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In this paper we consider approximate travelling wave solutions to the
Korteweg-de Vries equation. The heat-balance integral method is first applied to
the problem, using two different quartic approximating functions, and then the re-
fined integral method is investigated. We examine two types of solution, chosen by
matching the wave speed to that of the exact solution and by imposing the same
area. The first set of solutions is generally better with an error that is fixed in time.
The second set of solutions has an error that grows with time. This is shown to be
due to slight discrepancies in the wave speed.
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Introduction

As its name suggests, the heat-balance integral method (HBIM) was developed to
solve problems in heat flow [1]. It has made a particular impact in the analysis of Stefan prob-
lems, where few analytical solutions exist. Since the heat equation is ubiquitous, the method has
application to numerous scenarios. For example, the heat equation, diffusion equation, and po-
rous media equation are identical, so results for heat flow carry through to diffusion and porous
media problems. The Schrodinger equation is simply the heat equation with a complex
diffusivity. The heat equation is used in probability and describes random walks. For this reason
it is also applied in financial mathematics and is a particular limit of the famous Black-Scholes
equation. It is important in Riemannian geometry and thus topology. For a discussion of applica-
tions of the heat equation see [2-4], for example. In viscous flow the heat equation is retrieved in
the analysis of an impulsively moved plate in a semi-infinite viscous fluid. In fact the HBIM is
an adaptation of the Karman-Pohlhausen integral method [5] for analysing boundary layers in
fluid flow, see [6] for a translated account of this work.

In this paper we extend the applicability of the method to a completely different prob-
lem, namely the solution of the Korteweg-de Vries equation. We focus on the well-known trav-
elling wave solution. Our work is inspired by a paper of Kutluay et al. [7]. However, this work
has two basic errors (which we discuss in the section The HBIM solution) that lead to an incor-
rect representation of the wave form, so we do not follow their analysis. For our analysis we will
use two methods: the standard HBIM and a refined integral method (RIM), see [8, 9]. As always
we encounter the issue of the choice of approximating function. Goodman primarily employed a
quadratic [1]. However, even for this simple choice Wood [10] shows six different formulations
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and demonstrates that Goodmans choice is typically third best. Kutluay et al. [7] opt for the stan-
dard quadratic. A single cubic profile was employed in Myers et al. [11] when studying the melt-
ing of a sub-cooled finite block. Their choice was motivated by analysing the melting of a mate-
rial initially at its solidus. Both the small argument expansion of the exact solution and an
asymptotic solution lead to a cubic with no quadratic term. Antic and Hill [12] use two cubics to
describe the temperature in grain and the surrounding air in a model of thermal diffusion in a
grain store. Mitchell ez al. [13] employ a quartic in a study of ablation. This choice is motivated
through an analysis of the heating up stage before ablation commences. Their results are com-
pared with an analysis of Braga ef al. [14, 15] who use functions of the form:

u = ay+ )@~ xy (1)
where 7 is a non-integer, chosen so that the melting time predicted by the HBIM solution agrees
with an exact analytical solution. In the current paper we employ a quartic, since this is the low-
est order capable of satisfying the boundary conditions.

Problem set-up and exact solution

Consider the Korteweg-de Vries equation of the form:

ut + guux + :uuxxx = 0 (2)
The initial condition:
u(x,0) =3Csech? (Ax + D), A =% /i 3)
u
permits a travelling wave solution of the form:
u(x,t) =3Csech?(Ax — eCAt + D) @)

Specifically this is a soliton moving in the positive x-direction with speed ¢C. We will use this
solution to verify our approximate solutions.

The HBIM solution

Kutluay ef al. [7] analyse the above problem on a fixed domain x € [0, 2] (and there-
fore the parameters and initial condition must be chosen so that the wave is well contained
within this region). Furthermore, the solution is restricted in time so that the wave does not ap-
proach the boundary. They then look for an approximating function of the form:

u = a()(x* — 2x) ©)

which satisfies u(0, £) = u(2, £) = 0. Integration of eq. (2) with respect to x over the fixed domain

ives:
gives -
2 u x=2
Judx +e—

0 2

T (6)
x=0

Since u = 0 at either boundary and u,, is constant this tells us that @ must be constant. Kutluay et
al. incorrectly apply the condition on u,, and find a = ae*"2, for some unknown constant .
Their error is compounded by an incorrect application of the initial condition to determine «,
which transforms the quadratic form (5) to:

u(x, f) = 3Ce*2sech?(4x + D) (7)
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Obviously this is simply the initial condition with an exponential multiplier. It is therefore no
surprise that their solutions appear accurate for small times. However, this quickly deteriorates
and by #= 0.5 the errors are as high as 45%. Based on this they state the HBIM is only suitable as
a very small time approximation to the solution of eq. (2) and (3).

Given that the solution is defined by a travelling wave we would expect the errors
(from an appropriate approximation) to be independent of time. We therefore approach the
problem in a rather different manner. Firstly, we work over a moving domain and so introduce a
quantity 6(¢), equivalent to the heat penetration depth in standard HBIM solutions [1]. In this
case O(¢) defines the leading edge of the wave, where we assume u(5, ) = 0 = u,(J, #). To ensure
smoothness we also set u,, (5, £) = 0. Our approximation must track the wave peak and so we in-
troduce the position x,(¢), which defines where u is a maximum:

ulx, =3C, ulx, H=0 (8)

Therefore, our travelling wave is defined for xe [2x,, — &, 8]. For the wave to retain its form we
require 0 — x,, = w to be constant, where w is the half-width of the wave.

We have five boundary conditions and therefore look for a quartic approximating
function. This takes the form:

u:3C{4 0-x)° 5 (6-x) } 9)
(6—xy)°  (O-x,)*

which satisfies conditions (8) and u = u, =u,, =0 atx =J. Note that this form only applies to the
region x,,, < x <J; the solution for 2x,, —d <x <x,, is obtained by reflecting in the line x = x, (7).
The approximation involves the unknown &(7). We determine 6 by integrating eq. (2) with re-
spect to x over the region [x,,, 5]

B

d o do dx €
— [ udx ——u(S,t) + —=u(x,, 1) +|—u?> +pu, | =0 10
ad ar 00 g Hme ) L H } (19)
Using the boundary conditions and the fact that 6 — x,, is constant, this reduces to:
3 2
ijudx+3Cil£—98C |, —uy| =0 (11)
X, t Xm

Substitution of u from (9) into this integral expression leads to an ordinary differential equation
for &, namely:
4 _3eC _12u (12)
e 2 w?
The initial condition on 6 comes from the initial shape of the wave, which has x,,(0) =—-D/4, so
0(0) =-D/4 + w. Equation (12) has solution:

5o 1w} D )
2 w? A
and so
o _(3C 1), D .
2 w? A

To ensure the correct wave speed we set the term in brackets to € C, which determines w =
= (24 u/eC)'2,

An alternative formulation arises by neglecting the condition u,, = 0 at x =9. Instead
we note:
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iu[é(t),t]z% @+@ =0 (15)
dr Ot|,_s At 0Ot|,_s
Imposing u, (5, ) = 0 and substituting for u, through the original eq. (2), we find u,,, (5, f) = 0.
Consequently we obtain:
u:3C|:2 (6-x* (0-x° } (16)
(6-xy)% (6-xy)*

The expressions for 6 and x,, turn out to be the same as in solutions (13) and (14) and so w is un-
changed.

The refined integral method (RIM) solution

The RIM is similar to the HBIM, except a second integration is carried out on the gov-
erning equation:
[ 0’u  0%u

0x? 0x?

5)66 ) 5

X, X, xm

m m

Further details of the method may be found in [9, 13]. This equation may be re-written as:

H Fou €T 4 — (S — €. a_zuj
J‘(j‘atdgjdx+2x{1udx %) xm)(zu HH—

X,

=0 (18)

m\ *m

using the fact that u, = 0 at x =x,, and x =9. The double integral can be integrated once by parts
and the dummy variable & replaced with x:

g x s 5 S )
| J@d.f dr=5f g Fx =69 fude - L Frude + 30w %
ot S Y des,  dey dr

X, m

X\ X,

m

Thus eq. (18) becomes:

s 5 s 2
59 fude - L Frude 130w 4+ £ Furan— 5, Euz v 4| =0 (19)
de s X, dt 2., 2 0x? )|,
Substituting the profile (9) into eq. (19) gives:
5= 2EC 2y D, (20)
14 w2 A
This is the RIM equivalent of eq. (13). Matching wave speeds gives w = (280 u/11C]"2. The
profile (16) leads to:
s= 1€ _buy Do, @1
7 w2 A

where w = (105u/6eC)"2.

One drawback with this method of choosing w is that it requires knowledge of the
wave speed, which comes from the exact solution. An alternative way to compute w is by
choosing the area under the wave to match that from the initial condition. Using this method
we find w = (5/2)4 and (15/7)A4 for the profiles (9) and (16), respectively (irrespective of
whether we use RIM or HBIM). We will present solutions where both the wave speed and area
are matched in the following section.
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Results

In fig. 1 we show a comparison of the HBIM solution with the exact solution, where w
is determined from the correct wave speed. The parameter values are taken from the paper of
Kutluay ef al. [7], namely u = 4.84-10%, ¢ = 1, and C = 0.3. We also set the initial position by
choosing D =—6. The solid line is the exact solution (4), the dashed line represents the approxi-
mation (9), and the dotted line is the approximation (16). These approximate solutions have
been calculated over the region [x,,,, 5]: to obtain the full profile the solution should be reflected
in the line x = x,(f). For both profiles

there is reasonable correlation, how- %9
ever, it is clear that the best approxima- zj
tion is given by profile (9). The L, |
norms for wey,er — Uppprox are 1.34 and 4
3.69 when u,,, is calculated through o4
(9) and (16) respectively. 03
Figure 2 shows a comparison of the 02
RIM solutions with the exact solution. %
0

The solution for eq. (16) shows a signif- T T TRy R T TR K

icant improvement, with an L, norm of

1.75. The accuracy of the second pro- ll*jigl)lre :1 }(]?l(;;nl\gl)arils()tr.l of tfhe exact stolution, (eq(.1 §4§, soll)i.d
- : ine) an solutions for correct wave speed (a) cubic

ﬁl.il’l eq. (9), P?SS S e;?ntor?}:e(ti fs h%ahtg and quartic, (eq. (9), dashed line) and (b) quadratic and

with a norm ot 1.52. INO e. at, Tor bo quartic, (eq. (16), dotted line) at 7 =1

the HBIM and RIM solutions these er-

rors will be constant for all time. Q0

When we use the condition of  °F
matching areas the error is time de-  °'|
pendent. Initially the L, norm is 1.45 EZ
and 1.9 for the two different approxi-

mating functions (9) and (16), respec- o3|
tively, regardless of the method used. 02|
By t=1 these have changed to 2.55and o1} 1
10.4 for the HBIM and 1.15 and 447 55 o5 o7 08 09 & 1T e
for RIM. Strangely, one of the RIM er-
rors has decreased. This comes about  Figure 2. Comparison of the exact solution (eq. (4), solid
since part of the approximate wave lies  line) and RIM solutions for correct wave speed (a) cubic
above the exact solution, as time pro- and q}lartic, (eq. (9), das!led line) and (b) quadratic and
gresses this wave moves to the left with quartic (¢q. (16), dotted line) at 7 =1

respect to the exact wave and so there is

a time when a large part of the waves coincide. By ¢ = 3 the errors are 5, 27 (HBIM), 2 and 10
(RIM) for the functions (9) and (16), respectively. The general growth in errors is due to an in-
correct wave speed: the exact solution has a wave speed x,, =¢C. If w=5/24 then eq. (14) shows:

_3eC 1 330{1 - i} =1026C (22)
2 25

"2 w?
corresponding to a 2% error. Any error introduced by the initial approximation will therefore
slowly grow as time proceeds. For eq. (16) we find %,, = 0.85¢C, an approximate —15% error,
and so this wave will rapidly fall behind the exact wave form. For the RIM formulations the er-
rors are —1% and 4%, respectively.
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ug: The drift from the exact solution is
o7l seen clearly in fig. 3, where results are
0.6 plotted at times ¢z = 0.5 and 3. This
0.5} only shows the RIM solutions, since
04 these proved to be the most accurate.
08 At t = 0.5 the approximations show
02y excellent agreement with the exact
0.1} . . .

0 solution, except in the vicinity of the x

0.2 = 6. By t = 3 the solution of eq. (16)

Figure 3. Comparison of the exact solution (eq. (4), solid has noticeably moved ahead of the ex-

line) and HBIM solutions for correct wave speed (a) cubic ~ act solution. The solution of eq. (9) is

and quartic, (eq. (9), dashed line) and (b) quadratic and  still close but definitely deteriorating.
quartic (eq. (16), dotted line) at=0.5and =3

Conclusions

In this paper we have shown how the HBIM and RIM solutions may be applied to the
Korteweg-de Vries equation. We have also used two approaches to calculate the half-width of
the wave. For the former, we chose to match the wave speed of the approximate and exact solu-
tions. The standard HBIM formulation, where the approximating function involved cubic and
quartic terms, gave the smallest L, norm although both RIM formulations had similar values.

Of course the wave speed is not always known a priori and so a second method to de-
termine the half-width was used that required matching the area under the approximate solution
with that of the initial condition. In this case the RIM formulation proved best. The main draw-
back of this approach is that the error changes in time. Initially both HBIM and RIM formula-
tions had the same L, norm, which depended on the approximating function (and with the excep-
tion of the worst HBIM solution these norms are higher than when matching the wave speed).
Since the wave speeds differ slightly from the true value these errors tend to increase and so this
form of solution can only be considered valid for small times, although for much longer times
than suggested by Kutluay et al.

The approximating function involving even powers of x was chosen for two reasons.
Firstly, taking the total derivative of the condition u[5(¢), ¢] = 0 indicated the cubic term should
be zero. Secondly, the small argument expansion of the exact solution involves only even pow-
ers. It is therefore surprising that the solution involving a cubic gives the best results. This high-
lights the difficulty in choosing an approximating function for the HBIM or RIM solutions, for
which, as yet, there is no systematic method.

Nomenclature

t — temporal variable, [s] w — half-width of wave, [m]
u(x, t) — wave amplitude, [m] — spatial variable, [m]

=
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