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The heat-bal ance in te gral method is used to solve the non-lin ear heat dif fu sion
equa tion in static tur bu lent superfluid he lium (He II). Al though this is an ap prox i -
mate method, it has proven that it gives so lu tions with fairly good ac cu racy in
non-lin ear fluid dy nam ics and heat trans fer. Us ing this method, it has been pos si ble 
to de velop pre dic tive so lu tions that re pro duce an a lyt i cal so lu tion and ex per i men tal 
data. We pres ent the so lu tions of the clamped heat flux case and the clamped tem -
per a ture case in a semi-in fi nite us ing in de pend ent vari able trans for ma tion to take
ac count of tem per a ture de pend ency of the thermophysical prop er ties. Good ac cu -
racy is ob tained us ing the Kirchhoff trans form whereas the method fails with the
Good man trans form for larger tem per a ture range.

Keyword: heat-balance integral method, superfluid helium, heat transfer

In tro duc tion

An a lyt i cal treat ment of tran sient heat trans fer in He II has re ceived not enough at ten -
tion, con sid er ing the sub stan tial in ter est as it re lates to the cool ing and sta bil ity of mag net sys -
tems de sign. An a lyt i cal treat ment is use ful for pro vid ing a phys i cal de scrip tion of the phe nom e -
non and scal ing laws for en gi neer ing to de sign cool ing sys tem of cryo gen ics de vice cooled by
superfluid he lium. Only, Dresner, us ing sim i lar ity so lu tions method, has de vel oped an a lyt i cal
so lu tions for the clamped tem per a ture and heat flux cases and the pulsed-source prob lem [1, 2].
These cases deal with lin ear bound ary con di tions and tem per a ture in de pend ent prop er ties in a
semi-in fi nite me dia. These so lu tions are not pre dic tive since an “ad e quate” tem per a ture has to
be cho sen to set the ther mal prop er ties in or der to fit the ex per i men tal data [1, 2]. For the
clamped heat flux prob lem, the Dresner’s so lu tion has even a free pa ram e ter that has to be ad -
justed to fit ex per i men tal data [1]. The so lu tions for the clamped heat flux case [1] and for the
pulsed source prob lem [2] re pro duce with a high ac cu racy ex per i men tal re sults and give good
phys i cal de scrip tion of tran sient heat trans fer in superfluid he lium.

An ad e quate method in the so lu tion of non-lin ear heat dif fu sion prob lems is the heat-
-bal ance in te gral method (HBIM), de vel oped by Good man [3], be cause of its ca pa bil ity of solv -
ing non-lin ear prob lems where the non-lin ear ity can be found ei ther in the dif fer en tial equa tion
it self or in the bound ary con di tions. With ex act method, the re sult ing so lu tion sat is fies lo cally
the sys tem of equa tions over the en tire range of space and time. Such so lu tions are rather dif fi -
cult to ob tain when the dif fer en tial equa tion is non-lin ear or if the bound ary con di tions in volved
are non-lin ear. The HBIM in the so lu tion of time-de pend ent bound ary-value prob lems gives so -
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lu tions, which sat isfy the dif fer en tial sys tem only on the av er age over the re gion con sid ered
rather than con sid er ing a lo cal so lu tion. It is of ten suf fi cient for en gi neer ing cal cu la tions in
which many more ap prox i ma tions are used to model com plex sys tems.

Heat trans fer in superfluid he lium is non-lin ear since the Fou rier law is re placed by a
non-lin ear law be tween the heat flux and the tem per a ture gra di ent as it will be de vel oped in the
next para graph [4]. The heat dif fu sion equa tion con structed is non-lin ear and is a per fect can di -
date to be solved by the HBIM. More over, the ther mal prop er ties of superfluid he lium are
strongly de pend ent on tem per a ture, es pe cially the equiv a lent ther mal con duc tiv ity [5]. To take
ac count of these two char ac ter is tics, Baudouy used the Good man’s method to tackle the
non-lin ear heat dif fu sion equa tion with tem per a ture de pend ent ther mal prop er ties in superfluid
he lium [6, 7]. The de vel op ment is based on a Kirchhoff or Good man trans form where the HBIM 
method is solved for a new vari able which is the in te gral of the main ther mal properties with re -
spect to tem per a ture. This de vel op ment takes in ac count both the non-lin ear ity of the heat dif fu -
sion equa tion of He II and the tem per a ture de pend ency of the ther mal properties. Nev er the less,
some ap prox i ma tions have been done, mainly to sim plify the de vel op ment to pro duce sim ple
so lu tion forms to be used by en gi neers for the de sign of sys tem cooled by superfluid he lium.
Even if these ap prox i ma tions lead to some in ac cu racy in the fi nal re sults, the main char ac ter is -
tics of the tran sient heat trans fer in He II were ob tained such as the evo lu tion of the tem per a ture
at the cool ing sur face sub jected to a heat flux or the time to reach the crit i cal tem per a ture of
phase-change be tween superfluid he lium and nor mal he lium [6]. Ex per i men tal re sults for the
pulsed source problem is fitted with good accuracy with no adjusting parameter [7].

We pro posed in this pa per to cover in de tails the treat ment of the heat trans fer in
superfluid he lium by the HBIM and to pres ent the clamped tem per a ture and heat flux cases with
both trans forms (Kirchhoff’s and Good man’s) with a slight im prove ment.

Heat trans fer in superfluid he lium

Ac cord ing to the the ory of Lan dau [8], be low a tem per a ture named Tl (Tl = 2.172 K),
he lium un der goes a phase tran si tion from nor mal he lium (He I) to superfluid he lium (He II). It is
viewed as a mix ture of a nor mal com po nent, the nor mal fluid, hav ing a den sity rn and a ve loc ity
field vn and a superfluid com po nent, the superfluid, hav ing a den sity rs and a ve loc ity field vs.
The superfluid com po nent is as so ci ated with the en ergy ground state and the nor mal fluid com -
po nent is as so ci ated with en ergy ex ci ta tions such as phon ons and rotons. The den sity of the en -
tire fluid is de fined from the den si ties of nor mal fluid and superfluid as:

r = rs +  rn (1)

For a given tem per a ture, there is a sin gle ra tio rs/r and this ra tio tends to unity when
the tem per a ture ap proaches the ab so lute zero and goes to zero when to tem per a ture reaches the
tran si tion tem per a ture Tl. This tem per a ture sep a rates the two liq uid phases that ex ist for he lium,
the nor mal he lium (He I) above Tl and the superfluid he lium (He II) be low Tl.

In this two-fluid model, the nor mal fluid is con sid ered as a clas si cal fluid in the New to -
nian point of view, and there fore it car ies en tropy and is as so ci ated to a vis cos ity, m. Given that
the superfluid com po nent is as so ci ated with the en ergy ground state, the mo tion of superfluid is
ba si cally dif fer ent from any clas si cal fluid since its vis cos ity is null. The superfluid com po nent
does not carry en tropy. One can thus con nect the flow of en tropy to the ve loc ity field of the nor -
mal fluid by 

r r
s v= rs n , and the heat flux is ex pressed as:

r r
q v= rsT n (2)
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where the ther mal con duc tion in the liq uid is ne glected. In most prac ti cal cases, the clas si cal
ther mal con duc tion is neg li gi ble com pared to the spe cific heat trans fer in He II.

The mo men tum of He II is sim ply writ ten:

r r r
r r r
v v vs s n n= + (3)

where 
r
v is the barycentric ve loc ity of the bulk he lium flow. The heat trans port pro cess in

superfluid he lium im plies that any dif fer ence in tem per a ture or heat flux leads to a move ment of
nor mal fluid in the op po site di rec tion of the superfluid. This in ter nal con vec tion is the or i gin of
the re mark able prop er ties of the trans port of heat in He II. For large heat flux, what is called the
“tur bu lent re gime of superfluid he lium”, a force ap pears be tween the two com po nents, called
the mu tual fric tion force. It is the phys i cal de scrip tion for the cre ation of quantized vor tex,
which can be viewed as the cir cu la tion of the superfluid com po nent around a core of nor mal he -
lium and it is cor re lated to the rel a tive ve loc ity of the two com po nents. This force has been ex -
pressed by Gorter et al. [4] as:

r r r r r
F v v v vns s n n s n s= - -Ar r

2
( ) (4)

This force dom i nates the equa tions of mo tion of the two com po nents, which are writ -
ten as:
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In steady-state re gime and for static he lium, i. e. r
r r
v = 0, by com bin ing eqs. (5) and (6)

and us ing eqs. (1), (2), and (3), we ob tain the ex pres sion of the tem per a ture gra di ent:
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In most of prac ti cal cases, i. e. for large heat flux, the first term is neg li gi ble com pared
to the sec ond term [9]. In that case, the tem per a ture gra di ent can be ex pressed in eq. (7) in term
of the heat flux us ing eqs. (1), (2), and (3):

- Ñ = - Ñ »
r

r
s

n

3 4 3
3

s T

A
T f T T q( ) (8)

where f(T) is ther mal con duc tiv ity func tion in the tur bu lent re gime of He II. So ac cord ing to eq.
(8), the heat flux is pro por tional to the cube root of the tem per a ture gra di ent, which is usu ally
named the “Gorter-Mellink law”. In steady-state re gime, this law has been com pared suc cess -
fully to ex per i men tal data nu mer ous time (see ref er ence [9] for ex am ple) but to solve eq. (8), in -
te gra tion of f(T) is nec es sary since it var ies largely with tem per a ture as the fig. 1 shows. He II
has a ther mal con duc tiv ity func tion about two or ders of mag ni tude larger than for high-pu rity
met als at superfluid he lium tem per a tures. To il lus trate the high heat trans fer rate in He II, the
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cal cu la tion of the equiv a lent ther mal con duc tiv ity
is 100 kW/mK at 1.8 K and for a heat flux den sity of 
10 kW/m2.

In tran sient heat trans fer, sev eral en ergy in puts
have to be con sid ered to con struct a model. Ex am -
in ing eqs. (5) and (6), ki netic en ergy is the first to
come to mind, as so ci ated with the ac cel er a tion of
the com po nent’s ve loc ity but it is rather small. The
sec ond is the en ergy to cre ate the superfluid tur bu -
lence but for large space, in the or der of 1 m in
length, this en ergy is small too. In fact, the prin ci pal 
en ergy dom i nat ing tran sient heat trans fer in He II is
re lated the enthalpy of the he lium [9] and this tran -
sient phe nom e non is con trolled by heat trans port
and enthalpy vari a tion, there fore eq. (8) is used in

an en ergy con ser va tion equa tion and yields to a non-lin ear heat dif fu sion equa tion:

rC
T

t
q f T Tp

¶

¶
= -Ñ = Ñ Ñ( )3 (9)

Ob vi ously, such par tial dif fer en tial equa tion is dif fi cult to solve be cause of the large
vari a tion of the ther mal con duc tiv ity func tion with tem per a ture and its non lin ear ity.

Heat trans fer in a semi-in fi nite me dia with tem per a ture 
de pend ent prop er ties us ing a Kirchhoff trans for ma tion

For the tur bu lent re gime of He II, the heat flux is given by the Gorter-Mellink law (8),
ne glect ing the dis si pa tion ef fects in He II, the par tial dif fer en tial equa tion mod el ing our sys tem
for one space di men sion is:
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where r is the den sity, Cp – the spe cific heat at con stant pres sure, and f(T) – the He II ther mal
con duc tiv ity func tion.

For a pre scribed tem per a ture the bound ary con di tion is:

T = T0  at  x = 0  and for  t > 0 (11)

and for the clamped heat flux case, the bound ary con di tion is writ ten as:

- = = >f
T

x
q x t

¶

¶
3

0 0 0at and for (12)

where q0 is the heat flux at x = 0.
At the ini tial time, the en tire me dia is at con stant tem per a ture Tb, so the ini tial con di -

tion is:

T = Tb  in  0 £ x £ 4  and at  t = 0 (13)

As it is a semi-in fi nite me dia, the nec es sary sec ond bound ary con di tion is a con stant
tem per a ture when x ® 4 or prac ti cally for large x, i. e. the tem per a ture field is not dis turbed for
large x. This con di tions is ex pressed by:
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T = Tb  for  x ® 4  and for  t > 0 (14)

In the HBIM, we as sume that the so lu tion of the dis turbed tem per a ture field is lim ited
by a dis tance d(t), called the ther mal layer, af ter which the tem per a ture field is not dis turbed, i. e. 
T = Tb for x ³ d(t). For a semi-in fi nite me dia, the ther mal layer is de fined as be ing al ways in fe rior 
to the length of the sys tem. From this def i ni tion we can mod ify the bound ary con di tion (14) as:

T = Tb  at  x = d(t)  and for  t > 0 (15)

To take ac count of the tem per a ture de pend ence of the ther mal con duc tiv ity func tion of
He II, we use a Kirchhoff trans for ma tion:
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T
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and the eqs. (10)-(13) and are trans formed into:
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where a = f(T)/rCp.
If (17a) is in te grated with re spect to space over the ther mal layer the re sult ing equa tion

is called the heat bal ance in te gral equa tion. No tic ing that in our sys tem ¶q/¶x
d
 is null be cause

of the def i ni tion of the ther mal bound ary d  since  ¶T /¶x
d
is null, the en ergy equa tion is then

trans formed into:
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where we con sider a con stant. In pre vi ous work, we use the value a at x = 0 for sim pli fi ca tion.
But the ther mal prop er ties are far for be ing in de pend ent of tem per a ture how ever to sim plify the
an a lyt i cal treat ment of the HBIM, we de cide to use the arith me tic av er age value of a named a
over the tem per a ture range to take ac count of its vari a tion.

With the rule of dif fer en ti a tion, the in te gral on the left hand-side of eq. (18) is trans -
formed into:
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One can no tice that, due to the bound ary con di tions, the sec ond term of the left
hand-side of eq. (19) is null which re duces it to a sim pler for mu la tion:

d

t
x

xd
dq a

qd

0 0

3ò = -
¶

¶
(20)

Equa tion (20) is the heat-bal ance in te gral equa tion for our prob lem. The sec ond term
of the right hand-side of eq. (20) will be eval u ated with the knowl edge of the so lu tion q.
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Let as sume that q has a poly no mial form as q = a0(t) + a1(t)x + a2(t)x
2 + a3(t)x

3 where
the co ef fi cients ai(t) are func tion of time and there fore of the ther mal layer d(t). Ob vi ously, q is
an ap prox i mate so lu tion of the sys tem and to find the dif fer ent co ef fi cients, we need to use dif -
fer ent bound ary con di tions: the nat u ral con di tions, which en sue from the prob lem, and de rived
con di tions, which are con structed from ei ther the dif fer en tial equa tion or the nat u ral bound ary
con di tions. For this ex pres sion of the so lu tion, we need two ex tra bound ary con di tions. The first
one we choose is straight for ward and co mes from the def i ni tion of the ther mal layer:

¶

¶

q
d

x
x t= = >0 0at for (21)

One can no tice that this con di tion has been al ready used to con struct the heat bal ance
in te gral equa tion. The sec ond one co mes from the dif fer en tial equa tion at x = d where the de riv a -
tive of the tem per a ture with re spect to space is null be cause of con di tion (17c). We have, what it
is called a de rived con di tion:
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q
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By the use of the nat u ral bound ary con di tions (17b’s), (17c), and (21), and the de rived
one (22), we can for mu late a so lu tion for q as a func tion of d:

q q
d

= -
æ

è
ç

ö

ø
÷0

3

1
x

(23)

where q0 = f T TT
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( )d0

ò  for the clamped tem per a ture case and q0 = q
0
3d/3 for the clamped heat flux 

case.
For the pre scribed tem per a ture case, if we sub sti tute eq. (23) in the heat in te gral eq.

(20), a first or der dif fer en tial equa tion for ther mal layer is ob tained:

d
d
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0
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34
3d

dt
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and the so lu tion of eq. (24) with the ini tial con di tion (17b-1) is:

d
a

q
=

8

3

4
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The so lu tion of our prob lem is then com posed of the eqs. (23) and (25) for the pre -
scribed tem per a ture prob lem where q0

0= ò f T TT
T

b
( )d .

For the clamped heat flux case, the heat bal ance in te gral eq. (20) is trans formed with
the bound ary con di tion (17b-2):
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t
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d
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Sim i larly, the first or der or di nary dif fer en tial equa tion for the ther mal layer is:

d

t qd
( )d a2

0
2

12
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The so lu tion of eq. (27) sub jected to the ini tial con di tion (17b-2) and ex clud ing the
neg a tive so lu tion is:

d a=
2 3

0q
t (28)
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For the clamped heat flux prob lem, the so lu tion is given by eqs. (23) and (28). Since
the bound ary sur face tem per a ture q0 is not yet known, eq. (28) can not be di rectly used to eval u -
ate d but we can elim i nate the ther mal layer in the ex pres sion of q0 and have a tran scen den tal
equa tion for q0 since a is also a func tion of q0:

q

a

0
0
22

3
= q t (29)

The evo lu tion of the ther mal prop er ties of superfluid he lium with tem per a ture used to
solve eq. (29) with a sim ple rou tine are taken from the spe cific data base for he lium [10].

Heat trans fer in a semi-in fi nite me dia with tem per a ture
de pend ent prop er ties us ing the Good man trans form

To take ac count of the tem per a ture de pend ency of the ther mal prop er ties of the he lium
in the tran sient heat bal ance eq. (10), an other trans for ma tion can be used, the Good man trans for -
ma tion [3]:

Q = ò rC T T
T

T

b

p d( ) (30)

The sys tem of eqs. (10)-(13) and (15) are trans formed into:
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where a is also f(T)/rCp.
Fol low ing the same pro ce dure than in the pre vi ous para graph, the heat bal ance in te -

gral equa tion is writ ten as:
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As be fore, we use the tem per a ture pro file Q = b0(t) + b1(t) x + b2(t)x
2 + b3(t)x

3 and two
ad di tional bound ary con di tions iden ti cal to the ones used ear lier:
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Us ing the bound ary con di tion (31b’s), (31c), (33), and (34) the so lu tion for Q is given
by:

Q Q= -
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where for the pre scribed tem per a ture case Q0
0= ò rC T TT

T

b
p d( )  and for the clamped heat flux case 

Q0 0
3= (q /3 0a d) . Sim i larly to the pre vi ous trans form, if we in tro duce eq. (35) into the heat bal -

ance eq. (32), then the ther mal layer for the pre scribed tem per a ture case is:
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d
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=
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and for the pre scribed heat flux:
d a=

2 3

0
0

q
t (37)

For the pre scribed tem per a ture prob lem, the so lu tion of our prob lem is then com posed
of the eqs. (35) and (36) where Q0

0= ò rC TT
T

b
pd .

For the clamped heat flux prob lem, the so lu tion is given by eqs. (35) and (37). As be -
fore, the bound ary sur face tem per a ture Q0 is not yet known, there fore eq. (37) can not be di rectly
used to eval u ate d  but we can elim i nate the ther mal layer in the ex pres sion of Q0 and have a tran -
scen den tal equa tion:

Q0 0 0
22

3
a = q t (38)

Fi nally, one have to note that the use of the Good man trans form does not lead to any
ap prox i ma tion on the con trary of the Kirchhoff trans form. But the vari a tion of the ther mal prop -
erty, tak ing in ac count with this method, is re lated to the enthalpy vari a tion whereas the
Kirchhoff trans form takes ac count of the ther mal prop er ties re lated to the heat trans fer. One ex -
pects to have some dif fer ence in the com par i son with an a lyt i cal so lu tions or ex per i men tal data
since the ther mal con duc tiv ity func tion of He II var ies by sev eral or der of mag ni tude in the prac -
ti cal tem per a ture range of He II (1.6 K; 2.172 K).

Com par i son with ex ist ing so lu tion and ex per i men tal data

Clamped tem per a ture case

The HBIM so lu tions, given by eqs. (23) and (25) for the Kirchhoff trans form and by
the eqs. (35) and (36) for the Good man trans form are com pared with the ex act so lu tion – eq.
(39), de vel oped by Dresner in fig. 2 for the tem per a ture range [1.8; 2.0 K]:
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Since the Dresner so lu tion does not take ac count of the tem per a ture de pend ency of the
ther mal prop er ties, eq. (39) is plot ted as an area with the up per limit cor re spond ing to the so lu -
tion with the ther mal prop er ties at Tb = 1.8 K and the lower limit cor re spond ing to the so lu tion
with the ther mal prop er ties at T0 = 2.0 K.

In this tem per a ture range, the HBIM so lu tions gives sim i lar re sults since the vari a tion
of the ther mal prop er ties are “not” to im por tant, f(T) var ies by 25 % and a(T) by 50%. The dis -
crep ancy be tween the HBIM so lu tions and the ex act so lu tion can be as high as 25% for x/t3/4 < 1
and di verges at higher x/t3/4. This dis crep ancy is in trin sic to the HBIM due to the fact that it only
sat is fies the orig i nal par tial dif fer en tial equa tion av er aged over a fi nite dis tance. And since the
ther mal layer is un der es ti mated by the HBIM as fig. 2 shows, the dis crep ancy is found for large x
or small t. Sev eral tem per a ture pro files and bound ary con di tions has been tried but none of them
so far pres ents a better ac cu racy.

For small x, the ac cu racy is found to be within a few per cent and it is dem on strated in
com par ing the heat flux at the axis or i gin. The heat fluxes at the x-or i gin are de fined, re spec -
tively, with the Kirchhoff and Good man trans forms as:
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At the wall we can con sider small vari a tion of ther mal prop er ties, hence q0 and Q0 can
be re placed by av er age value as f » q0/(T0 – Tb) and rCp » Q0/(T0 – Tb) and eq. (40) is sim pli fied
to:
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which has a iden ti cal form than the heat flux given by the Dresner’s so lu tion ex cept that the
31/2/2 (0.87) co ef fi cient in the HBIM so lu tion is 31/4/21/2 (0.93) in Dresner’s so lu tion.

For a larger tem per a ture range such as [1.8 K; 2.172 K] as shown in fig. 2, the two
HBIM so lu tions di verge es sen tially be cause the large vari a tion of the equiv a lent ther mal con -
duc tiv ity of He II is not taken in ac count by the Good man trans form. The HBIM so lu tion with
the Good man trans form is not even lo cated in the area of pos si ble so lu tions given by the
Dresner’s equa tion. Ob vi ously, this so lu tion can be only used for small vari a tion of tem per a ture. 
As ex pected the HBIM so lu tion with the Kirchhoff trans form, which takes ac count of the vari a -
tion of the equiv a lent ther mal con duc tiv ity of He II, gives ac cept able re sults when com pared to
the an a lyt i cal pos si ble so lu tions area.

This con sti tutes for that prob lem the only an a lyt i cal pre dic tive so lu tion known since
the Dresner’s model does not take ac count of the tem per a ture de pend ency of the ther mal prop er -
ties.
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Fig ure 2. Com par i son be tween the an a lyt i cal model of Dresner [2] and the HBIM
so lu tions. The Dresner's so lu tion is pre sented as a area lim ited by the so lu tions with
the ther mal prop er ties at Tb (up per limit) and T0 (lower limit). The HBIM so lu tion
with the Kirchhoff trans form – eqs. (23) and (25), is rep re sented with a solid black
line and the HBIM so lu tion with the Good man trans form – eqs. (35) and 36), is rep -
re sented with a dashed black line



Clamped heat flux case

The clamped heat flux prob lem is the most prac ti cal case en coun tered in cool ing with
static superfluid he lium. It has been stud ied an a lyt i cally again by Dresner [1] and ex per i men -
tally by Van Sciver [11] for ex am ple. An im por tant cri te rion in de sign ing with superfluid he lium 
is to make sure that the tem per a ture of the de vice to cool does not go over the phase change tem -
per a ture, named the lambda tem per a ture Tl, be tween superfluid he lium and nor mal he lium. This 
in for ma tion is crit i cal to op er a tion of super con duct ing mag nets, for ex am ple, since the heat
trans fer in nor mal he lium is much lower than in superfluid he lium.

The Dresner’s an a lyt i cal so lu tion for the tem per a ture at the heated side (at x = 0) is:
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where a was found by iden ti fi ca tion with ex per i men tal data of Van Sciver .The so lu tions given
by the HBIM meth ods are, re spec tively:
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for the Kirchhoff and Good man trans form. Once more, to com pare the form of these so lu tions 
with  the  an a lyt i cal  so lu tion,  one   can take  the  as sump tion  that   f   »  q0/(T0 – Tb) and rCp »
»  Q0/(T0 – Tb) are av er age val ues and there fore equa tions are sim pli fied to:
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The HBIM so lu tions have the same form than the an a lyt i cal so lu tion. Dresner iden ti -
fied the co ef fi cient a to be 0.83 by fit ting the ex per i men tal data of Van Sciver whereas the
HBIM gives straightfully 2·31/2 (1.15).

An other im por tant in for ma tion to give is the time to reach the crit i cal tem per a ture Tl.
This time is given by re plac ing T0 by Tl, and for the HBIM so lu tion it is:
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This for mu la tion is also sim i lar to Dresner’s for mu la tion with the ex cep tion of the co -
ef fi cient 3/4 which is 1.43 in his model but it agrees on the quad ric de pend ence on the heat flux
with ex per i men tal re sults re ported by Van Sciver [11].

Dresner’s co ef fi cients are found by iden ti fi ca tion with ex per i men tal re sults re ported
which means that these co ef fi cients are only valid for the ther mo dy namic con di tions of the ex -
per i men tal work they were ex tracted from. A com par i son with ex per i men tal data is en cour ag -
ing, when we look at the pro por tional func tion be tween the time tl and q

0
4 . The ex per i men tal

work of Van Sciver gives a value of 110 W4s/cm8 for bath tem per a ture 1.802 K whereas eq. (45)
gives a value com prised be tween 52 and 141 W4s/cm8 for tem per a ture be tween 1.8 K and 2.0 K.

The HBIM so lu tions are com pared with the ex per i men tal data of Van Sciver on the fig. 
3. Only the so lu tions ob tained with the Kirchhoff trans form is pre sented since the so lu tion with
the Good man trans form does not fit the data. The Good man trans form HBIM so lu tion does not
al low com put ing a so lu tion for time higher than 0.95 s. This time cor re sponds to a ther mal layer
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of 0.63 m, which is the cause of the
fail ure of this model, i. e. the ther mal
layer is un der es ti mated. The HBIM
so lu tion with the Kirchhoff trans -
form is quite ac cu rate; the dif fer ence
be tween the mea sure ment and the
HBIM so lu tion is lower than 5%. But 
it still un der es ti mates the ther mal
layer. For t = 3.75 s, the ther mal layer
is 1.19 m and at 1.25 s the ther mal
layer is 0.91 m. The un der pre dic tion
of the ther mal layer is prob a bly due
to the ap prox i ma tion of con stant a,
fur ther work could be con ducted to
im prove this part of the model.

Fi nally, one in ter est ing re sult that
can be de duced from the HBIM mod -
el ing is that the tran sient heat trans fer 
in He II is more in flu enced by trans -
port prop er ties – f(T), than in trin sic
prop er ties of he lium – rCp, for
“large” tem per a ture vari a tion, i. e.
from 1.8 to 2.172 K and for heat flux
in the range of kW/m2, since the HBIM with the Good man trans form fails to re pro duce ex per i -
men tal data or ex act so lu tion. This re mark is not valid for lower tem per a ture range or smaller
heat flux, as it can be no ticed for the clamped tem per a ture case.

Con clu sions

The HBIM method has been ap plied to solve the non-lin ear heat dif fu sion equa tion for
superfluid he lium with tem per a ture de pend ent prop er ties, for the clamped tem per a ture and
clamped heat flux.

One of the main con tri bu tions of the pres ent work is that the HBIM leads to pre dic tive
so lu tions and do not need any pa ram e ter ad just ment to fit ex per i men tal data. Ac tu ally, to the
best of our knowl edge, these so lu tions are the only an a lyt i cal pre dic tive so lu tions. More over,
com pared to nu mer i cal tech niques, the pres ent anal y sis is much sim pler and pro vides an a lyt i cal
forms that can be han dled with any spread sheet pro gram us ing a he lium prop erty data base.

The ac cu racy ob tained with the HBIM us ing the Kirchhoff trans form pro vides a good
ac cu racy (within few percents) for re pro duc ing ex per i men tal re sults or ex act so lu tion.
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Fig ure 3. Com par i son be tween ex per i men tal data [11] and
the HBIM so lu tions with the Kirchhoff trans form, eq. (23)
and (28), for the clamped heat flux case. The ex per i men tal
data were ob tained at Tb = 1.802 K and q0 = 2.22 kW/m2. The
black square cor re spond to the mea sure ment at 3.75 s and
the black cir cle for 1.25 s af ter en er giz ing the heater. The
HBIM so lu tion (Kirchhoff trans form) is rep re sented with
solid black line for t = 3.75 s and t = 1.25 s

No men cla ture

A –  Gorter-Mellink coefficient, [mskg–1]
ai –  polynomial coefficients of the Kirchhoff

–  solution
bi –  polynomial coefficients of the Goodman

–  solution
Cp –  specific heat at constant pressure,

–  [Jkg–1K–1]

Fns –  mutual friction force per unit volume,
–  [Nm–3]

f(T) –  thermal conductivity function in the
–  turbulent regime of He II, [W3m–5K–1]

p –  pressure, [Pa]
q –  heat flux density, [Wm–2]
s –  entropy, [Jkg–1K–1]
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T –  temperature, [K]
t –  time, [s]
v –  velocity, [ms–1]
x –  space, [m]

Greek let ters

a –   = f/rCp, [J
2m–2s–1]

a –  average value of a over the temperature
–  range, [J2m–2s–1]

d –  thermal layer, [m]
q –  Kirchhoff temperature transform, [W3m–5]
Q –  Goodman temperature transform, [Jm–3]
m –  viscosity, [Pa·s]

r –  density, [kgm–3]

Sub scripts

b –  related  to the bulk temperature or bath
–  temperature

d –  related to the thermal layer
s –  related to the superfluid component
n –  related to the normal fluid component
l –  related to the lambda transition
0 –  related to the space origin (x = 0)

Su per script

6 –  vector value mark


