For a larger temperature range such as [1.8 K; 2.172 K] as shown in fig. 2, the two
HBIM solutions diverge essentially because the large variation of the equivalent thermal con-
ductivity of He II is not taken in account by the Goodman transform. The HBIM solution with
the Goodman transform is not even located in the area of possible solutions given by the
Dresner’s equation. Obviously, this solution can be only used for small variation of temperature.
As expected the HBIM solution with the Kirchhoff transform, which takes account of the varia-
tion of the equivalent thermal conductivity of He 11, gives acceptable results when compared to
the analytical possible solutions area.

This constitutes for that problem the only analytical predictive solution known since
the Dresner’s model does not take account of the temperature dependency of the thermal proper-
ties.

and

T,=18K
To=2172K(T)

2 XAHM [ms—.‘iM] 3 2 XA‘HM [ms—\'ird] 3
Figure 2. Comparison between the analytical model of Dresner [2] and the HBIM
solutions. The Dresner's solution is presented as a area limited by the solutions with
the thermal properties at 7, (upper limit) and 7, (lower limit). The HBIM solution
with the Kirchhoff transform — eqs. (23) and (25), is represented with a solid black
line and the HBIM solution with the Goodman transform — eqs. (35) and 36), is rep-
resented with a dashed black line
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Clamped heat flux case

The clamped heat flux problem is the most practical case encountered in cooling with
static superfluid helium. It has been studied analytically again by Dresner [1] and experimen-
tally by Van Sciver [11] for example. An important criterion in designing with superfluid helium
is to make sure that the temperature of the device to cool does not go over the phase change tem-
perature, named the lambda temperature 7}, between superfluid helium and normal helium. This
information is critical to operation of superconducting magnets, for example, since the heat
transfer in normal helium is much lower than in superfluid helium.

The Dresner’s analytical solution for the temperature at the heated side (at x = 0) is:

Iy -Ty _ h

=a
T, =T, \/PCpf(TA_Tb)
where a was found by identification with experimental data of Van Sciver .The solutions given
by the HBIM methods are, respectively:
90 = i qg ﬂat
3

7

Q%_qg L

NE) 20

for the Kirchhoff and Goodman transform. Once more, to compare the form of these solutions
with the analytical solution, one can take the assumption that /' ~ 6,/(T,—T},) andpC, ~
~0O,/(T,— T,) are average values and therefore equations are simplified to:

2 2 Ji
0

NE) JpC oS

The HBIM solutions have the same form than the analytical solution. Dresner identi-
fied the coefficient a to be 0.83 by fitting the experimental data of Van Sciver whereas the
HBIM gives straightfully 2-3"2 (1.15).

Another important information to give is the time to reach the critical temperature 7.
This time is given by replacing 7;, by 7}, and for the HBIM solution it is:
3 pC (T, - Ty)?
1Ty 4

This formulation is also similar to Dresner’s formulation with the exception of the co-
efficient 3/4 which is 1.43 in his model but it agrees on the quadric dependence on the heat flux
with experimental results reported by Van Sciver [11].

Dresner’s coefficients are found by identification with experimental results reported
which means that these coefficients are only valid for the thermodynamic conditions of the ex-
perimental work they were extracted from. A comparison with experimental data is encourag-
ing, when we look at the proportional function between the time ¢, and ¢ ;. The experimental
work of Van Sciver gives a value of 110 W*s/cm?® for bath temperature 1.802 K whereas eq. (45)
gives a value comprised between 52 and 141 W*s/cm? for temperature between 1.8 K and 2.0 K.

The HBIM solutions are compared with the experimental data of Van Sciver on the fig.
3. Only the solutions obtained with the Kirchhoff transform is presented since the solution with
the Goodman transform does not fit the data. The Goodman transform HBIM solution does not
allow computing a solution for time higher than 0.95 s. This time corresponds to a thermal layer

Jt (42)

and

(43)
0, =

T,-T, = (44)

(45)



THERMAL SCIENCE: Vol. 13 (2009), No. 2, pp. 121-132 131

2.05

of 0.63 m, which is the cause of the K

1.90

t=375s

failure of this model, i. e. the thermal
layer is underestimated. The HBIM 2.00
solution with the Kirchhoff trans- | m
form is quite accurate; the difference
between the measurement and the 195 |-\
HBIM solution is lower than 5%. But I
it still under estimates the thermal
layer. For t=3.75 s, the thermal layer ® .\
is 1.19 m and at 1.25 s the thermal >\
layer is 0.91 m. The under prediction 185 y
of the thermal layer is probably due t=125s
L7 I ° "

to the approximation of constant &, \\ -
further work could be conducted to 180 - - * =
improve this part of the model. o0 o0 "o Y xm 20

Finally, one interesting result that Figure 3. Comparison between experimental data [11] and
can be deduced from the HBIM mod-  the HBIM solutions with the Kirchhoff transform, eq. (23)
eling is that the transient heat transfer ~ and (28), for the clamped heat flux case. The experimental
in He 11 is more influenced by trans- data were obtained at 7, = 1.802 K and ¢, =2.22 kW/m?. The

. R black square correspond to the measurement at 3.75 s and

port pr(_)p erties _f(T) » than intrinsic the black circle for 1.25 s after energizing the heater. The
properties of helium — pC,, for HBIM solution (Kirchhoff transform) is represented with
“large” temperature variation, i. e.  solid black line for t =3.75 s and = 1.25 s
from 1.8 to 2.172 K and for heat flux
in the range of kW/m?, since the HBIM with the Goodman transform fails to reproduce experi-
mental data or exact solution. This remark is not valid for lower temperature range or smaller
heat flux, as it can be noticed for the clamped temperature case.

Conclusions

The HBIM method has been applied to solve the non-linear heat diffusion equation for
superfluid helium with temperature dependent properties, for the clamped temperature and
clamped heat flux.

One of the main contributions of the present work is that the HBIM leads to predictive
solutions and do not need any parameter adjustment to fit experimental data. Actually, to the
best of our knowledge, these solutions are the only analytical predictive solutions. Moreover,
compared to numerical techniques, the present analysis is much simpler and provides analytical
forms that can be handled with any spreadsheet program using a helium property data base.

The accuracy obtained with the HBIM using the Kirchhoff transform provides a good
accuracy (within few percents) for reproducing experimental results or exact solution.

Nomenclature
A — Gorter-Mellink coefficient, [mskg™'] F — mutual friction force per unit volume,
a; — polynomial coefficients of the Kirchhoff [Nm™]
solution A(T)  — thermal conductivity function in the
b; — polynomial coefficients of the Goodman turbulent regime of He I, [W’m~ K]
solution p — pressure, [Pa]
G, — specific heat at constant pressure, q — heat flux density, [Wm ?]

[Jkg’lK’l] K — entropy, [Jkg’lK’l]
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T — temperature, [K] p — density, [kgm ]

t — time, [s] .

% — velocity, [ms ] Subscripts

X — space, [m] b — related to the bulk temperature or bath

Greek letters temperature

o — related to the thermal layer
a — =flpCy, [Pm s '] s — related to the superfluid component
73 — average value of a over the temperature n — related to the normal fluid component
range, [J’m s '] by — related to the lambda transition

o — thermal layer, [m] 0 — related to the space origin (x = 0)

0 — Kirchhoff temperature transform, [W’m™] s, .

e — Goodman temperature transform, [Jm>] uperscript

u — viscosity, [Pa‘s] - — vector value mark

References

[1] Dresner, L., Transient Heat Transfer in Superfluid Helium, Advances in Cryogenic Engineering 27, Ple-
num Press, New York, USA, 1981, pp. 411-419

[2] Dresner, L., Transient Heat Transfer in Superfluid Helium. Part II, Advances in Cryogenics Engineering
29, Plenum Press, New York, USA, 1983, pp. 323-333

[3] Goodman, T.R., Application of Integral Methods to Transient Nonlinear Heat Transfer, Advances in Heat
Transfer 1, Academic press, London, 1964, pp. 51-122

[4] Gorter, C.J., Mellink, J. H., On the Irreversible Process in Liquid Helium II, Physica, XV (1949), May, pp.
285-304

[5] Arp, V., Heat Transport through Helium I1, Cryogenics, 10 (1970), 2, pp. 96-105

[6] Baudouy, B., Approximate Solution for Transient Heat Transfer in Static Turbulent He II, Advances in
Cryogenic Engineering 45, Plenum Press, New York, USA, 1999, pp. 969-976

[7] Baudouy, B., Integral Method for Transient He II Heat Transfer in Semi-Infinite Domain, Advances in
Cryogenic Egineering 47 B, AIP (2001), pp. 1349-1355

[8] Landau, L., The Theory of Superfluidity of Helium II, Journal of Physics, V (1941), 1, pp. 71-90

[9] Van Sciver, S. W., Helium Cryogenics, Plenum press, New York, USA, 1986

[10] *** Cryodata, “Hepak,” 3.4 ed. Florence SC, USA 29501: Cryodata Inc.

(1]

Van Sciver, S. W., Transient Heat Transport in He II, Cryogenics, 19 (1979), 7, pp. 385-392

Author’s affiliation:

B. Baudouy

CEA Saclay

DSM/Irfu/SACM

91191 Gif-sur-Yvette

France

E-mail: bertrand.baudouy@cea.fr

Paper submitted: September 9, 2008
Paper revised: September 27, 2008
Paper accepted: October 10, 2008



