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In this pa per we con sider ap prox i mate trav el ling wave so lu tions to the
Korteweg-de Vries equa tion. The heat-bal ance in te gral method is first ap plied to
the prob lem, us ing two dif fer ent quartic ap prox i mat ing func tions, and then the re -
fined in te gral method is in ves ti gated. We ex am ine two types of so lu tion, cho sen by
match ing the wave speed to that of the ex act so lu tion and by im pos ing the same
area. The first set of so lu tions is gen er ally better with an er ror that is fixed in time.
The sec ond set of so lu tions has an er ror that grows with time. This is shown to be
due to slight dis crep an cies in the wave speed. 
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In tro duc tion 

As its name sug gests, the heat-bal ance in te gral method (HBIM) was de vel oped to
solve prob lems in heat flow [1]. It has made a par tic u lar im pact in the anal y sis of Stefan prob -
lems, where few an a lyt i cal so lu tions ex ist. Since the heat equa tion is ubiq ui tous, the method has
ap pli ca tion to nu mer ous sce nar ios. For ex am ple, the heat equa tion, diffusion equa tion, and po -
rous me dia equa tion are iden ti cal, so re sults for heat flow carry through to diffusion and po rous
me dia prob lems. The Schrödinger equa tion is sim ply the heat equa tion with a com plex
diffusivity. The heat equa tion is used in prob a bil ity and de scribes ran dom walks. For this rea son
it is also ap plied in financial math e mat ics and is a par tic u lar limit of the fa mous Black-Scholes
equa tion. It is im por tant in Riemannian ge om e try and thus to pol ogy. For a dis cus sion of ap pli ca -
tions of the heat equa tion see [2-4], for ex am ple. In vis cous flow the heat equa tion is re trieved in
the anal y sis of an im pul sively moved plate in a semi-infinite vis cous fluid. In fact the HBIM is
an ad ap ta tion of the Karman-Pohlhausen in te gral method [5] for ana lys ing bound ary lay ers in
fluid flow, see [6] for a trans lated ac count of this work. 

In this pa per we ex tend the ap pli ca bil ity of the method to a com pletely dif fer ent prob -
lem, namely the so lu tion of the Korteweg-de Vries equa tion. We fo cus on the well-known trav -
el ling wave so lu tion. Our work is in spired by a pa per of Kutluay et al. [7]. How ever, this work
has two ba sic er rors (which we dis cuss in the sec tion The HBIM so lu tion) that lead to an in cor -
rect rep re sen ta tion of the wave form, so we do not fol low their anal y sis. For our anal y sis we will
use two meth ods: the stan dard HBIM and a re fined in te gral method (RIM), see [8, 9]. As al ways
we en coun ter the is sue of the choice of ap prox i mat ing func tion. Good man pri mar ily em ployed a 
qua dratic [1]. How ever, even for this sim ple choice Wood [10] shows six dif fer ent for mu la tions
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and dem on strates that Goodmans choice is typ i cally third best. Kutluay et al. [7] opt for the stan -
dard qua dratic. A sin gle cu bic pro file was em ployed in Myers et al. [11] when study ing the melt -
ing of a sub-cooled fi nite block. Their choice was mo ti vated by ana lys ing the melt ing of a ma te -
rial ini tially at its sol i dus. Both the small ar gu ment ex pan sion of the ex act so lu tion and an
as ymp totic so lu tion lead to a cu bic with no qua dratic term. An tic and Hill [12] use two cubics to
de scribe the tem per a ture in grain and the sur round ing air in a model of ther mal dif fu sion in a
grain store. Mitch ell et al. [13] em ploy a quartic in a study of ab la tion. This choice is mo ti vated
through an anal y sis of the heat ing up stage be fore ab la tion com mences. Their re sults are com -
pared with an anal y sis of Braga et al. [14, 15] who use func tions of the form:

u = a0 + a1(d – x)n (1) 

where n is a non-in te ger, cho sen so that the melt ing time pre dicted by the HBIM so lu tion agrees
with an ex act an a lyt i cal so lu tion. In the cur rent pa per we em ploy a quartic, since this is the low -
est or der ca pa ble of sat is fy ing the bound ary con di tions. 

Problem set-up and ex act so lu tion

Con sider the Korteweg-de Vries equa tion of the form:

ut + euux + muxxx = 0 (2)

The ini tial con di tion:
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per mits a trav el ling wave so lu tion of the form:

u x t C Ax CAt D( , ) ( )= - +3 2sech e (4)

Spe cif i cally this is a soliton mov ing in the pos i tive x-di rec tion with speed eC. We will use this
so lu tion to ver ify our ap prox i mate so lu tions.

The HBIM so lu tion

Kutluay et al. [7] ana lyse the above prob lem on a fixed do main x Î [0, 2] (and there -
fore the pa ram e ters and ini tial con di tion must be cho sen so that the wave is well con tained
within this re gion). Fur ther more, the so lu tion is re stricted in time so that the wave does not ap -
proach the bound ary. They then look for an ap prox i mat ing func tion of the form:

u = a(t)(x2 – 2x) (5)

which satisfies u(0, t) = u(2, t) = 0. In te gra tion of eq. (2) with re spect to x over the fixed do main
gives:
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Since u = 0 at ei ther bound ary and uxx is con stant this tells us that a must be con stant. Kutluay et
al. in cor rectly ap ply the con di tion on uxx and find a = ae–3µt/2, for some un known con stant a.
Their er ror is com pounded by an in cor rect ap pli ca tion of the ini tial con di tion to de ter mine a,
which trans forms the qua dratic form (5) to:

u(x, t) = 3Ce3µt/2sech2(Ax + D) (7)
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Ob vi ously this is sim ply the ini tial con di tion with an ex po nen tial mul ti plier. It is there fore no
sur prise that their so lu tions ap pear ac cu rate for small times. How ever, this quickly de te ri o rates
and by t = 0.5 the er rors are as high as 45%. Based on this they state the HBIM is only suit able as
a very small time ap prox i ma tion to the so lu tion of eq. (2) and (3).

Given that the so lu tion is de fined by a trav el ling wave we would ex pect the er rors
(from an ap pro pri ate ap prox i ma tion) to be in de pend ent of time. We there fore ap proach the
prob lem in a rather dif fer ent man ner. Firstly, we work over a mov ing do main and so in tro duce a
quan tity d(t), equiv a lent to the heat pen e tra tion depth in stan dard HBIM so lu tions [1]. In this
case d(t) de fines the lead ing edge of the wave, where we as sume u(d, t) = 0 = ux(d, t). To en sure
smooth ness we also set uxx(d, t) = 0. Our ap prox i ma tion must track the wave peak and so we in -
tro duce the po si tion xm(t), which de fines where u is a max i mum:

u(xm, t) = 3C,      ux(xm, t) = 0 (8)

There fore, our trav el ling wave is de fined for xÎ [2xm – d, d]. For the wave to re tain its form we
re quire d – xm = w to be con stant, where w is the half-width of the wave. 

We have five bound ary con di tions and there fore look for a quartic ap prox i mat ing
func tion. This takes the form:
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which sat is fies con di tions (8) and u = ux = uxx = 0 at x = d. Note that this form only ap plies to the
re gion xm <  x < d; the so lu tion for 2xm – d < x < xm is ob tained by re flect ing in the line x = xm(t).
The ap prox i ma tion in volves the un known d(t). We de ter mine d by in te grat ing eq. (2) with re -
spect to x over the re gion [xm, d]
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Us ing the bound ary con di tions and the fact that d – xm is con stant, this re duces to:
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Sub sti tu tion of u from (9) into this in te gral ex pres sion leads to an or di nary dif fer en tial equa tion
for d, namely:
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The ini tial con di tion on d co mes from the ini tial shape of the wave, which has xm(0) = –D/A, so
d(0) = –D/A + w. Equa tion (12) has so lu tion:
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To  en sure  the cor rect wave speed we set  the  term  in brack ets to eC, which de ter mines w =
= (24 m/eC)1/2. 

An al ter na tive for mu la tion arises by ne glect ing the con di tion uxx = 0 at x = d. In stead
we note:
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Im pos ing ux(d, t) = 0 and sub sti tut ing for ut through the orig i nal eq. (2), we find uxxx(d, t) = 0.
Con se quently we ob tain:
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The ex pres sions for d and xm turn out to be the same as in so lu tions (13) and (14) and so w is un -
changed.

The re fined in te gral method (RIM) so lu tion

The RIM is sim i lar to the HBIM, ex cept a sec ond in te gra tion is car ried out on the gov -
ern ing equa tion:
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Fur ther de tails of the method may be found in [9, 13]. This equa tion may be re-writ ten as:
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us ing the fact that ux = 0 at x = xm and x = d. The dou ble in te gral can be in te grated once by parts
and the dummy vari able x re placed with x:
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Thus eq. (18) be comes:
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Sub sti tut ing the pro file (9) into eq. (19) gives:
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This is the RIM equiv a lent of eq. (13). Match ing wave speeds gives w = (280 m/11eC]1/2. The
pro file (16) leads to:
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where w = (105m/6eC)1/2.
One draw back with this method of choos ing w is that it re quires knowl edge of the

wave speed, which co mes from the ex act so lu tion. An al ter na tive way to com pute w is by
choos ing the area un der the wave to match that from the ini tial con di tion. Us ing this method
we find w = (5/2)A and (15/7)A for the pro files (9) and (16), re spec tively (ir re spec tive of
whether we use RIM or HBIM). We will pres ent so lu tions where both the wave speed and area 
are matched in the fol low ing sec tion.
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Re sults

In fig. 1 we show a com par i son of the HBIM so lu tion with the ex act so lu tion, where w
is de ter mined from the cor rect wave speed. The pa ram e ter val ues are taken from the pa per of
Kutluay et al. [7], namely m = 4.84·10–4, e = 1, and C = 0.3. We also set the ini tial po si tion by
choos ing D = –6. The solid line is the ex act so lu tion (4), the dashed line rep re sents the ap prox i -
ma tion (9), and the dot ted line is the ap prox i ma tion (16). These ap prox i mate so lu tions have
been cal cu lated over the re gion [xm, d]: to ob tain the full pro file the so lu tion should be re flected
in the line x = xm(t). For both pro files
there is rea son able cor re la tion, how -
ever, it is clear that the best ap prox i ma -
tion is given by pro file (9). The L2

norms for uex act – uapprox are 1.34 and
3.69 when uapprox is cal cu lated through
(9) and (16) re spec tively.

Fig ure 2 shows a com par i son of the
RIM so lu tions with the ex act so lu tion.
The so lu tion for eq. (16) shows a sig nif -
i cant im prove ment, with an L2 norm of
1.75. The ac cu racy of the sec ond pro -
file, eq. (9), has de te ri o rated slightly
with a norm of 1.52. Note that, for both
the HBIM and RIM so lu tions these er -
rors will be con stant for all time.

When we use the con di tion of
match ing ar eas the er ror is time de -
pend ent. Ini tially the L2 norm is 1.45
and 1.9 for the two dif fer ent ap prox i -
mat ing func tions (9) and (16), re spec -
tively, re gard less of the method used.
By t = 1 these have changed to 2.55 and
10.4 for the HBIM and 1.15 and 4.47
for RIM. Strangely, one of the RIM er -
rors has de creased. This co mes about
since part of the ap prox i mate wave lies
above the ex act so lu tion, as time pro -
gresses this wave moves to the left with 
re spect to the ex act wave and so there is 
a time when a large part of the waves co in cide. By t = 3 the er rors are 5, 27 (HBIM), 2 and 10
(RIM) for the func tions (9) and (16), re spec tively. The gen eral growth in er rors is due to an in -
cor rect wave speed: the ex act so lu tion has a wave speed &xm = eC. If w = 5/2A then eq. (14) shows:
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cor re spond ing to a 2% er ror. Any er ror in tro duced by the ini tial ap prox i ma tion will there fore
slowly grow as time pro ceeds. For eq. (16) we find &xm » 0.85eC, an ap prox i mate  –15% er ror,
and so this wave will rap idly fall be hind the ex act wave form. For the RIM for mu la tions the er -
rors are –1% and 4%, re spec tively.
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Fig ure 1. Com par i son of the ex act so lu tion, (eq. (4), solid
line) and HBIM so lu tions for cor rect wave speed (a) cu bic
and quartic, (eq. (9), dashed line) and (b) qua dratic and
quartic, (eq. (16), dot ted line) at t = 1

Fig ure 2. Com par i son of the ex act so lu tion (eq. (4), solid
line) and RIM so lu tions for cor rect wave speed (a) cu bic
and quartic, (eq. (9), dashed line) and (b) qua dratic and
quartic (eq. (16), dot ted line) at t = 1



The drift from the ex act so lu tion is 
seen clearly in fig. 3, where re sults are 
plot ted at times t = 0.5 and 3. This
only shows the RIM so lu tions, since
these proved to be the most ac cu rate.
At t = 0.5 the ap prox i ma tions show
ex cel lent agree ment with the ex act
so lu tion, ex cept in the vi cin ity of the x
= d. By t = 3 the so lu tion of eq. (16)
has no tice ably moved ahead of the ex -
act so lu tion. The so lu tion of eq. (9) is
still close but def i nitely de te ri o rat ing.

Con clu sions

In this pa per we have shown how the HBIM and RIM so lu tions may be ap plied to the
Korteweg-de Vries equa tion. We have also used two ap proaches to cal cu late the half-width of
the wave. For the for mer, we chose to match the wave speed of the ap prox i mate and ex act so lu -
tions. The stan dard HBIM for mu la tion, where the ap prox i mat ing func tion in volved cu bic and
quartic terms, gave the small est L2 norm al though both RIM for mu la tions had sim i lar val ues.

Of course the wave speed is not al ways known a pri ori and so a sec ond method to de -
ter mine the half-width was used that re quired match ing the area un der the ap prox i mate so lu tion
with that of the ini tial con di tion. In this case the RIM for mu la tion proved best. The main draw -
back of this ap proach is that the er ror changes in time. Ini tially both HBIM and RIM for mu la -
tions had the same L2 norm, which de pended on the ap prox i mat ing func tion (and with the ex cep -
tion of the worst HBIM so lu tion these norms are higher than when match ing the wave speed).
Since the wave speeds dif fer slightly from the true value these er rors tend to in crease and so this
form of so lu tion can only be con sid ered valid for small times, al though for much lon ger times
than sug gested by Kutluay et al. 

The ap prox i mat ing func tion in volv ing even pow ers of x was cho sen for two rea sons.
Firstly, tak ing the to tal de riv a tive of the con di tion u[d(t), t] = 0 in di cated the cu bic term should
be zero. Sec ondly, the small ar gu ment ex pan sion of the ex act so lu tion in volves only even pow -
ers. It is there fore sur pris ing that the so lu tion in volv ing a cu bic gives the best re sults. This high -
lights the difficulty in choos ing an ap prox i mat ing func tion for the HBIM or RIM so lu tions, for
which, as yet, there is no sys tem atic method.
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No men cla ture

t –  temporal variable, [s]
u(x, t) –  wave amplitude, [m]

w –  half-width of wave, [m]
x –  spatial variable, [m]
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